Implications of Nutrient Fate and Transport Following Nanopesticide Applications in Agricultural Field Plots in Central Kentucky
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Characteristics
2.2. Field Experiments
2.3. Sample Collection
2.4. Nutrient Analysis
2.5. Soils Analysis
2.6. Metals Analysis
2.7. Statistical Analyses
3. Results and Discussion
3.1. Rainfall Events
3.2. Nitrogen Transport
3.3. Impacts to Soil Nitrogen Concentrations
3.4. Carbon Transport
3.5. Orthophosphate Transport
3.6. Physicochemical Properties of Runoff and Pumpkin Production
3.7. Copper (II) Hydroxide Transport
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suresh Kumar, R.S.; Shiny, P.J.; Anjali, C.H.; Jerobin, J.; Goshen, K.M.; Magdassi, S.; Mukherjee, A.; Chandrasekaran, N. Distinctive Effects of Nano-Sized Permethrin in the Environment. Environ. Sci. Pollut. Res. 2013, 20, 2593–2602. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- FAO. Pesticides Use, Pesticides Trade and Pesticides Indicators; FAO: Rome, Italy, 2022; ISBN 978-92-5-136614-1. [Google Scholar]
- Rattner, B.A. History of Wildlife Toxicology. Ecotoxicology 2009, 18, 773–783. [Google Scholar] [CrossRef]
- Matthews, G.A. A History of Pesticides; CABI: Delémont, Switzerland, 2018; ISBN 9781786394897. [Google Scholar]
- Graham, L.E.; Graham, J.M.; Cook, M.E.; Wilcox, L.W. Algae, 3rd ed.; LJLM Press: Madison, WI, USA, 2016; ISBN 9780986393532. [Google Scholar]
- Mansouri, A.; Cregut, M.; Abbes, C.; Durand, M.-J.; Landoulsi, A.; Thouand, G. The Environmental Issues of DDT Pollution and Bioremediation: A Multidisciplinary Review. Appl. Biochem. Biotechnol. 2017, 181, 309–339. [Google Scholar] [CrossRef] [PubMed]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A Critical Evaluation of Nanopesticides and Nanofertilizers against Their Conventional Analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef]
- Kah, M.; Beulke, S.; Tiede, K.; Hofmann, T. Nanopesticides: State of Knowledge, Environmental Fate, and Exposure Modeling. Crit. Rev. Environ. Sci. Technol. 2013, 43, 1823–1867. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Colman, B.P.; Hochella, M.F.; Cardinale, B.J.; Nisbet, R.M.; Richardson, C.J.; Yin, L. An Ecological Perspective on Nanomaterial Impacts in the Environment. J. Environ. Qual. 2010, 39, 1954–1965. [Google Scholar] [CrossRef]
- Walker, G.W.; Kookana, R.S.; Smith, N.E.; Kah, M.; Doolette, C.L.; Reeves, P.T.; Lovell, W.; Anderson, D.J.; Turney, T.W.; Navarro, D.A. Ecological Risk Assessment of Nano-Enabled Pesticides: A Perspective on Problem Formulation. J. Agric. Food Chem. 2018, 66, 6480–6486. [Google Scholar] [CrossRef]
- Wang, D.; Saleh, N.B.; Byro, A.; Zepp, R.; Sahle-Demessie, E.; Luxton, T.P.; Ho, K.T.; Burgess, R.M.; Flury, M.; White, J.C.; et al. Nano-Enabled Pesticides for Sustainable Agriculture and Global Food Security. Nat. Nanotechnol. 2022, 17, 347–360. [Google Scholar] [CrossRef]
- Huffman, R.; Fangmeier, D.; Elliot, W.; Workman, S. Soil and Water Conservation Engineering, 7th ed.; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2013; ISBN 1892769867. [Google Scholar]
- Liu, W.; Yao, J.; Cai, M.; Chai, H.; Zhang, C.; Sun, J.; Chandankere, R.; Masakorala, K. Synthesis of a Novel Nanopesticide and Its Potential Toxic Effect on Soil Microbial Activity. J. Nanoparticle Res. 2014, 16, 2677. [Google Scholar] [CrossRef]
- Rader, K.J.; Carbonaro, R.F.; Hullebusch, E.D.; Baken, S.; Delbeke, K. The Fate of Copper Added to Surface Water: Field, Laboratory, and Modeling Studies. Environ. Toxicol. Chem. 2019, 38, 1386–1399. [Google Scholar] [CrossRef]
- Zhao, S.; Su, X.; Wang, Y.; Yang, X.; Bi, M.; He, Q.; Chen, Y. Copper Oxide Nanoparticles Inhibited Denitrifying Enzymes and Electron Transport System Activities to Influence Soil Denitrification and N2O Emission. Chemosphere 2020, 245, 125394. [Google Scholar] [CrossRef]
- Peixoto, S.; Henriques, I.; Loureiro, S. Long-Term Effects of Cu(OH)2 Nanopesticide Exposure on Soil Microbial Communities. Environ. Pollut. 2021, 269, 116113. [Google Scholar] [CrossRef] [PubMed]
- Ishaaya, I.; Degheele, D. Insecticides with Novel Modes of Action. In Applied Agriculture; Springer: New York, NY, USA, 1998. [Google Scholar]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic Insecticides (Neonicotinoids and Fipronil): Trends, Uses, Mode of Action and Metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, Z.; Wu, M.; Qian, X.; Lin, D.; Zhang, H.; Tang, J.; Zeng, T.; Yao, W.; Filser, J.; et al. Potential Environmental Risks of Nanopesticides: Application of Cu(OH)2 Nanopesticides to Soil Mitigates the Degradation of Neonicotinoid Thiacloprid. Environ. Int. 2019, 129, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Rud, W.D. Fate and Transport of Nanopesticides in Agricultural Field Plots in Central Kentucky. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2023. [Google Scholar]
- [NRCS] Natural Resource Conservation Service. Web Soil Survey 3.4.0. Available online: https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/soils/web-soil-survey-new-features (accessed on 12 October 2021).
- Edwards, D.R.; Hutchens, T.K.; Rhodes, R.W.; Larson, B.T.; Dunn, L. Quality of runoff from plots with simulated grazing. J. Am. Water Resour. Assoc. 2000, 36, 1063–1073. [Google Scholar] [CrossRef]
- [NOAA] National Oceanic and Atmospheric Administrator. NOAA Online Weather Data. Available online: https://www.weather.gov/climateservices/nowdatafaq (accessed on 3 November 2022).
- Jones, T.; Rowell, B.; Strang, J.; Bessin, R.; Nesmith, B. IPM-12 Kentucky Pumpkin Integrated Pest Management Grower Manual. 1998. Available online: https://ipm.ca.uky.edu/files/ipm12pum.pdf (accessed on 17 June 2022).
- Jones, J.B., Jr. Soil Analysis Handbook of Reference Methods; CRC Press: Boca Raton, FL, USA, 1999; ISBN 0849302056. [Google Scholar]
- Liu, R.; Wang, J.; Shi, J.; Chen, Y.; Sun, C.; Zhang, P.; Shen, Z. Runoff Characteristics and Nutrient Loss Mechanism from Plain Farmland under Simulated Rainfall Conditions. Sci. Total Environ. 2014, 468–469, 1069–1077. [Google Scholar] [CrossRef]
- Lu, T.; Wang, Y.; Zhu, H.; Wei, X.; Shao, M. Drying-Wetting Cycles Consistently Increase Net Nitrogen Mineralization in 25 Agricultural Soils across Intensity and Number of Drying-Wetting Cycles. Sci. Total Environ. 2020, 710, 135574. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, W.; Ma, Y.; Liu, K. Sorption and Degradation of Imidacloprid in Soil and Water. J. Environ. Sci Health B 2006, 41, 623–634. [Google Scholar] [CrossRef]
- Lentz, R.D.; Westermann, D.T. Managing Runoff Water Quality from Recently Manured, Furrow-Irrigated Fields. Soil Sci. Soc. Am. J. 2010, 74, 1310–1319. [Google Scholar] [CrossRef]
- Williams, R.E.; Edwards, D.R. Effects of Biochar Treatment of Municipal Biosolids and Horse Manure on Quality of Runoff from Fescue Plots. Trans. ASABE 2017, 60, 409–417. [Google Scholar] [CrossRef]
- Davis, M.P.; David, M.B.; Voigt, T.B.; Mitchell, C.A. Effect of Nitrogen Addition on Miscanthus Giganteus Yield, Nitrogen Losses, and Soil Organic Matter across Five Sites. GCB Bioenergy 2015, 7, 1222–1231. [Google Scholar] [CrossRef]
- Das, S.; Wang, W.; Reeves, S.; Dalal, R.C.; Dang, Y.P.; Gonzalez, A.; Kopittke, P.M. Non-Target Impacts of Pesticides on Soil N Transformations, Abundances of Nitrifying and Denitrifying Genes, and Nitrous Oxide Emissions. Sci. Total Environ. 2022, 844, 157043. [Google Scholar] [CrossRef] [PubMed]
- Simonin, M.; Colman, B.P.; Tang, W.; Judy, J.D.; Anderson, S.M.; Bergemann, C.M.; Rocca, J.D.; Unrine, J.M.; Cassar, N.; Bernhardt, E.S. Plant and Microbial Responses to Repeated Cu(OH)2 Nanopesticide Exposures Under Different Fertilization Levels in an Agro-Ecosystem. Front. Microbiol. 2018, 9, 1769. [Google Scholar] [CrossRef] [PubMed]
- Royer, I.; Angers, D.A.; Chantigny, M.H.; Simard, R.R.; Cluis, D. Dissolved Organic Carbon in Runoff and Tile-Drain Water under Corn and Forage Fertilized with Hog Manure. J. Environ. Qual. 2007, 36, 855–863. [Google Scholar] [CrossRef]
- Seo, Y.; Lee, J.; Hart, W.E.; Denton, H.P.; Yoder, D.C.; Essington, M.E.; Perfect, E. Sediment loss and nutrient runoff from three fertilizer application methods. Trans. ASAE 2005, 48, 2155–2162. [Google Scholar] [CrossRef]
- Edwards, D.R.; Daniel, T.C. Effects of Poultry Litter Application Rate and Rainfall Intensity on Quality of Runoff from Fescuegrass Plots. J. Environ. Qual. 1993, 22, 361–365. [Google Scholar] [CrossRef]
- Hill, D.; Owens, W.; Tchounwou, P. Impact of Animal Waste Application on Runoff Water Quality in Field Experimental Plots. Int. J. Environ. Res. Public Health 2005, 2, 314–321. [Google Scholar] [CrossRef]
- Rice, P.J.; McConnell, L.L.; Heighton, L.P.; Sadeghi, A.M.; Isensee, A.R.; Teasdale, J.R.; Abdul-Baki, A.A.; Harman-Fetcho, J.A.; Hapeman, C.J. Comparison of Copper Levels in Runoff from Fresh-Market Vegetable Production Using Polyethylene Mulch or a Vegetative Mulch. Environ. Toxicol. Chem. 2002, 21, 24–30. [Google Scholar] [CrossRef]
- Imfeld, G.; Meite, F.; Wiegert, C.; Guyot, B.; Masbou, J.; Payraudeau, S. Do Rainfall Characteristics Affect the Export of Copper, Zinc and Synthetic Pesticides in Surface Runoff from Headwater Catchments? Sci. Total Environ. 2020, 741, 140437. [Google Scholar] [CrossRef]
- Babcsányi, I.; Chabaux, F.; Granet, M.; Meite, F.; Payraudeau, S.; Duplay, J.; Imfeld, G. Copper in Soil Fractions and Runoff in a Vineyard Catchment: Insights from Copper Stable Isotopes. Sci. Total Environ. 2016, 557–558, 154–162. [Google Scholar] [CrossRef]
- Wightwick, A.M.; Mollah, M.R.; Partington, D.L.; Allinson, G. Copper Fungicide Residues in Australian Vineyard Soils. J. Agric. Food Chem. 2008, 56, 2457–2464. [Google Scholar] [CrossRef] [PubMed]
- Criel, P.; Lock, K.; Van Eeckhout, H.; Oorts, K.; Smolders, E.; Janssen, C.R. Influence of soil properties on copper toxicity for two soil invertebrates. Environ. Toxicol. Chem. 2008, 27, 1748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhu, Y.; Li, Z.; Li, J.; Wei, S.; Chen, W.; Ren, D.; Zhang, S. Assessment Soil Cadmium and Copper Toxicity on Barley Growth and the Influencing Soil Properties in Subtropical Agricultural Soils. Environ. Res. 2023, 217, 114968. [Google Scholar] [CrossRef] [PubMed]
Treatment | Imidacloprid per Plot (g) | Cu per Plot (g) | N per Plot (g) |
---|---|---|---|
Cu | 0 | 0.624 | 0 |
CuNI | 0.632 | 0.624 | 0.172 |
I | 2.67 | 0 | 0.732 |
NI | 0.632 | 0 | 0.172 |
C | 0 | 0 | 0 |
Event | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|
Date | July 9 | July 18 | July 26 | July 28 | July 31 | August 1 | August 5 | August 6 | August 8 | August 11 | August 30 |
Rainfall Depth (mm) | 13 * | 13.5 * | 20.2 | 10.6 | 32.6 | 28.4 | 7.4 | 8.2 | 15 | 14.8 | 27.4 |
Rainfall Intensity (mm/hr) | - | - | 28 | 57 | 42.4 | 52 | 28 | 6.5 | 42 | 36 | 57 |
Treatment | NO3-N | NH4-N | TKN | TN | ||||
---|---|---|---|---|---|---|---|---|
Mean (Std) | Range | Mean (Std) | Range | Mean (Std) | Range | Mean (Std) | Range | |
Cu | 3.45 (5.96) a | 0.02–63.4 | 2.36 (4.65) ab | 0.02–26.9 | 4.67 (3.07) a | 0.64–54.8 | 12.60 (2.38) a | 1.42–80.1 |
CuNI | 2.81 (4.69) a | 0.04–72.2 | 2.20 (6.71) b | 0.02–39.1 | 3.86 (3.09) a | 0.54–48.5 | 9.86 (2.42) b | 1.13–77.6 |
I | 2.77 (5.20) a | 0.04–103.0 | 2.07 (7.39) ab | 0.02–51.0 | 4.09 (3.23) a | 0.09–33.75 | 10.56 (2.19) ab | 1.98–111.8 |
NI | 2.29 (5.71) a | 0.03–88.7 | 3.18 (5.92) ab | 0.02–48.2 | 4.07 (2.81) a | 0.70–48.3 | 9.34 (2.53) ab | 1.78–95.6 |
C | 3.49 (5.59) a | 0.04–43.6 | 3.65 (6.10) a | 0.02–83.9 | 4.20 (3.89) a | 0.04–55.3 | 11.14 (2.83) ab | 0.50–67.0 |
Overall | 2.94 (5.39) | 0.02–103.0 | 2.62 (6.12) | 0.02–83.9 | 4.17 (3.20) | 0.04–55.3 | 10.69 (2.47) | 0.50–111.8 |
Treatment | PO4-P (mg/L) | DOC (mg/L) | ||
---|---|---|---|---|
Mean (Std) | Range | Mean (Std) | Range | |
Cu | 2.18 (2.36) a | 0.32–14.2 | 23.89 (4.20) a | 0.03–531.6 |
CuNI | 1.58 (2.74) b | 0.13–11.6 | 18.69 (4.63) a | 0.03–351.4 |
I | 1.98 (2.34) a | 0.53–15.6 | 14.96 (6.63) a | 0.03–299.7 |
NI | 1.92 (2.29) a | 0.63–16.9 | 22.28 (3.08) a | 0.03–781.3 |
C | 1.89 (2.58) ab | 0.31–20.8 | 21.44 (5.76) a | 0.03–547.7 |
Overall | 1.90 (2.47) | 0.13–20.8 | 19.88 (4.86) | 0.03–781.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rud, W.; Montaño, M.D.; Miller, D.N.; Sanderson, W.; Agouridis, C.; Benner, B.F.; Messer, T.L. Implications of Nutrient Fate and Transport Following Nanopesticide Applications in Agricultural Field Plots in Central Kentucky. Toxics 2025, 13, 758. https://doi.org/10.3390/toxics13090758
Rud W, Montaño MD, Miller DN, Sanderson W, Agouridis C, Benner BF, Messer TL. Implications of Nutrient Fate and Transport Following Nanopesticide Applications in Agricultural Field Plots in Central Kentucky. Toxics. 2025; 13(9):758. https://doi.org/10.3390/toxics13090758
Chicago/Turabian StyleRud, William, Manuel D. Montaño, Daniel N. Miller, Wayne Sanderson, Carmen Agouridis, Brianna F. Benner, and Tiffany L. Messer. 2025. "Implications of Nutrient Fate and Transport Following Nanopesticide Applications in Agricultural Field Plots in Central Kentucky" Toxics 13, no. 9: 758. https://doi.org/10.3390/toxics13090758
APA StyleRud, W., Montaño, M. D., Miller, D. N., Sanderson, W., Agouridis, C., Benner, B. F., & Messer, T. L. (2025). Implications of Nutrient Fate and Transport Following Nanopesticide Applications in Agricultural Field Plots in Central Kentucky. Toxics, 13(9), 758. https://doi.org/10.3390/toxics13090758