Mercury Exposure, Gene Expression, and Intelligence Quotient in Afro-Descendant Children from Two Colombian Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area and Population
2.2. The Questionnaire
2.3. Assessment of Hair T-Hg Concentrations
2.4. The Gene Expression Analysis
2.5. The Cognitive Assessment
2.6. The Statistical Analysis
3. Results
3.1. Sociodemographic Data
3.2. T-Hg Hair Concentrations
3.3. The Gene Expression Results
3.4. The Cognitive Test Results
3.5. Relationships Between the Concentration of T-Hg in the Hair, Gene Expression, and IQ
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tomiyasu, T.; Kono, Y.; Kodamatani, H.; Hidayati, N.; Rahajoe, J.S. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environ. Res. 2013, 125, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Kimáková, T.; Kuzmová, L.; Nevolná, Z.; Bencko, V. Fish and fish products as risk factors of mercury exposure. Ann. Agric. Environ. Med. 2018, 25, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Diringer, S.E.; Berky, A.J.; Marani, M.; Ortiz, E.J.; Karatum, O.; Plata, D.L.; Pan, W.K.; Hsu-Kim, H. Deforestation due to artisanal and small-scale gold mining exacerbates soil and mercury mobilization in Madre de Dios, Peru. Environ. Sci. Technol. 2020, 54, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Esdaile, L.J.; Chalker, J.M. The Mercury Problem in Artisanal and Small-Scale Gold Mining. Chemistry 2018, 24, 6905–6916. [Google Scholar] [CrossRef]
- Carranza-Lopez, L.; Caballero-Gallardo, K.; Cervantes-Ceballos, L.; Turizo-Tapia, A.; Olivero-Verbel, J. Multicompartment Mercury Contamination in Major Gold Mining Districts at the Department of Bolivar, Colombia. Arch. Environ. Contam. Toxicol. 2019, 76, 640–649. [Google Scholar] [CrossRef]
- Gibb, H.; O’Leary, K.G. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environ. Health Perspect. 2014, 122, 667–672. [Google Scholar] [CrossRef]
- Bose-O’Reilly, S.; Bernaudat, L.; Siebert, U.; Roider, G.; Nowak, D.; Drasch, G. Signs and symptoms of mercury-exposed gold miners. Int. J. Occup. Med. Environ. Health 2017, 30, 249–269. [Google Scholar] [CrossRef]
- Bermea, O.M.; Castro-Larragoitia, J.; Álvarez, A.A. Mercury in blood of children exposed to historical residues from metallurgical activity. Expo. Health 2021, 13, 281–292. [Google Scholar] [CrossRef]
- Rangel-Méndez, J.A.; Arcega-Cabrera, F.E.; Fargher, L.F.; Moo-Puc, R.E. Mercury levels assessment and its relationship with oxidative stress biomarkers in children from three localities in Yucatan, Mexico. Sci. Total Environ. 2016, 543, 187–196. [Google Scholar] [CrossRef]
- Zhou, C.C.; Fu, H.; Zhang, G.Y.; Ma, J.W.; Ni, M.; Li, D.J.; Shen, F.M.; Huang, F. Effects of low-level mercury exposure on brain-derived neurotrophic factor in preschool children. Ecotoxicol. Environ. Saf. 2021, 15, 111642. [Google Scholar] [CrossRef]
- Rupa, S.A.; Patwary, M.A.M.; Matin, M.M.; Ghann, W.E.; Uddin, J.; Kazi, M. Interaction of mercury species with proteins: Towards possible mechanism of mercurial toxicology. Toxicol. Res. 2023, 12, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.V.B.; Hacon, S.S.; Vega, C.M.; Vieira, J.A.; Larentis, A.L.; Mattos, R.C.O.C.; Valente, D.; Costa-Amaral, I.C.; Mourão, D.S.; Silva, G.P.; et al. Oxidative Stress Levels Induced by Mercury Exposure in Amazon Juvenile Populations in Brazil. Int. J. Environ. Res. Public Health 2019, 16, 2682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, X.; Hwarari, D.; Du, X.; Wang, Y.; Xu, H.; Hou, D. Oxidative stress response and metal transport in roots of Macleaya cordata exposed to lead and zinc. Plants 2023, 12, 516. [Google Scholar] [CrossRef] [PubMed]
- Tejeda-Benitez, L.; Flegal, R.; Odigie, K.; Olivero-Verbel, J. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environ. Pollut. 2016, 212, 238–250. [Google Scholar] [CrossRef]
- Galvis-Ballesteros, J.; Valdelamar-Villegas, J.; Duran-Izquierdo, M.; Sierra-Marquez, L.; Olivero-Verbel, J. Environmental pollution by mercury and trace metals in highly vulnerable afro-descendant territories in the Department of Cauca, Colombia. Soil Sediment Contam. 2024, 34, 510–527. [Google Scholar]
- Heng, Y.Y.; Asad, I.; Coleman, B.; Menard, L.; Benki-Nugent, S.; Hussein Were, F.; McHenry, M.S. Heavy metals and neurodevelopment of children in low and middle-income countries: A systematic review. PLoS ONE 2022, 17, e0265536. [Google Scholar] [CrossRef]
- Municipality of Mahates. Municipal Development Plan 2020–2023; Municipality of Mahates: Mahates, Colombia, 2020; Available online: https://s6a4399c8c25e6d07.jimcontent.com/download/version/1617373866/module/10877614983/name/PDM%20MAHATES.pdf (accessed on 2 May 2025).
- Carrasco-Gallegos, C.L. Respuestas Comunitarias Ante Conflictos Territoriales. Casos de Estudio en México y Latinoamérica, 1st ed.; Universidad Autónoma del Estado de México: Toluca, Mexico, 2017; pp. 1–27. [Google Scholar]
- UNEP DTIE Chemical Branch and World Health Organization (WHO) Department of Food Safety. Guidance for Identifying Populations at Risk from Mercury Exposure; WHO: Geneva, Switzerland, 2008; Available online: https://www.who.int/publications/m/item/guidance-for-identifying-populations-at-risk-from-mercury-exposure (accessed on 1 May 2025).
- Canela, T.A.; Monteiro, L.C.; Cabral, C.D.S.; Ximenes, F.D.S.; Oliveira, I.D.S.; Bernardi, J.V.E.; Almeida, R.; Bastos, W.R. Mercury in Fish and Human Hair and Estimated Dietary Intake in a Riverside Community of the Madeira River Basin in the Brazilian Amazon. Toxics 2024, 12, 208. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US-EPA). Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry; US-EPA: Washington, DC, USA, 1998; EPA-Method 7473. [Google Scholar]
- Alvarez-Ortega, N.; Caballero-Gallardo, K.; Olivero-Verbel, J. Toxicological effects in children exposed to lead: A cross-sectional study at the Colombian Caribbean coast. Environ. Int. 2019, 130, 104809. [Google Scholar] [CrossRef]
- Manjarres-Suarez, A.; De la Rosa, J.; Gonzalez-Montes, A.; Galvis-Ballesteros, J.; Olivero-Verbel, J. Trace elements, peripheral blood film, and gene expression status in adolescents living near an industrial area in the Colombian Caribbean Coastline. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 146–155. [Google Scholar] [CrossRef]
- De la Ossa, C.A.; Ramírez-Giraldo, A.F.; Arroyo-Alvis, K.; Marrugo-Negrete, J.; Díez, S. Neuropsychological effects and cognitive deficits associated with exposure to mercury and arsenic in children and adolescents of the Mojana region, Colombia. Environ. Res. 2022, 216, 114467. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.L.; Ruiz-Guzmán, J.A.; Díez, S. Relationship Between Mercury Levels in Hair and Fish Consumption in a Population Living Near a Hydroelectric Tropical Dam. Biol. Trace Elem. Res. 2013, 151, 187–194. [Google Scholar] [CrossRef]
- Santos-Lima, C.D.; Mourão, D.S.; Carvalho, C.F.; Souza-Marques, B.; Vega, C.M.; Gonçalves, R.A.; Argollo, N.; Menezes-Filho, J.A.; Abreu, N.; Hacon, S.S. Neuropsychological Effects of Mercury Exposure in Children and Adolescents of the Amazon Region, Brazil. Neurotoxicology 2020, 79, 48–57. [Google Scholar] [CrossRef]
- Basu, N.; Tutino, R.; Zhang, Z.; Cantonwine, D.E.; Goodrich, J.M.; Somers, E.C.; Rodriguez, L.; Schnaas, L.; Solano, M.; Mercado, A.; et al. Mercury levels in pregnant women, children, and seafood from Mexico City. Environ. Res. 2014, 135, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Gustin, K.; Tofail, F.; Mehrin, F.; Levi, M.; Vahter, M.; Kippler, M. Methylmercury exposure and cognitive abilities and behavior at 10 years of age. Environ. Int. 2017, 102, 97–105. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, C.; Liu, H.; Li, P.; Hu, X.; Wang, H.; Chan, H.M.; Feng, X. Impact of low-level mercury exposure on intelligence quotient in children via rice consumption. Ecotoxicol. Environ. Saf. 2020, 202, 110870. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Jeon, C.K.; Paek, D.M. Hair mercury concentrations of children and mothers in Korea: Implication for exposure and evaluation. Sci. Total Environ. 2008, 402, 36–42. [Google Scholar] [CrossRef]
- Kusanagi, E.; Takamura, H.; Chen, S.J.; Adachi, M.; Hoshi, N. Children’s Hair Mercury Concentrations and Seafood Consumption in Five Regions of Japan. Arch. Environ. Contam. Toxicol. 2018, 74, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Budtz-Jørgensen, E.; Grandjean, P.; Jørgensen, P.J.; Weihe, P.; Keiding, N. Association between mercury concentrations in blood and hair in methylmercury-exposed subjects at different ages. Environ. Res. 2004, 95, 385–393. [Google Scholar] [CrossRef]
- McDowell, M.A.; Dillon, C.F.; Osterloh, J.; Bolger, P.M.; Pellizzari, E.; Fernando, R.; Montes de Oca, R.; Schober, S.E.; Sinks, T.; Jones, R.L.; et al. Hair mercury levels in U.S. children and women of childbearing age: Reference range data from NHANES 1999–2000. Environ. Health Perspect. 2004, 112, 1165–1171. [Google Scholar] [CrossRef]
- Ealo-Tapia, D.; Torres-Abad, J.; Madera, M.; Márquez-Lázaro, J. Mercury and neurodevelopmental disorders in children: A systematic review. Arch. Argent. Pediatr. 2023, 121, e202202838. [Google Scholar]
- Siegel, S. Community without Solidarity: Mercury Pollution from Small-Scale Mining and Colombia’s Crisis of Authority. Community Dev. J. 2013, 48, 451–465. [Google Scholar] [CrossRef]
- Balaji, S.M. Mercury, dentistry, minamata convention and research opportunities. Indian J. Dent. Res. 2019, 30, 819. [Google Scholar] [CrossRef]
- Feingold, B.J.; Berky, A.; Hsu-Kim, H.; Jurado, E.R.; Pan, W.K. Population- based dietary exposure to mercury through fish consumption in the Southern Peruvian Amazon. Environ. Res. 2020, 183, 108720. [Google Scholar] [CrossRef] [PubMed]
- Valdelamar-Villegas, J.; Olivero-Verbel, J. High mercury levels in the indigenous population of the Yaigojé Apaporis National Natural Park, Colombian Amazon. Biol. Trace Elem. Res. 2020, 194, 3–12. [Google Scholar] [CrossRef]
- Kluxen, F.M.; Höfer, N.; Kretzschmar, G.; Degen, G.H.; Diel, P. Cadmium modulates expression of aryl hydrocarbon receptor-associated genes in rat uterus by interaction with the 1 estrogen receptor. Arch. Toxicol. 2012, 86, 591–601. [Google Scholar] [CrossRef]
- Pizzino, G.; Bitto, A.; Interdonato, M.; Galfo, F.; Irrera, N.; Mecchio, A.; Altavilla, D. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biol. 2014, 2, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Dalkiran, T.; Carman, K.B.; Unsal, V.; Belge Kurutas, E.; Kandur, Y.; Dilber, C. Evaluation of oxidative stress biomarkers in acute mercury intoxication. Folia Med. 2021, 63, 704–709. [Google Scholar] [CrossRef]
- Sirivarasai, J.; Chaisungnern, K.; Panpunuan, P.; Chanprasertyothin, S.; Chansirikanjana, S.; Sritara, P. Role of MT1A Polymorphism and Environmental Mercury Exposure on the Montreal Cognitive Assessment (MoCA). Neuropsychiatr. Dis. Treat. 2021, 17, 2429–2439. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, M.F.H.; Grotto, D.; Barbosa, F. Inorganic and Methylmercury Levels in Plasma Are Differentially Associated with Age, Gender, and Oxidative Stress Markers in a Population Exposed to Mercury through Fish Consumption. J. Toxicol. Environ. Health A 2014, 77, 69–79. [Google Scholar] [CrossRef]
- Irvine, G.W.; Stillman, M.J. Topographical analysis of As-induced folding of α-MT1a. Biochem. Biophys. Res. Commun. 2013, 441, 208–213. [Google Scholar] [CrossRef]
- Rosa-Casillas, M.; Crespo-Hernández, B.S.; Ortiz-Martínez, M.; Jiménez-Vélez, B. MT1a mRNA Expression in Human Lung Cells (BEAS 2B) After Airborne PM10 and Copper Exposure: A Possible Biomarker for Asthma. J. Health Disparities Res. Pract. 2016, 9, 96. [Google Scholar]
- Michalczyk, K.; Kapczuk, P.; Witczak, G.; Tousty, P.; Bosiacki, M.; Kurzawski, M.; Chlubek, D.; Cymbaluk-Płoska, A. An Assessment of MT1A (rs11076161), MT2A (rs28366003) and MT1L (rs10636) Gene Polymorphisms and MT2 Concentration in Women with Endometrial Pathologies. Genes 2023, 14, 773. [Google Scholar] [CrossRef]
- Jeong, K.S.; Park, H.; Ha, E.; Shin, J.; Hong, Y.C.; Ha, M.; Park, H.; Kim, B.N.; Lee, B.; Lee, S.J.; et al. High Maternal Blood Mercury Level Is Associated with Low Verbal IQ in Children. J. Korean Med. Sci. 2017, 7, 1097–1104. [Google Scholar]
- Hibbeln, J.; Gregory, S.; Iles-Caven, Y.; Taylor, C.M.; Emond, A.; Golding, J. Total mercury exposure in early pregnancy has no adverse association with scholastic ability of the offspring particularly if the mother eats fish. Environ. Int. 2018, 116, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.C. The protean toxicities of lead: New chapters in a familiar story. Int. J. Environ. Res. Public Health. 2011, 8, 2593–2628. [Google Scholar] [PubMed]
- Nišević, J.R.; Prpić, I.; Kolić, I.; Baždarić, K.; Tratnik, J.S.; Prpić, I.Š.; Mazej, D.; Špirić, Z.; Barbone, F.; Horvat, M. Combined prenatal exposure to mercury and LCPUFA on newborn’s brain measures and neurodevelopment at the age of 18 months. Environ. Res. 2019, 178, 108682. [Google Scholar] [CrossRef] [PubMed]
- Holmes, P.; James, K.A.; Levy, L.S. Is low-level environmental mercury exposure of concern to human health? Sci. Total Environ. 2009, 408, 171–182. [Google Scholar] [CrossRef]
- World Health Organization. Children’s Exposure to Mercury Compounds; WHO: Geneva, Switzerland, 2010. [Google Scholar]
Variable | Categories | Study Area | Statistic | p-Value | |
---|---|---|---|---|---|
Mahates n (%) | Zanjón n (%) | ||||
Age (years) | ≤4 years | 18 (47.4) | 84 (67.2) | X2 = 4.89 | 0.023 * |
>4 years | 20 (52.6) | 41 (32.8) | |||
Sex | Girl | 19 (50.0) | 69 (55.2) | X2 = 0.32 | 0.352 |
Boy | 19 (50.0) | 56 (44.8) | |||
Educational level a | None | 2 (5.0) | 0 (0.0) | X2 = 29.5 | 0.006 * |
Elementary school | 8 (21.0) | 17 (14.0) | |||
High school | 14 (37.0) | 93 (74.0) | |||
Technical | 11 (29.0) | 11 (9.0) | |||
Technologist | 1 (3.0) | 3 (2.0) | |||
College | 0 (0.0) | 1 (1.0) | |||
DK/NA b | 2 (5.0) | 0 (0.0) | |||
0 | 1 (2.6) | 32 (25.6) | X2 = 33.5 | 0.001 * | |
Fish intake (meals/week) | 1–2 | 21 (55.3) | 85 (68.0) | ||
≥3 | 16 (42.1) | 8 (6.4) | |||
Mean ± SEM | 2.66 ± 0.30 | 1.24 ± 0.09 | U = 1154 | 0.001 * | |
Exposure to tobacco i | Yes | 8 (21.1) | 14 (11.2) | X2 = 2.42 | 0.102 |
No | 30 (78.9) | 111 (88.8) | |||
Pesticide use a | Yes | 27 (71.0) | 56 (45.0) | X2 = 12.3 | 0.006 * |
No | 10 (26.0) | 68 (54.0) | |||
DK/NA b | 1 (3.0) | 1 (1.0) |
Variables | Study Area | |||
---|---|---|---|---|
Mahates | Zanjón | |||
Spearman Correlation | p-Value | Spearman Correlation | p-Value | |
Age | 0.164 | 0.394 | −0.015 | 0.890 |
Fish intake i | 0.113 | 0.559 | 0.044 | 0.695 |
Molecular | ||||
SOD1/β2M | −0.017 | 0.932 | −0.135 | 0.225 |
SOD1/GAPDH | −0.077 | 0.691 | −0.090 | 0.421 |
MT1K/1M/β2M | 0.061 | 0.760 | −0.111 | 0.318 |
MT1K/1M/GAPDH | 0.166 | 0.390 | −0.053 | 0.634 |
MT1A/β2M | 0.313 | 0.119 | −0.131 | 0.257 |
MT1A/GAPDH | 0.310 | 0.123 | −0.130 | 0.260 |
IQ | ||||
Score | −0.321 | 0.482 | 0.032 | 0.886 |
Vocabulary scale (VoS) | −0.179 | 0.702 | 0.004 | 0.987 |
Matrices scale (MaS) | −0.393 | 0.383 | 0.051 | 0.817 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galvis-Ballesteros, J.; Duran-Izquierdo, M.; Valdelamar-Villegas, J.; Sierra-Marquez, L.; Olivero-Verbel, J. Mercury Exposure, Gene Expression, and Intelligence Quotient in Afro-Descendant Children from Two Colombian Regions. Toxics 2025, 13, 786. https://doi.org/10.3390/toxics13090786
Galvis-Ballesteros J, Duran-Izquierdo M, Valdelamar-Villegas J, Sierra-Marquez L, Olivero-Verbel J. Mercury Exposure, Gene Expression, and Intelligence Quotient in Afro-Descendant Children from Two Colombian Regions. Toxics. 2025; 13(9):786. https://doi.org/10.3390/toxics13090786
Chicago/Turabian StyleGalvis-Ballesteros, Javier, Margareth Duran-Izquierdo, Juan Valdelamar-Villegas, Lucellys Sierra-Marquez, and Jesus Olivero-Verbel. 2025. "Mercury Exposure, Gene Expression, and Intelligence Quotient in Afro-Descendant Children from Two Colombian Regions" Toxics 13, no. 9: 786. https://doi.org/10.3390/toxics13090786
APA StyleGalvis-Ballesteros, J., Duran-Izquierdo, M., Valdelamar-Villegas, J., Sierra-Marquez, L., & Olivero-Verbel, J. (2025). Mercury Exposure, Gene Expression, and Intelligence Quotient in Afro-Descendant Children from Two Colombian Regions. Toxics, 13(9), 786. https://doi.org/10.3390/toxics13090786