Not Only Toxic but Repellent: What Can Organisms’ Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment?
Abstract
:1. Introduction
2. Toxicity: The Traditional Ecotoxicological Response
3. Avoidance: A Repellency-Driven Behavioral Response
4. The Higher the Toxicity, the Higher the Repellency?
5. The Decision of Avoiding or Not: A Cost-Benefits Balance
5.1. Population Density
5.2. Competition
5.3. Food
5.4. Predators and Shelters
5.5. Salinity
6. Ecological Improvements by Simulating a Chemically Heterogeneous Environment
6.1. Spatial Displacement: Extinction at the Local Level
6.2. Potential to Predict the (Re)Colonization of Environments
6.3. Chemical Fragmentation of Habitat
6.4. Habitat Connectivity, Metapopulation, Metacommunity, and Meta-Ecosystem
7. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beketov, M.A.; Liess, M. Ecotoxicology and macroecology—Time for integration. Environ. Pollut. 2012, 162, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Truhaut, R. Ecotoxicology: Objectives, principles and perspectives. Ecotoxicol. Environ. Saf. 1977, 1, 151–157. [Google Scholar] [CrossRef]
- Cairns, J., Jr. Are single species toxicity tests alone adequate for estimating environmental hazard? Environ. Monitor. Assess. 1984, 4, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.M. Integrating toxicology and ecology: Putting the ‘‘eco’’ into ecotoxicology. Mar. Pollut. Bull. 2002, 44, 7–15. [Google Scholar] [CrossRef]
- Fleeger, J.W.; Carman, K.R.; Nisbet, R.M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 2003, 317, 207–233. [Google Scholar] [CrossRef]
- Clements, W.H.; Rohr, J.R. Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 2009, 28, 1789–1800. [Google Scholar] [CrossRef]
- De Lange, H.J.; Sala, S.; Vighi, M.; Faber, J.H. Ecological vulnerability in risk assessment—A review and perspectives. Sci. Total Environ. 2010, 408, 3871–3879. [Google Scholar] [CrossRef]
- Rico, A.; Van den Brink, P.J.; Gylstra, R.; Focks, A.; Brock, T.C.M. Developing ecological scenarios for the prospective aquatic risk assessment of pesticides. Integr. Environ. Assesss. 2015, 12, 510–521. [Google Scholar] [CrossRef]
- Van Straalen, N.M. Ecotoxicology becomes Stress Ecology. Environ. Sci. Technol. 2003, 37, 324A–330A. [Google Scholar] [CrossRef] [Green Version]
- Van den Brink, P.J. Ecological risk assessment: From book-keeping to chemical stress ecology. Environ. Sci. Technol. 2008, 42, 8999–9004. [Google Scholar] [CrossRef] [Green Version]
- Moreira-Santos, M.; Ribeiro, R.; Araújo, C.V.M. What if aquatic animals move away from pesticide-contaminated habitats before suffering adverse physiological effects? A critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 989–1025. [Google Scholar] [CrossRef]
- Ågerstrand, M.; Arnold, K.; Balshine, S.; Brodin, T.; Brooks, B.W.; Maack, G.; McCallum, E.S.; Pyle, G.; Saaristo, M.; Ford, A.T. Emerging investigator series: Use of behavioural endpoints in the regulation of chemicals. Environ. Sci. Process. Impacts 2020, 22, 49–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairns, J., Jr.; Niederlehner, B.R. Developing a field of landscape ecotoxicology. Ecol. Appl. 1996, 6, 790–796. [Google Scholar] [CrossRef] [Green Version]
- Spromberg, J.A.; John, B.M.; Landis, W.G. Metapopulation dynamics: Indirect effects and multiple distinct outcomes in ecological risk assessment. Environ. Toxicol. Chem. 1998, 17, 1640–1649. [Google Scholar] [CrossRef]
- Johnson, R.A. Landscape ecotoxicology and assessment of risk at multiple scales. Hum. Ecol. Risk Assess. 2002, 8, 127–146. [Google Scholar] [CrossRef]
- Rohr, J.R.; Kerby, J.L.; Sih, A. Community ecology as a framework for predicting contaminant effects. Trends Ecol. Evol. 2006, 21, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Jansen, M.; Veit, U.; Dudel, G.; Altenburger, R. An ecological perspective in aquatic ecotoxicology: Approaches and challenges. Basic Appl. Ecol. 2008, 9, 337–345. [Google Scholar] [CrossRef]
- Moe, S.J.; De Schamphelaere, K.; Clements, W.H.; Sorensen, M.T.; Van Den Brink, P.J.; Liess, M. Combined and interactive effects of global climate change and toxicants on populations and communities. Environ. Toxicol. Chem. 2013, 32, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Araújo, C.V.M.; Moreira-Santos, M.; Ribeiro, R. Active and passive spatial avoidance by aquatic organisms from environmental stressors: A complementary perspective and a critical review. Environ. Int. 2016, 92–93, 405–415. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Blasco, J. Spatial avoidance as a response to contamination by aquatic organisms in non-forced, multi-compartmented exposure systems: A complementary approach to the behavioral response. Environ. Toxicol. Chem. 2019, 38, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Hellou, J. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environ. Sci. Pollut. Res. 2011, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jutfelt, F.; Sundin, J.; Raby, G.D.; Krang, A.-S.; Clark, T.D. Two-current choice flumes for testing avoidance and preference in aquatic animals. Methods Ecol. Evol. 2017, 8, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.-Q.; Guo, S.-S.; Wang, Y.; Pang, X.; Geng, Z.-F.; Du, S.-S. Toxicity and repellency of essential oil from Evodia lenticellata Huang fruits and its major monoterpenes against three stored-product insects. Ecotoxicol. Environ. Saf. 2018, 160, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Padilha, A.C.; Piovesan, B.; Morais, M.C.; Arioli, C.J.; Zotti, M.J.; Grützmacher, A.D.; Botton, M. Toxicity, attraction, and repellency of toxic baits to stingless bees Plebeia emerina (Friese) and Tetragonisca fiebrigi (Schwarz) (Hymenoptera: Apidae: Meliponini). Ecotoxicol. Environ. Saf. 2019, 183, 109490. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Rodríguez-Romero, A.; Fernández, M.; Sparaventi, E.; Medina, M.M.; Tovar-Sánchez, A. Repellency and mortality effects of sunscreens on the shrimp Palaemon varians: Toxicity dependent on exposure method. Chemosphere 2020, 257, 127190. [Google Scholar] [CrossRef]
- Ruuskanen, S.; Rainio, M.J.; Kuosmanen, V.; Laihonen, M.; Saikkonen, K.; Saloniemi, I.; Helander, M. Female preference and adverse developmental effects of glyphosate-based herbicides on ecologically relevant traits in Japanese quails. Environ. Sci. Technol. 2020, 54, 128–135. [Google Scholar] [CrossRef]
- Åtland, Å.; Barlaup, B.T. Avoidance of toxic mixing zones by atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) in the limed river Audna, southern Norway. Environ. Pollut. 1995, 90, 203–208. [Google Scholar] [CrossRef]
- Hansen, J.A.; Woodward, D.F.; Little, E.E.; DeLonay, A.J.; Bergman, H.L. Behavioral avoidance: Possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river. Environ. Toxicol. Chem. 1999, 18, 313–317. [Google Scholar] [CrossRef]
- Carlsen, T.N.; Coty, J.D.; Kercher, J.R. The spatial extent of contaminants and landscape scale: An analysis of the wildlife, conservation biology, and population modeling literature. Environ. Toxicol. Chem. 2004, 23, 798–811. [Google Scholar] [CrossRef]
- Lopes, I.; Baird, D.J.; Ribeiro, R. Avoidance of copper contamination by field populations of Daphnia longispina. Environ. Toxicol. Chem. 2004, 23, 1702–1708. [Google Scholar] [CrossRef] [Green Version]
- Clements, W.H.; Hickey, C.W.; Kidd, K.A. How do aquatic communities respond to contaminants? It depends on the ecological context. Environ. Toxicol. Chem. 2012, 31, 1932–1940. [Google Scholar] [CrossRef] [PubMed]
- Dahms, H.-U. Dormancy in the Copepoda—An overview. Hydrobiologia 1995, 306, 199–211. [Google Scholar] [CrossRef]
- Radzikowski, J. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res. 2013, 35, 707–723. [Google Scholar] [CrossRef] [Green Version]
- De Stasio, B.T., Jr. The role of dormancy and emergence patterns in the dynamics of a freshwater zooplankton community. Limnol. Oceanogr. 1990, 35, 1079–1090. [Google Scholar] [CrossRef]
- Vandekerkhove, L.; Declerck, S.; Jeppesen, E.; Conde-Porcuma, J.M.; Brendonck, L.; De Meester, L. Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 2005, 142, 109–116. [Google Scholar] [CrossRef]
- Portinho, J.L.; Nielsen, D.L.; Daré, L.; Henry, R.; Oliveira, R.C.; Branco, C.C.Z. Mixture of commercial herbicides based on 2,4-D and glyphosatemixture can suppress the emergence of zooplankton from sediment. Chemosphere 2018, 203, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Hadjinicolaou, J.; LaRoche, G. Behavioral Responses to Low Levels of Toxic Substances in Rainbow Trout (Salmo Gairdneri, Rich). In Aquatic Toxicology and Hazard Assessment; Adams, W., Chapman, G., Landis, W., Eds.; ASTM International: West Conshohocken, PA, USA, 1988; Volume 10, pp. 327–340. [Google Scholar]
- Costantini, D.; Metcalfe, N.B.; Monaghan, P. Ecological processes in a hermetic framework. Ecol. Lett. 2010, 13, 1435–1447. [Google Scholar] [CrossRef]
- Vera-Vera, V.C.; Guerrero, F.; Blasco, J.; Araújo, C.V.M. Habitat selection response of the freshwater shrimp Atyaephyra desmarestii experimentally exposed to heterogeneous copper contamination scenarios. Sci. Total Environ. 2019, 662, 816–823. [Google Scholar] [CrossRef]
- Newman, M.C.; Unger, M.A. Population Ecotoxicology, 2nd ed.; Lewis Publishers: Boca Raton, FL, USA, 2001; p. 458. [Google Scholar]
- Walker, C.H.; Hopkin, S.P.; Sibly, R.M.; Peakall, D.B. Principles of Ecotoxicology, 2nd ed.; Taylor & Francis: Boca Raton, FL, USA, 2001; p. 309. [Google Scholar]
- Cairns, J., Jr. Putting eco into ecotoxicology. Regul. Toxicol. Pharmacol. 1988, 8, 226–238. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, S. Is Daphnia magna an ecologically representative zooplankton species in toxicity tests? Environ. Pollut. 1995, 90, 263–267. [Google Scholar] [CrossRef]
- Martinez-Haro, M.; Beiras, R.; Bellas, J.; Capela, R.; Pedro, J.; Lopes, I.; Moreira-Santos, M.; Reis-Henriques, A.M.; Ribeiro, R.; Santos, M.M.; et al. A review on the ecological quality status assessment in aquatic systems using community based indicators and ecotoxicological tools: What might be the added value of their combination? Ecol. Indic. 2015, 48, 8–16. [Google Scholar] [CrossRef]
- Johnston, E.L.; Mayer-Pinto, M.; Crowe, T.P. Chemical contaminant effects on marine ecosystem functioning. J. Appl. Ecol. 2015, 52, 140–149. [Google Scholar] [CrossRef] [Green Version]
- Willmer, P.; Stone, G.; Johnston, I. Environmental Physiology of Animals; Blackwell Science: Osney Mead, UK, 2000; p. 644. [Google Scholar]
- Nakamura, F. Avoidance behavior and swimming activity of fish to detect pH changes. Bull. Environ. Contam. Toxicol. 1986, 37, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zha, J.; Ma, M.; Wang, Z.; Gerhardt, A. The early warning of aquatic organophosphorus pesticide contamination by on-line monitoring behavioral changes of Daphnia magna. Environ. Monit. Assess. 2007, 134, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Almeida, J.R.; Guilhermino, L.; Soares, A.M.V.M.; Gravato, C. Swimming velocity, avoidance behavior and biomarkers in Palaemon serratus exposed to fenitrothion. Chemosphere 2013, 90, 936–944. [Google Scholar] [CrossRef]
- Tierney, K.B. Chemical avoidance responses of fish. Aquat. Toxicol. 2016, 174, 228–241. [Google Scholar] [CrossRef]
- Rosa, R.; Materatski, P.; Moreira-Santos, M.; Sousa, J.P.; Ribeiro, R. A scaled-up system to evaluate zooplankton spatial avoidance and population immediate decline concentration. Environ. Toxicol. Chem. 2012, 31, 1301–1305. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Roque, D.; Blasco, J.; Ribeiro, R.; Moreira-Santos, M.; Toribio, A.; Aguirre, E.; Barro, S. Stress-driven emigration in a complex scenario of habitat disturbance: The heterogeneous multi-habitat assay system (HeMHAS). Sci. Total Environ. 2018, 644, 31–36. [Google Scholar]
- Rosa, R.; Moreira-Santos, M.; Lopes, I.; Picado, A.; Mendonça, F.; Ribeiro, R. Development and sensitivity of a 12-h laboratory test with Daphnia magna Straus based on avoidance of pulp mill effluents. Bull. Environ. Contam. Toxicol. 2008, 81, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Venâncio, C.; Ribeiro, R.; Lopes, I. Active emigration from climate change-caused seawater into freshwater habitats. Environ. Pollut. 2020, 258, 113805. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Moreira-Santos, M.; Sousa, J.P.; Ochoa-Herrera, V.; Encalada, A.C.; Ribeiro, R. Active avoidance from a crude oil soluble fraction by an Andean paramo copepod. Ecotoxicology 2014, 23, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.V.M.; Martínez-Haro, M.; Pais-Costa, A.J.; Marques, J.C.; Ribeiro, R. Patchy sediment contamination scenario and the habitat selection by an estuarine mudsnail. Ecotoxicology 2016, 25, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.V.M.; Pereira, K.C.; Blasco, J. Avoidance response by shrimps to a copper gradient: Does high population density prevent avoidance of contamination? Environ. Toxicol. Chem. 2018, 37, 3095–3101. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.V.M.; González-Ortegón, E.; Pintado-Herrera, M.; Biel-Maeso, M.; Lara-Martín, P.; Tovar-Sánchez, A.; Blasco, J. Disturbance of ecological habitat distribution driven by a chemical barrier of domestic and agricultural discharges: An experimental approach to test habitat fragmentation. Sci. Total Environ. 2019, 651, 2820–2829. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.V.M.; Pereira, K.C.; Sparaventi, E.; González-Ortegón, E.; Blasco, J. Contamination may induce behavioural plasticity in the habitat selection by shrimps: A cost-benefits balance involving contamination, shelter and predation. Environ. Pollut. 2020, 263, 114545. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Cedeño-Macias, L.A.; Vera-Vera, V.C.; Salvatierra, D.; Rodríguez, E.N.V.; Zambrano, U.; Kuri, S. Predicting the effects of copper on local population decline of 2 marine organisms, cobia fish and whiteleg shrimp, based on avoidance response. Environ. Toxicol. Chem. 2016, 35, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Mena, F.; González-Ortegón, E.; Solano, K.; Araújo, C.V.M. The effect of the insecticide diazinon on the osmoregulation and the avoidance response of the white leg shrimp (Litopeneaus vannamei) is salinity dependent. Ecotocol. Environ. Saf. 2020, 206, 111364. [Google Scholar] [CrossRef]
- Ehiguese, F.O.; Corada Fernandez, M.C.; Lara-Martín, P.A.; Martín-Díaz, M.L.; Araújo, C.V.M. Avoidance behaviour of the shrimp Palaemon varians regarding a contaminant gradient of galaxolide and tonalide in seawater. Chemosphere 2019, 232, 113–120. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Shinn, C.; Moreira-Santos, M.; Lopes, I.; Espíndola, E.L.G.; Ribeiro, R. Cooper-driven avoidance and mortality in temperate and tropical tadpoles. Aquat. Toxicol. 2014, 146, 70–75. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Shinn, C.; Vasconcelos, A.M.; Ribeiro, R.; Espíndola, E.L.G. Preference and avoidance responses by tadpoles: The fungicide pyrimethanil as a habitat disturber. Ecotoxicology 2014, 23, 851–860. [Google Scholar] [CrossRef]
- Vasconcelos, A.M.; Daam, M.A.; dos Santos, L.R.A.; Sanches, A.L.M.; Araújo, C.V.M.; Espíndola, E.L.G. Acute and chronic sensitivity, avoidance behavior and sensitive life stages of bullfrog tadpoles exposed to the biopesticide abamectin. Ecotoxicology 2016, 25, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Freitas, J.S.; Girotto, L.; Goulart, B.V.; Alho, L.O.G.; Gebara, R.C.; Montagner, C.C.; Schiesari, L.; Espíndola, E.L.G. Effects of 2,4-D-based herbicide (DMA® 806) on sensitivity, respiration rates, energy reserves and behavior of tadpoles. Ecotoxicol. Environ. Saf. 2019, 182, 109446. [Google Scholar] [CrossRef] [PubMed]
- Moreira, R.A.; Freitas, J.S.; Pinto, T.J.S.; Schiesari, L.; Damm, M.A.; Montagner, C.C.; Goulart, B.V.; Espíndola, E.L.G. Mortality, spatial avoidance and swimming behavior of bullfrog tadpoles (Lithobates catesbeianus) exposed to the herbicide diuron. Water Air Soil Pollut. 2019, 230, 125. [Google Scholar] [CrossRef]
- Girotto, L.; Espíndola, E.L.G.; Gebara, R.C.; Freitas, J.S. Acute and chronic effects on tadpoles (Lithobates catesbeianus) exposed to mining tailings from the dam rupture in Mariana, MG (Brazil). Water Air Soil Pollut. 2020, 231, 325. [Google Scholar] [CrossRef]
- Costa, B.; Quintaneiro, C.; Daniel-da-Silva, A.L.; Trindade, T.; Soares, A.M.V.M.; Lopes, I. An integrated approach to assess the sublethal effects of coloidal gold nanorods in tadpoles of Xenopus laevis. J. Hazard. Mater. 2020, 400, 123237. [Google Scholar] [CrossRef] [PubMed]
- Moreira-Santos, M.; Donato, C.; Lopes, I.; Ribeiro, R. Avoidance tests with small fish: Determination of the median avoidance concentration and of the lowest-observed-effect gradient. Environ. Toxicol. Chem. 2008, 27, 1576–1582. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Shinn, C.; Mendes, L.B.; Delello-Scheneider, D.; Sanchez, A.L.; Espíndola, E.L.G. Avoidance response of Danio rerio to a fungicide in a linear contamination gradient. Sci. Total Environ. 2014, 484, 36–42. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Rodríguez, E.N.V.; Salvatierra, D.; Cedeño-Macias, L.A.; Vera-Vera, V.C.; Moreira-Santos, M.; Ribeiro, R. Attractiveness of food and avoidance from contamination as conflicting stimuli to habitat selection by fish. Chemosphere 2016, 163, 177–183. [Google Scholar] [CrossRef]
- Silva, D.C.V.R.; Araújo, C.V.M.; López-Doval, J.C.; Neto, M.B.; Silva, F.T.; Paiva, T.C.B.; Pampêo, M.L.M. Potential effects of triclosan on spatial displacement and local population decline of the fish Poecilia reticulata using a nonforced system. Chemosphere 2017, 184, 329–336. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Silva, D.C.V.R.; Gomes, L.E.T.; Acayaba, R.D.; Montagner, C.C.; Moreira-Santos, M.; Ribeiro, R.; Pompêo, M.L.M. Habitat fragmentation caused by contaminants: Atrazine as a chemical barrier isolating fish populations. Chemosphere 2018, 193, 24–31. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Griffith, D.M.; Vera-Vera, V.C.; Jentzsch, P.V.; Cervera, L.; Nieto-Ariza, B.; Salvatierra, D.; Erazo, S.; Jaramillo, R.; Ramos, L.A.; et al. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism. Sci. Total Environ. 2018, 619–620, 906–915. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.C.V.R.; Queiroz, L.G.; Marassi, R.J.; Araújo, C.V.M.; Bazzan, T.; Cardoso-Silva, S.; Silva, G.C.; Müller, M.; Silva, F.T.; Montagner, C.C.; et al. Predicting zebrafish spatial avoidance triggered by discharges of dairy wastewater: An experimental approach based on self-purification in a model river. Environ. Pollut. 2020, 266, 115325. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.C.V.R.; Araújo, C.V.M.; França, F.M.; Neto, M.B.; Paiva, T.C.B.; Silva, F.T.; Pampêo, M.L.M. Bisphenol risk in fish exposed to a contamination gradient: Triggering of spatial avoidance. Aquat. Toxicol. 2018, 197, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.C.V.R.; Araújo, C.V.M.; Marassi, R.J.; Cardoso-Silva, S.; Neto, M.B.; Silva, G.C.; Ribeiro, R.; Silva, F.T.; Paiva, T.C.B.; Pampêo, M.L.M. Influence of interspecific interactions on avoidance response to contamination. Sci. Total Environ. 2018, 642, 824–831. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Blasco, J.; Araújo, C.V.M. Spatial avoidance, inhibition of recolonization and population isolation in zebrafish (Danio rerio) caused by copper exposure under a non-forced approach. Sci. Total Environ. 2019, 653, 504–511. [Google Scholar] [CrossRef]
- Moreira, R.A.; Araújo, C.V.M.; Pinto, T.J.S.; Silva, L.C.M.; Goulart, B.V.; Viana, N.P.; Montagner, C.C.; Fernandes, M.N.; Espíndola, E.L.G. Fipronil and 2,4-D effects on tropical fish: Could avoidance response by explained by the changes in swimming behavior and neurotransmission impairments? Chemosphere 2021, 263, 127972. [Google Scholar] [CrossRef]
- Tierney, K.B.; Sekela, M.A.; Cobbler, C.E.; Xhabija, B.; Gledhill, M.; Ananvoranich, S.; Zielinski, B.S. Evidence for behavioral preference toward environmental concentrations of urban-use herbicides in a model adult fish. Environ. Toxicol. Chem. 2011, 30, 2046–2054. [Google Scholar] [CrossRef]
- Woodman, S.G.; Steinkey, D.; Dew, W.A.; Burket, S.R.; Brooks, B.W.; Pyle, G.G. Effects of sertraline on behavioral indices of crayfish Orconectes virilis. Ecotoxicol. Environ. Saf. 2016, 134, 31–37. [Google Scholar] [CrossRef]
- Hellou, J.; Cook, A.; Lalonde, B.; Walker, P.; Dunphy, K.; Macleod, S. Escape and survival of Corophium volutator and Ilyanassa obsoleta exposed to freshwater and chlorothalonil. J. Environ. Sci. Health A 2009, 44, 778–790. [Google Scholar] [CrossRef]
- Blinova, N.K.; Cherkashin, S.A. The olfactory system of crustaceans as a model for ecologo-toxicological studies. J. Evol. Biochem. Phys. 2012, 48, 155–165. [Google Scholar] [CrossRef]
- Volz, S.; Schiwy, S.; Hollert, H. Olfactory toxicity in fish—Why we should care about it. Interg. Environ. Assess. Manag. 2016, 12, 597–598. [Google Scholar] [CrossRef] [PubMed]
- Kasumyan, A.O. Effects of chemical pollutants on foraging behavior and sensitivity of fish to food stimuli. J. Ichthyol. 2001, 41, 76–87. [Google Scholar]
- Scott, G.R.; Sloman, K.A. The effects of environmental pollutants on complex fish behaviour: Integrating behavioural and physiological indicators of toxicity. Aquat. Toxicol. 2004, 68, 369–392. [Google Scholar] [CrossRef] [PubMed]
- Cherkashin, S.A.; Blinova, N.K. Effect of heavy metals on chemoreception and behavior of crustaceans (a review). Hydrob. J. 2011, 47, 83–93. [Google Scholar] [CrossRef]
- Tierney, K.B.; Singh, C.R.; Ross, P.S.; Kennedy, C.J. Relating olfactory neurotoxicity to altered olfactory-mediated behaviors in rainbow trout exposed to three currently-used pesticides. Aquat. Toxicol. 2007, 81, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Gosavi, S.M.; Tapkir, S.D.; Kumkar, P.; Verma, C.R.; Kharat, S.S. Act now before its too late: Copper exposure drives chemo-ecology of predator-prey dynamics of freshwater common spiny loach, Lepidocephalichthys thermalis (Valenciennes, 1846). Environ. Res. 2020, 186, 109509. [Google Scholar] [CrossRef]
- Tierney, K.B.; Baldwin, D.H.; Hara, T.J.; Ross, P.S.; Scholz, N.L.; Kennedy, C.J. Olfactory toxicity in fishes. Aquat. Toxicol. 2010, 96, 2–26. [Google Scholar] [CrossRef]
- Díaz-Gil, C.; Cotgrove, L.; Smee, S.L.; Simón-Otegui, D.; Hinz, H.; Grau, A.; Palmer, M.; Catalán, I.A. Anthropogenic chemical cues can alter the swimming behaviour of juvenile stages of a temperate fish. Mar. Environ. Res. 2017, 125, 34–41. [Google Scholar] [CrossRef]
- García-Muñoz, E.; Guerrero, F.; Parra, G. Larval escape behavior in anuran amphibians as a wetland rapid pollution biomarker. Mar. Fresh. Behav. Physiol. 2011, 44, 109–123. [Google Scholar] [CrossRef]
- Cowgill, U.M. Critical analysis of factors affecting the sensitivity of zooplankton and the reproducibility of toxicity test results. Wat. Res. 1987, 21, 1453–1462. [Google Scholar] [CrossRef]
- Moore, D.R.J.; Warren-Hicks, W.; Parkhurst, B.R.; Scott Teed, R.; Baird, R.B.; Berger, R.; Denton, D.L.; Pletl, J.J. Intra- and inter treatment variability in reference toxicant tests: Implications for whole effluent toxicity testing programs. Environ. Toxicol. Chem. 2000, 19, 105–112. [Google Scholar] [CrossRef]
- Bretaud, S.; Toutant, J.P.; Saglio, P. Effects of carbofuran, diuron, and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol. Environ. Saf. 2000, 47, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, S.; Chen, J.; Zhang, C.; Xu, Z.; Li, G.; Cai, L.; Shen, W.; Wang, Q. Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints. Chemosphere 2018, 192, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Bridi, D.; Altenhofen, S.; Gonzalez, G.B.; Reolon, G.K.; Bonan, C.D. Glyphosate and Roundup® alter morphology and behavior in zebrafish. Toxicology 2017, 392, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, J.S.I.; John Milton, M.C.; Ulthiralingam, M.; Azhaguraj, R.; Ganesh, J.; Ambrose, T. Toxic effects and bioaccumulation of cadmium, copper, lead and zinc in post larval stages of Penaeus monodon. Int. J. Dev. Res. 2011, 1, 1–5. [Google Scholar]
- DeLorenzo, M.E.; Keller, J.M.; Arthur, C.D.; Finnegan, M.C.; Harper, H.E.; Winder, V.L.; Zdankiewicz, D.L. Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ. Toxicol. 2008, 23, 224–232. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Gómez, L.; Silva, D.C.V.R.; Pintado-Herrera, M.G.; Lara-Martín, P.A.; Hampel, M.; Blasco, J. Risk of triclosan based on avoidance by the shrimp Palaemon varians in a heterogeneous contamination scenario: How sensitive is this approach? Chemosphere 2019, 235, 126–135. [Google Scholar] [CrossRef]
- Kovrižnych, J.A.; Sotníková, R.; Zeljenková, D.; Rollerová, E.; Szabová, E.; Wimmerová, S. Acute toxicity of 31 different nanoparticles to zebrafish (Danio rerio) tested in adulthood and in early life stages—Comparative study. Interdiscip. Toxicol. 2013, 6, 67–73. [Google Scholar] [CrossRef]
- Hernandez, P.P.; Undurraga, C.; Gallardo, V.E.; Mackenzie, N.; Allende, M.L.; Reyes, A.E. Sublethal concentrations of waterborne copper induce cellular stress and cell death in zebrafish embryos and larvae. Biol. Res. 2011, 44, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Neškovic, N.K.; Poleksic, V.; Elezovic, I.; Karan, V.; Budimir, M. Biochemical and histopathological effects of glyphosate on carp, Cyprinus carpio L. Bull. Environ. Contam. Toxicol. 1996, 56, 295–302. [Google Scholar]
- Munn, M.D.; Gilliom, R.J. Pesticide Toxicity Index for Freshwater Aquatic Organisms; U.S. Geological Survey, Water-Resources Investigations Report 01-4077; National Water-Quality Assessment Program: Washington, DC, USA, 2001; p. 61. [Google Scholar]
- Shuhaimi-Othman, M.; Yakub, N.; Ramle, N.-A.; Abas, A. Comparative toxicity of eight metals on freshwater fish. Toxicol. Ind. Health 2013, 31, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Holmstrup, M.; Bindesbøl, A.-M.; Oostingh, G.J.; Duschl, A.; Scheil, V.; Köhler, H.R.; Loureiro, S.; Soares, A.M.V.M.; Ferreira, A.L.G.; Kienle, C.; et al. Interactions between effects of environmental chemicals and natural stressors: A review. Sci. Total Environ. 2010, 408, 3746–3762. [Google Scholar] [CrossRef] [PubMed]
- González-Ortegón, E.; Blasco, J.; Le Vay, L.; Giménez, L. A multiple stressor approach to study the toxicity and sub-lethal effects of pharmaceutical compounds on the larval development of a marine invertebrate. J. Hazard. Mat. 2013, 263, 233–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Ortegón, E.; Giménez, L.; Blasco, J.; Le Vay, L. Effects of food limitation and pharmaceutical compounds on the larval development and morphology of Palaemon serratus. Sci. Total Environ. 2015, 503, 171–178. [Google Scholar] [CrossRef] [PubMed]
- González-Ortegón, E.; Blasco, J.; Nieto, E.; Hampel, M.; Le Vay, L.; Giménez, L. Individual and mixture effects of selected pharmaceuticals on larval development of the estuarine shrimp Palaemon longirostris. Sci. Total Environ. 2016, 540, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Hooper, M.J.; Ankley, G.T.; Cristol, D.A.; Maryoung, L.A.; Noyes, P.D.; Pinkerton, K.E. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ. Toxicol. Chem. 2013, 32, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Liess, M. Population response to toxicants is altered by intraspecific interaction. Environ. Toxicol. Chem. 2002, 21, 138–142. [Google Scholar] [CrossRef]
- Araújo, C.V.M.; Pontes, J.R.S.; Blasco, J. Might the interspecies interaction between fish and shrimps change the pattern of their avoidance response to contamination? Ecotoxicol. Environ. Saf. 2019, 186, 109757. [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M.; Hawkins, C.P.; Kefford, B.J.; Schäfer, R.B.; Dyack, B.J.; Brucet, S.; Buchwater, D.; Dunlop, J.; Frör, O.; Lazorchak, J.; et al. Saving freshwater from salts. Science 2016, 351, 914–916. [Google Scholar] [CrossRef]
- González-Ortegón, E.; Pascual, E.; Cuesta, J.A.; Drake, P. Field distribution and osmoregulatory capacity of shrimps in a temperate European estuary (SW Spain). Estuar. Coast. Shelf Sci. 2006, 67, 293–302. [Google Scholar] [CrossRef]
- Marshall, S.; Elliott, M. Environmental Influences on the fish assemblage of the Humber Estuary, U.K. Estuar. Coast. Shelf Sci. 1998, 46, 175–184. [Google Scholar] [CrossRef]
- González-Ortegón, E.; Baldó, F.; Arias, A.; Cuesta, J.A.; Fernández-Delgado, C.; Vilas, C.; Drake, P. Freshwater scarcity effects on the aquatic macrofauna of a European Mediterranean-climate estuary. Sci. Total Environ. 2015, 503, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Renaud, M.; Sousa, J.P.; Siciliano, S.D. A dynamic shift in soil metal risk assessment, it is time to shift from toxicokinetics to toxicodynamics. Environ. Toxicol. Chem. 2020, 39, 1307–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hare, L.; Shooner, F. Do aquatic insects avoid cadmium-contaminated sediments? Environ. Toxicol. Chem. 1995, 14, 1071–1077. [Google Scholar] [CrossRef]
- Maes, J.; Stevens, M.; Breine, J. Poor water quality constrains the distribution and movements of twaite shad Alosa fallax fallax (Lacépède, 1803) in the watershed of river Scheldt. Hydrobiologia 2008, 602, 129–143. [Google Scholar] [CrossRef]
- Gomes-Silva, G.; Cyubahiro, E.; Wronski, T.; Riesch, R.; Apio, A.; Plath, M. Water pollution affects fish community structure and alters evolutionary trajectories of invasive guppies (Poecilia reticulata). Sci. Total Environ. 2020, 730, 138912. [Google Scholar] [CrossRef]
- Rodríguez, J. Ecología; Ediciones Pirámide: Madrid, Spain, 2010; p. 502. [Google Scholar]
- Araújo, C.V.M.; Moreira-Santos, M.; Ribeiro, R. Stressor-driven emigration and recolonisation patterns in disturbed habitats. Sci. Total Environ. 2018, 643, 884–889. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. Toxicology rethinks its central belief. Nature 2003, 421, 691–692. [Google Scholar] [CrossRef]
- Fuller, M.R.; Doyle, M.W.; Strayer, D.L. Causes and consequences of habitat fragmentation in river networks. Ann. N. Y. Acad. Sci. 2015, 1355, 31–51. [Google Scholar] [CrossRef]
- Ribeiro, R.; Lopes, I. Contaminant driven genetic erosion and associated hypotheses on alleles loss, reduced population growth rate and increased susceptibility to future stressors: An essay. Ecotoxicology 2013, 22, 889–899. [Google Scholar] [CrossRef] [Green Version]
- Gilpin, M.E. Minimal viable populations: Processes of species extinction. In Conservation Biology: The Science of Scarcity and Diversity; Sinauer Associates, Inc.: Sunderland, MA, USA, 1986; pp. 19–34. [Google Scholar]
- Grimm, V.; Reise, K.; Strasser, M. Marine metapopulations: A useful concept? Helgol. Mar. Res. 2003, 56, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Loreau, M.; Mouquet, N.; Holt, R.D. Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 2003, 6, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Schiesari, L.; Leibold, M.A.; Burton, G.A., Jr. Metacommunities, metaecosystems and the environmentl fate of chemical contaminants. J. Appl. Ecol. 2018, 55, 1553–1563. [Google Scholar] [CrossRef]
- Gilarranz, L.J.; Rayfield, B.; Liñán-Cembrano, G.; Bascompte, J.; Gonzalez, A. Effects of networl modularity on the spread of perturbation impact in experimental metapopulations. Science 2017, 357, 199–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Plant Protection Products and their Residues (PPR). Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA J. 2013, 11, 3290. [Google Scholar]
- Gessner, M.O.; Tlili, A. Fostering integration of freshwater ecology with ecotoxicology. Fresh. Biol. 2016, 61, 1991–2001. [Google Scholar] [CrossRef] [Green Version]
- Nilsen, E.; Smalling, K.L.; Ahrens, L.; Gros, M.; Miglioranza, K.S.; Picó, Y.; Schoenfuss, H.L. Critical review: Grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environ. Toxicol. Chem. 2019, 38, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Hellström, G.; Klaminder, J.; Jonsson, M.; Fick, J.; Brodin, T. Upscalling behavioural studies to the field using acoustic telemetry. Aquatic. Toxicol. 2016, 170, 384–389. [Google Scholar] [CrossRef]
- Peterson, E.K.; Buchwalter, D.B.; Kerby, J.L.; LeFauve, M.K.; Varian-Ramos, C.W.; Swaddle, J.P. Integrative behavioral ecotoxicology: Bringing together fields to establish new insight to behavioral ecology, toxicology, and conservation. Curr. Zool. 2017, 63, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Park, M.O. Adult vertebrate behavioral aquatic toxicology: Reliability and validity. Aquatic. Toxicol. 2016, 170, 323–329. [Google Scholar] [CrossRef] [Green Version]
Species | Contaminant | Toxicity (LC50) | Avoidance (AC50) | References for Toxicity/Avoidance |
---|---|---|---|---|
Palaemon varians (saltmarsh shrimp) a | Copper | 660 | 10.4 | [25,99] |
Galaxolide | 401 | 14.1 | [62] | |
Tonalide | 88.1 | 30.8 | [62] | |
Triclosan | 154 | 42 | [100,101] | |
Lithobates catesbeianus (amphibian) b | Abamectin | 138 | 36 | [65] |
Copper | 372 | 101 | [63] | |
Diuron | 31,000 | ±0.5 c | [67] | |
2,4-D | 574,000 | 242 d | [66] | |
Danio rerio (freshwater fish) | Ag-NPs | 2900 | 9.08 | [102], Sendra et al. (unpublished data) |
Copper | 880 | 16.7 | [78,103] | |
Glyphosate | 620 | 12.2 | [104], Mena et al. (unpublished data) | |
Pyrimethanil | 2850 | 1100 | [71,97] | |
Poecilia reticulata (freshwater fish) | Atrazine | 4300 | 0.065 | [74,105] |
Bisphenol A | 1660 | 0.154 | [77] | |
Copper | 348 | 15.9 | [78,106] | |
Triclosan | 1650 | 8.04 | [73] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araújo, C.V.M.; Laissaoui, A.; Silva, D.C.V.R.; Ramos-Rodríguez, E.; González-Ortegón, E.; Espíndola, E.L.G.; Baldó, F.; Mena, F.; Parra, G.; Blasco, J.; et al. Not Only Toxic but Repellent: What Can Organisms’ Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment? Toxics 2020, 8, 118. https://doi.org/10.3390/toxics8040118
Araújo CVM, Laissaoui A, Silva DCVR, Ramos-Rodríguez E, González-Ortegón E, Espíndola ELG, Baldó F, Mena F, Parra G, Blasco J, et al. Not Only Toxic but Repellent: What Can Organisms’ Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment? Toxics. 2020; 8(4):118. https://doi.org/10.3390/toxics8040118
Chicago/Turabian StyleAraújo, Cristiano V. M., Abdelmourhit Laissaoui, Daniel C. V. R. Silva, Eloisa Ramos-Rodríguez, Enrique González-Ortegón, Evaldo L. G. Espíndola, Francisco Baldó, Freylan Mena, Gema Parra, Julián Blasco, and et al. 2020. "Not Only Toxic but Repellent: What Can Organisms’ Responses Tell Us about Contamination and What Are the Ecological Consequences When They Flee from an Environment?" Toxics 8, no. 4: 118. https://doi.org/10.3390/toxics8040118