Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake
Abstract
1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Sample Collection and Preparation
2.3. Samples Analyses
2.3.1. Sediment Granulometry
2.3.2. Mineralogy
2.3.3. Geochemical Analysis
2.3.4. Radiometric Analysis
2.4. Environmental Assessment Indices
2.4.1. Metals Contamination Indices
2.4.2. Radiation Hazard Indices Calculation
2.5. Data Treatment
3. Results and Discussion
3.1. Textural Characteristics
3.2. Mineralogy and Mineral Chemistry
3.3. Pollution Assessment
3.3.1. PTEs Distribution
3.3.2. Metal Contamination and Ecological Risk
3.3.3. PTEs Source Apportionment
3.4. Radiometry of the Studied Sediments
3.4.1. Activity Concentrations
3.4.2. Radionuclide Behavior and Activity Ratios
3.4.3. Radiation Hazard Indices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, R.; Chen, H.; Song, L.; Yao, Z.; Meng, F.; Teng, Y. Characterization and source apportionment of heavy metals in the sediments of Lake Tai (China) and its surrounding soils. Sci. Total Environ. 2019, 694, 133819. [Google Scholar] [CrossRef] [PubMed]
- Bănăduc, D.; Curtean-Bănăduc, A.; Barinova, S.; Lozano, V.L.; Afanasyev, S.; Leite, T.; Branco, P.; Gomez Isaza, D.F.; Geist, J.; Tegos, A.; et al. Multi-Interacting Natural and Anthropogenic Stressors on Freshwater Ecosystems: Their Current Status and Future Prospects for 21st Century. Water 2024, 16, 1483. [Google Scholar] [CrossRef]
- Li, D.; Yu, R.; Chen, J.; Leng, X.; Zhao, D.; Jia, H.; An, S. Ecological risk of heavy metals in lake sediments of China: A national-scale integrated analysis. J. Clean. Prod. 2022, 334, 130206. [Google Scholar] [CrossRef]
- Algül, F.; Beyhan, M. Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Sci. Rep. 2020, 10, 11782. [Google Scholar] [CrossRef]
- Bertrand, S.; Tjallingii, R.; Kylander, M.E.; Wilhelm, B.; Roberts, S.J.; Arnaud, F.; Brown, E.; Bindler, R. Inorganic geochemistry of lake sediments: A review of analytical techniques and guidelines for data interpretation. Earth-Sci. Rev. 2024, 249, 104639. [Google Scholar] [CrossRef]
- Cetin, B.; Canımkurbey, B.; Gül, M. Boraboy Lake from Amasya Turkey: Natural Radioactivity and Heavy Metal Content in Water, Sediment, and Soil. Arab. J. Geosci. 2022, 15, 513. [Google Scholar] [CrossRef]
- Jiang, M.; Wang, Q.; Tian, X.; Zhu, X.; Dong, X.; Wu, Z.; Yuan, Y. Spatiotemporal variation and ecological risk assessment of sediment heavy metals in two hydrologically connected lakes. Front. Ecol. Evol. 2022, 10, 1005194. [Google Scholar] [CrossRef]
- Farhat, H.I.; Gad, A.; Saleh, A.; Abd El Bakey, S.M. Risks Assessment of Potentially Toxic Elements’ Contamination in the Egyptian Red Sea Surficial Sediments. Land 2022, 11, 1560. [Google Scholar] [CrossRef]
- Mukwevho, N.; Mabowa, M.H.; Ntsasa, N.; Mkhohlakali, A.; Chimuka, L.; Tshilongo, J.; Letsoalo, M.R. Seasonal Pollution Levels and Heavy Metal Contamination in the Jukskei River, South Africa. Appl. Sci. 2025, 15, 3117. [Google Scholar] [CrossRef]
- Baghdady, A.; Awad, S.; Gad, A. Assessment of metal contamination and natural radiation hazards in different soil types near iron ore mines, Bahariya Oasis, Egypt. Arab. J. Geosci. 2018, 11, 506. [Google Scholar] [CrossRef]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Gad, A.; Abd El Bakey, S.M.; Sakr, S. Concentrations of heavy metals and associated human health risk in unrefined salts of inland hypersaline lakes, Egypt. Int. J. Environ. Anal. Chem. 2022, 102, 1278–1291. [Google Scholar] [CrossRef]
- Milanković, V.; Tasić, T.; Leskovac, A.; Petrović, S.; Mitić, M.; Lazarević-Pašti, T.; Novković, M.; Potkonjak, N. Metals on the Menu—Analyzing the Presence, Importance, and Consequences. Foods 2024, 13, 1890. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef]
- Kang, T.-W.; An, M.; Han, Y.-U.; Yang, H.J.; Kang, T.; Jung, S.; Lee, W.-S.; Park, W.-P. Activity Concentration of Natural Radionuclides in Surface Sediments of Major River Watersheds in Korea and Assessment of Radiological Hazards. Water 2024, 16, 2897. [Google Scholar] [CrossRef]
- Günay, O.; Özden, S.; Kutu, N.; Pehlivanoğlu, S.A. Assessment of natural and artificial radioactivity in beach and sediment samples from Salda Lake with radiological risk evaluation. J. Radioanal. Nucl. Chem. 2025. [Google Scholar] [CrossRef]
- Taha, S.H.; Sallam, O.R.; Abbas, A.E.A.; Abed, N.S. Radioactivity and environmental impacts of ferruginous sandstone and its associating soil. Int. J. Environ. Anal. Chem. 2020, 101, 2899–2908. [Google Scholar] [CrossRef]
- Abd El-Hamid, H.T.; El-Emam, D.A.; Eissa, H.S.; El-Alfy, M.A. Current evaluation of radiation hazards from sediments of Manzala Lake, Egypt. J. Radioanal. Nucl. Chem. 2025, 334, 927–940. [Google Scholar] [CrossRef]
- Zorer, S.; Yorgun, Y.; Özdemir, Ö.; Öğün, E.; Aydin, H.; Atıcı, A.; Aydin, F.; Bora, G.; Şen, F.; Çavuş, A.; et al. Comprehensive natural radioactivity and pollution risk assessments of aquatic media and sediment in Lake Van (Türkiye). Mar. Pollut. Bull. 2023, 186, 114449. [Google Scholar] [CrossRef]
- Nakkazi, M.T.; Nkwasa, A.; Martínez, A.B.; Griensven, A.A. Linking land use and precipitation changes to water quality changes in Lake Victoria using earth observation data. Environ. Monit. Assess. 2024, 196, 1104. [Google Scholar] [CrossRef]
- Szarłowicz, K.; Baran, A.; Wójs, K.; Wójcik, S. Estimation of the Level of Anthropogenic Impact Based on the Determination of Radionuclides and Heavy Metals in Sediments Taken from Rybnik Reservoir, Poland. Environ. Sci. Pollut. Res. 2024, 31, 37356–37365. [Google Scholar] [CrossRef] [PubMed]
- Diwate, P.; Lavhale, P.; Singh, S.K.; Kanga, S.; Kumar, P.; Meraj, G.; Debnath, J.; Sahariah, D.; Bhuyan, M.S.; Chand, K. Impact of Land Use Pattern and Heavy Metals on Lake Water Quality in Vidarbha and Marathwada Region, India. Water 2025, 17, 540. [Google Scholar] [CrossRef]
- Abou El-Anwar, E.A. Mineralogical and geochemical studies on soils and Nile bottom sediments of Luxor–Aswan area, South Egypt. Bull. Natl. Res. Cent. 2021, 45, 114. [Google Scholar] [CrossRef]
- Que, W.; Yi, L.; Wu, Y.; Li, Q. Analysis of heavy metals in sediments with different particle sizes and influencing factors in a mining area in Hunan Province. Sci. Rep. 2024, 14, 20318. [Google Scholar] [CrossRef]
- Niu, Y.; Jiang, X.; Wang, K.; Xia, J.; Jiao, W.; Niu, Y.; Yu, H. Meta Analysis of Heavy Metal Pollution and Sources in Surface Sediments of Lake Taihu, China. Sci. Total Environ. 2020, 700, 134509. [Google Scholar] [CrossRef] [PubMed]
- Aziman, E.S.; Ismail, A.F.; Jubri, S.F.; Rahmat, M.A.; Idris, W.M. Environmental impact assessment of post illegal mining activities in Chini Lake with regards to natural radionuclides and heavy metals in water and sediment. J. Radioanal. Nucl. Chem. 2021, 330, 667–683. [Google Scholar] [CrossRef]
- ElKobtan, H.; Salem, M.; Attia, K.; Ahmed, S.; Abou El-Magd, I. Sedimentological Study of Lake Nasser; Egypt, Using Integrated Improved Techniques of Core Sampling, X-Ray Diffraction and GIS Platform. Cogent Geosci. 2016, 2, 1168069. [Google Scholar] [CrossRef]
- El-Manadely, M.S.; Abdel-Bary, R.M.; El-Sammany, M.S.; Ahmed, T.A. Characteristics of the Delta Formation Resulting from Sediment Deposition in Lake Nasser, Egypt: Approach to Tracing Lake Delta Formation. Lakes Reserv. Res. Manag. 2002, 7, 81–86. [Google Scholar] [CrossRef]
- Farhat, H.I.; Salem, S.G. Effect of Flooding on Distribution and Mode of Transportation of Lake Nasser Sediments, Egypt. Egypt. J. Aquatic Res. 2015, 41, 165–176. [Google Scholar] [CrossRef]
- El-Manadely, M.S.; Aziz, M.S.; Negm, D.A. Navigation Waterway for Lake Nasser/Nubia on the Nile River. Lakes Reserv. Res. Manag. 2017, 22, 377–389. [Google Scholar] [CrossRef]
- El Gammal, E.A.; Salem, S.M.; El Gammal, A.E.A. Change Detection Studies on the World’s Biggest Artificial Lake (Lake Nasser, Egypt). Egypt. J. Remote Sens. Space Sci. 2010, 13, 89–99. [Google Scholar] [CrossRef]
- El-Hadidy, S.M. Monitoring Shoreline Changes and Aeolian Sand Encroachment, Nasser Lake, Egypt, Using Remote Sensing and GIS Techniques. Arab. J. Geosci. 2020, 13, 1285. [Google Scholar] [CrossRef]
- Darwish, M.A.G. Geochemistry of the High Dam Lake Sediments, South Egypt: Implications for Environmental Significance. Int. J. Sediment Res. 2013, 28, 544–559. [Google Scholar] [CrossRef]
- Imam, N.; El-Sayed, S.M.; Goher, M.E.S. Risk Assessments and Spatial Distributions of Natural Radioactivity and Heavy Metals in Nasser Lake, Egypt. Environ. Sci. Pollut. Res. 2020, 27, 25475–25493. [Google Scholar] [CrossRef] [PubMed]
- Rizk, R.; Juzsakova, T.; Ben Ali, M.; Rawash, M.A.; Domokos, E.; Hedfi, A.; Almalki, M.; Boufahja, F.; Shafik, H.M.; Rédey, Á. Comprehensive Environmental Assessment of Heavy Metal Contamination of Surface Water, Sediments and Nile Tilapia in Lake Nasser, Egypt. J. King Saud. Univ. Sci. 2022, 34, 101748. [Google Scholar] [CrossRef]
- Abd-Elhamid, H.F.; Ahmed, A.; Zeleňáková, M.; Vranayová, Z.; Fathy, I. Reservoir Management by Reducing Evaporation Using Floating Photovoltaic System: A Case Study of Lake Nasser, Egypt. Water 2021, 13, 769. [Google Scholar] [CrossRef]
- Elewa, H.H. Water Resources and Geomorphological Characteristics of Tushka and West of Lake Nasser, Egypt. Hydrogeol. J. 2006, 14, 942–954. [Google Scholar] [CrossRef]
- Embabi, N.S. Landscapes and Landforms of Egypt: Landforms and Evolution; Springer Nature: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Bengtsson, L.; Enell, M. Chemical analysis. In Handbook of Holocene Palaeoecology and Palaeohydrology; Berglund, B.E., Ed.; John Wiley & Sons: Chichester, UK, 1986; pp. 423–451. [Google Scholar]
- Lewis, D.W.; McConchie, D. Analytical Sedimentology; Springer Science & Business Media: Dordrecht, The Netherlands, 1994. [Google Scholar]
- Mange, M.A.; Maurer, H.W. Heavy Minerals in Colour; Chapman & Hall: London, UK, 1992. [Google Scholar]
- Hubert, J.F. A Zircon-Tourmaline-Rutile Maturity Index and the Interdependence of the Composition of Heavy Mineral Assemblages with the Gross Composition and Texture of Sandstones. J. Sediment. Petrol. 1962, 32, 440–450. [Google Scholar] [CrossRef]
- ASTM E1621-21; Standard Guide for Elemental Analysis by Wavelength Dispersive X-Ray Fluorescence Spectrometry. ASTM: West Conshohocken, PA, USA, 2022; pp. 1–9. [CrossRef]
- IAEA (International Atomic Energy Agency). Intercomparison Runs Reference Manuals; AQCS: Vienna, Austria, 1995. [Google Scholar]
- Loska, K.; Wiechuła, D.; Korus, I. Metal Contamination of Farming Soils Affected by Industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Förstner, U. Contaminated Sediments; Lecture Notes in Earth Science; Springer: Berlin, Germany, 1990; Volume 21. [Google Scholar]
- Guan, Y.; Shao, C.; Ju, M. Heavy Metal Contamination Assessment and Partition for Industrial and Mining Gathering Areas. Int. J. Environ. Res. Public Health 2014, 11, 7286–7303. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control. A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the Assessment of Heavy-Metal levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Geochemical Evolution of the Continental Crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Beretka, J.; Mathew, P.J. Natural Radioactivity of Australian Building Materials, Industrial Wastes and By-Products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes; United Nation: New York, NY, USA, 2000; Available online: https://www.unscear.org/unscear/en/publications/2000_1.html (accessed on 1 May 2025).
- ECRP (European Commission Radiation Protection). Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; European Comissision: Brussels, Belgium, 1999.
- ICRP (International Commission on Radiological Protection). Recommendations of the International Commission on Radiological Protection. In ICRP Publication 60; Pergamon Press Ann ICRP: Oxford, UK, 1990. [Google Scholar]
- UNSCEAR. Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes; United Nation: New York, NY, USA, 2008; Available online: https://www.unscear.org/unscear/en/publications/2008_1.html (accessed on 1 May 2025).
- Taskin, H.; Karavus, M.; Ay, P.; Topuzoglu, A.; Hidiroglu, S.; Karahan, G. Radionuclide Concentrations in Soil and Lifetime Cancer Risk due to Gamma Radioactivity in Kirklareli, Turkey. J. Environ. Radioact. 2009, 100, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Goher, M.E.; Farhat, H.I.; Abdo, M.H.; Salem, S.G. Metal Pollution Assessment in the Surface Sediment of Lake Nasser, Egypt. Egypt. J. Aquat. Res. 2014, 40, 213–224. [Google Scholar] [CrossRef]
- Kandil, K.M.; Mansour, G.M.; Abd El Azeem, A.H. Mineralogical and Radioactive Studies for Utilization of Lake Nasser Sediments. Nucl. Sci. Sci. J. 2017, 6, 93–109. [Google Scholar] [CrossRef]
- Shata, M.A.; El-Deek, M.S.; Okbah, M.A. Fractionation of Mn, Fe, Zn and Cu in sediments of Khor Kalabsha, Lake Nasser, Egypt. Chem. Ecol. 1993, 8, 89–103. [Google Scholar] [CrossRef]
- El Azab, A.; El Alfi, S.M.; Ali, H.H. Mineralogy and Radioactivity of the Southern Part of Nasser Lake Sediments, Egypt. Al Azhar Bull. Sci. 2018, 29, 143–163. [Google Scholar]
- Ali, A.R.; Jassim, S.H.; Aladeen, Z.N. The Role of Heavy Minerals in Understanding the Provenance of Sandstone: An Example from the Upper Cretaceous Tanjero Formation, Surdash Region, Northeastern Iraq. Iraqi Geol. J. 2022, 55, 94–109. [Google Scholar] [CrossRef]
- El-Shlemy, E.S.; Mahmoud, A.M.A.; Gad, A.; Abd El Bakey, S.M. Sedimentological and Mineralogical Fingerprint of the Beach Sediments, Western Mediterranean Coast, Egypt. Iraqi Geol. J. 2023, 56, 102–125. [Google Scholar] [CrossRef]
- Hassan, F.A. Heavy Minerals and the Evolution of the Modern Nile. Quat. Res. 1976, 6, 425–444. [Google Scholar] [CrossRef]
- Chmielowska, D.; Salata, D. Heavy Minerals as Indicators of the Source and Stratigraphic Position of the Loess-Like Deposits in the Orava Basin (Polish Western Carpathians). Minerals 2020, 10, 445. [Google Scholar] [CrossRef]
- Abdel-Karim, A.-A.M.; Gad, A. Precious and Base Metal Minerals in Black Sands of the Egyptian Mediterranean Coast: Mineralogical and Geochemical Attributes. Resources 2024, 13, 109. [Google Scholar] [CrossRef]
- Goher, M.E.; Ali, M.H.H.; El-Sayed, S.M. Heavy Metals Contents in Nasser Lake and the Nile River, Egypt: An Overview. Egypt. J. Aquat. Res. 2019, 45, 301–312. [Google Scholar] [CrossRef]
- Farhat, H.I.; Aly, W. Effect of site on sedimentological characteristics and metal pollution in two semi-enclosed embayments of great freshwater reservoir: Lake Nasser, Egypt. J. Afr. Earth Sci. 2018, 141, 194–206. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Gao, Z.; Zhang, H.; Zhu, Z.; Jiang, B.; Liu, J.; Dong, H. Contamination Characteristics, Source Analysis and Health Risk Assessment of Heavy Metals in the Soil in Shi River Basin in China Based on High Density Sampling. Ecotox. Environ. Saf. 2021, 227, 112926. [Google Scholar] [CrossRef]
- Perumal, K.; Antony, J.; Muthuramalingam, S. Heavy metal pollutants and their spatial distribution in surface sediments from Thondi coast, Palk Bay, South India. Environ. Sci. Eur. 2021, 33, 63. [Google Scholar] [CrossRef]
- Wang, N.; Ye, Z.; Huang, L.; Zhang, C.; Guo, Y.; Zhang, W. Arsenic Occurrence and Cycling in the Aquatic Environment: A Comparison between Freshwater and Seawater. Water 2023, 15, 147. [Google Scholar] [CrossRef]
- Saleh, A.; Dawood, Y.H.; Gad, A. Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes. Land 2022, 11, 319. [Google Scholar] [CrossRef]
- Zeng, T.; Ma, L.; Li, Y.; Abuduwaili, J.; Liu, W.; Feng, S. Source apportionment of soil heavy metals with PMF model and Pb isotopes in an intermountain basin of Tianshan Mountains, China. Sci. Rep. 2022, 12, 19429. [Google Scholar] [CrossRef]
- Gad, A.; Saleh, A.; Farhat, H.I.; Dawood, Y.H.; Abd El Bakey, S.M. Spatial Distribution, Contamination Levels, and Health Risk Assessment of Potentially Toxic Elements in Household Dust in Cairo City, Egypt. Toxics 2022, 10, 466. [Google Scholar] [CrossRef]
- Semenov, M.Y.; Silaev, A.V.; Semenov, Y.M.; Begunova, L.A. Using Si, Al and Fe as Tracers for Source Apportionment of Air Pollutants in Lake Baikal Snowpack. Sustainability 2020, 12, 3392. [Google Scholar] [CrossRef]
- Laaraj, M.; Ait Brahim, Y.; Mesnage, V.; Bensalem, F.; Lahmidi, I.; Mliyeh, M.M.; Fattasse, H.; Arari, K.; Benaabidate, L. Heavy Metal Contamination of Sediments in the Inaouène Watershed (Morocco): Indices, Statistical Methods, and Contributions to Sustainable Environmental Management. Sustainability 2025, 17, 4668. [Google Scholar] [CrossRef]
- Fang, T.; Wang, H.; Liang, Y.; Cui, K.; Yang, K.; Lu, W.; Li, J.; Zhao, X.; Gao, N.; Yu, Q.; et al. Source tracing with cadmium isotope and risk assessment of heavy metals in sediment of an urban river, China. Environ. Pollut. 2022, 305, 119325. [Google Scholar] [CrossRef]
- Ali, M.; Alshamsi, D.; Ahmad, T.; Ahmed, A.; Abdelfadil, K.M. Assessment of Potentially Toxic Metals (PTMs) Pollution, Ecological Risks, and Source Apportionment in Urban Soils from University Campuses: Insights from Multivariate and Positive Matrix Factorisation Analyses. Minerals 2025, 15, 482. [Google Scholar] [CrossRef]
- Osman, R.; Melegy, A.; Dawood, Y.; Gad, A. Distribution of some potentially toxic heavy metals in the soil of Shoubra El Kheima, Egypt. Egypt. J. Chem. 2021, 64, 1965–1980. [Google Scholar] [CrossRef]
- Tiabou, A.F.; Takem-Agbor, A.A.; Yiika, L.P.; Eseya Mengu, E.; Kachoueiyan, F.; Agyingi, C.M. Distribution, source apportionment and ecological risk assessment of heavy metals in Limbe River sediments, Atlantic Coast, Cameroon Volcanic Line. Discov. Water 2024, 4, 62. [Google Scholar] [CrossRef]
- Cui, Q.; Brandt, N.; Sinha, R.; Malmström, M.E. Copper content in lake sediments as a tracer of urban emissions: Evaluation through a source-transport-storage model. Sci. Total Environ. 2010, 408, 2714–2725. [Google Scholar] [CrossRef]
- Dai, H.; Luo, M.; Jiang, X.; Li, X.; Zhang, P.; Niu, Y. Research on the Characteristics of Heavy Metal Pollution in Lake and Reservoir Sediments in China Based on Meta-Analysis. Sustainability 2025, 17, 5489. [Google Scholar] [CrossRef]
- Chappaz, A.; Lyons, T.W.; Gordon, G.W.; Anbar, A.D. Isotopic Fingerprints of Anthropogenic Molybdenum in Lake Sediments. Environ. Sci. Technol. 2012, 46, 10934–10940. [Google Scholar] [CrossRef]
- Wong, M.Y.; Rathod, S.D.; Marino, R.; Li, L.; Howarth, R.W.; Alastuey, A.; Alaimo, M.G.; Barraza, F.; Carneiro, M.C.; Chellam, S.; et al. Anthropogenic perturbations to the atmospheric molybdenum cycle. Glob. Biogeochem. Cycles 2021, 35, e2020GB006787. [Google Scholar] [CrossRef]
- Wu, D.; Liu, H.; Wu, J.; Gao, X. Spatial Distribution, Ecological Risk Assessment and Source Analysis of Heavy Metals Pollution in Urban Lake Sediments of Huaihe River Basin. Int. J. Environ. Res. Public Health 2022, 19, 14653. [Google Scholar] [CrossRef]
- Kipsang, N.K.; Kibet, J.K.; Adongo, J.O. A review of the current status of the water quality in the Nile water basin. Bull. Natl. Res. Cent. 2024, 48, 30. [Google Scholar] [CrossRef]
- Siddig, M.M.S.; Asabere, S.B.; Al-Farraj, A.S.; Brevik, E.C.; Sauer, D. Pollution and ecological risk assessment of heavy metals in anthropogenically-affected soils of Sudan: A systematic review and meta-analysis. J. Hazard. Mater. Adv. 2025, 17, 100601. [Google Scholar] [CrossRef]
- Oyege, I.; Katwesigye, R.; Kiwanuka, M.; Mutanda, H.; Niyomukiza, J.; Kataraihya, D.; Kica, S.; Egor, M. Temporal trends of water quality parameters, heavy metals, microplastics, and emerging organic pollutants in Lake Victoria and its basin: Knowns, knowledge gaps, and future directions. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100962. [Google Scholar] [CrossRef]
- Baguma, G.; Musasizi, A.; Twinomuhwezi, H.; Gonzaga, A.; Nakiguli, C.K.; Onen, P.; Angiro, C.; Okwir, A.; Opio, B.; Otema, T.; et al. Heavy Metal Contamination of Sediments from an Exoreic African Great Lakes’ Shores (Port Bell, Lake Victoria), Uganda. Pollutants 2022, 2, 407–421. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Christofides, G.; Koroneos, A.; Papastefanou, C.; Stoulos, S. Distribution of 238U, 232Th and 40K in Plutonic Rocks of Greece. Chem. Erde Geochem. 2014, 74, 749–764. [Google Scholar] [CrossRef]
- Ekpe, E.E.; Ben, U.C.; Ekwok, S.E.; Ebong, E.D.; Akpan, A.E.; Eldosouky, A.M.; Abdelrahman, K.; Gómez-Ortiz, D. Assessment of Natural Radionuclide Distribution Pattern and Radiological Risk from Rocks in Precambrian Oban Massif, Southeastern Nigeria. Minerals 2022, 12, 312. [Google Scholar] [CrossRef]
- Adams, J.A.S.; Weaver, C.E. Thorium-to-Uranium Ratios as Indicators of Sedimentary Processes: Example of Concept of Geochemical Facies. AAPG Bull. 1958, 42, 387–430. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. The composition of continental crust. In Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, The Crust; pp. 1–64. [Google Scholar] [CrossRef]
- De Putter, T.; André, L.; Bernard, A.; Dupuis, C.; Jedwab, J.; Nicaise, D.; Perruchot, A. Trace element (Th, U, Pb, REE) behaviour in a cryptokarstic halloysite and kaolinite deposit from Southern Belgium: Importance of “accessory” mineral formation for radioactive pollutant trapping. Appl. Geochem. 2002, 17, 1313–1328. [Google Scholar] [CrossRef]
- El-Kammar, A.; Abu-Zied, H.T.; Galal, M.; Osman, D. Composition, radioactivity, and possible applications of kaolin deposits of Sinai, Egypt. Arab. J. Geosci. 2017, 10, 463. [Google Scholar] [CrossRef]
- Thakur, P.; Ward, A.L.; Gonzalez-Delgado, A.M. Optimal methods for preparation, separation, and determination of radium isotopes in environmental and biological samples. J. Environ. Radioact. 2021, 228, 106522. [Google Scholar] [CrossRef]
- Le Roy, E.; Charette, M.A.; Henderson, P.B.; Shiller, A.M.; Moore, W.S.; Kemnitz, N.; Hammond, D.E.; Horner, T.J. Controls on dissolved barium and radium-226 distributions in the Pacific Ocean along GEOTRACES GP15. Glob. Biogeochem. Cycles 2024, 38, e2023GB008005. [Google Scholar] [CrossRef]
- Li, H.; Wang, Q.; Zhang, C.; Su, W.; Ma, Y.; Zhong, Q.; Xiao, E.; Xia, F.; Zheng, G.; Xiao, T. Geochemical Distribution and Environmental Risks of Radionuclides in Soils and Sediments Runoff of a Uranium Mining Area in South China. Toxics 2024, 12, 95. [Google Scholar] [CrossRef]
- Tawfic, A.F.; Omar, A.; Abed, N.S.; Tantawy, H. Investigation of Natural Radioactivity in Wadi El Reddah Stream Sediments and Its Radiological Implications. Radiochemistry 2021, 63, 243–250. [Google Scholar] [CrossRef]
- Abdelkarim, M.S.; Imam, N. Radiation hazards and extremophiles bioaccumulation of radionuclides from hypersaline lakes and hot springs. Int. J. Environ. Sci. Technol. 2024, 21, 3021–3036. [Google Scholar] [CrossRef]
- Yanase, N.; Payne, T.E.; Sekine, K. Groundwater geochemistry in the Koongarra ore deposit, Australia (I): Implications for uranium migration. Geochem. J. 1995, 29, 1–29. [Google Scholar] [CrossRef]
- Dowdall, M.; O’Dea, J. Ra-226/U-238 disequilibrium in an upland organic soil exhibiting elevated natural radioactivity. J. Environ. Radioact. 2002, 59, 91–104. [Google Scholar] [CrossRef]
- El Galy, M.M.; El Feky, M.G.; Roz, M.E.; Nada, A. Disequilibrium in U-Series at G-II Occurrence of Uranium Mineralization at Gabal Gattar Area, North Eastern Desert, Egypt; A Comparative Study using HP Ge and Nal-Detectors. Arab. J. Nucl. Sci. Appl. 2007, 40, 15–26. [Google Scholar]
- El-Feky, M.G.; Mohammed, H.S.; El-Shabasy, A.M.; Ahmed, M.R.; Abdel-Monem, Y.K.; Mira, H.I. Mobilisation of radionuclides during uranium and gold processing of granitic rock at El-Missikate area, central Eastern Desert, Egypt. Int. J. Environ. Anal. Chem. 2023, 103, 4285–4298. [Google Scholar] [CrossRef]
- Grabowski, P.; Bem, H. Uranium isotopes as a tracer of groundwater transport studies. J. Radioanal. Nucl. Chem. 2012, 292, 1043–1048. [Google Scholar] [CrossRef]
- Snow, D.D.; Spalding, R.F. Uranium isotopes in the Platte River drainage basin of the north American high plains region. Appl. Geochem. 1994, 9, 271–278. [Google Scholar] [CrossRef]
- Gad, A.; Saleh, A.; Khalifa, M. Assessment of Natural Radionuclides and Related Occupational Risk in Agricultural Soil, Southeastern Nile Delta, Egypt. Arab. J. Geosci. 2019, 12, 188. [Google Scholar] [CrossRef]
- Osman, R.; Dawood, Y.H.; Melegy, A.; El-Bady, M.S.; Saleh, A.; Gad, A. Distributions and Risk Assessment of the Natural Radionuclides in the Soil of Shoubra El Kheima, South Nile Delta, Egypt. Atmosphere 2022, 13, 98. [Google Scholar] [CrossRef]
Sample No. | Al | As | Cd | Co | Cr | Cu | Mo | Ni | Pb | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 13,506 | 45.70 | 0.20 | 3.30 | 42.30 | 7.70 | 2.40 | 7.80 | 9.30 | 13.90 | 24.30 |
2 | 13,099 | 46.90 | BDL | 1.40 | 44.70 | 7.60 | 1.20 | 8.20 | 9.00 | 8.90 | 24.70 |
3 | 20,455 | 64.30 | 0.70 | 64.50 | 102.50 | 8.30 | BDL | 9.70 | 60.90 | 15.10 | 11.90 |
4 | 5451 | 42.90 | 2.30 | 1.90 | 27.40 | 7.40 | 1.30 | 4.20 | 23.10 | 5.20 | 18.40 |
5 | 3842 | 51.80 | 2.30 | 2.50 | 37.40 | 7.60 | 0.80 | 6.00 | 11.60 | 8.70 | 18.40 |
6 | 4885 | 42.70 | 3.40 | 2.90 | 27.90 | 7.20 | 1.00 | 2.60 | 56.20 | 3.90 | 16.10 |
7 | 8219 | 55.30 | 3.90 | 0.10 | 44.20 | 7.40 | 1.20 | 6.60 | 8.40 | 12.60 | 19.20 |
8 | 1217 | 52.90 | 0.70 | 0.90 | 50.70 | 6.80 | 1.50 | 5.00 | 17.40 | 5.00 | 17.10 |
9 | 1408 | 34.00 | 3.90 | 0.70 | 122.80 | 8.30 | 0.60 | 7.20 | 77.20 | 2.90 | 20.60 |
10 | 5515 | 41.50 | 2.00 | 2.20 | 43.90 | 7.00 | 2.10 | 5.00 | 22.60 | 8.70 | 20.40 |
11 | 15,877 | 82.40 | 0.20 | 104.70 | 78.60 | 9.80 | 1.30 | 31.30 | 11.10 | 50.30 | 33.80 |
12 | 19,317 | 56.30 | 0.30 | 14.20 | 70.20 | 9.50 | 0.90 | 32.10 | 16.70 | 50.80 | 40.90 |
13 | 21,117 | 52.90 | BDL | 14.20 | 113.30 | 10.50 | 2.00 | 35.30 | 8.70 | 57.70 | 47.50 |
14 | 19,413 | 43.40 | 1.60 | 14.30 | 113.00 | 9.00 | 2.10 | 34.40 | 26.10 | 58.30 | 43.20 |
15 | 28,658 | 77.40 | BDL | 19.80 | 162.20 | 10.20 | 1.10 | 47.40 | 24.60 | 94.40 | 55.40 |
16 | 31,003 | 91.60 | 1.40 | 102.50 | 379.70 | 15.60 | BDL | 76.80 | 87.00 | 165.50 | 73.50 |
17 | 8801 | 67.30 | BDL | 94.90 | 65.10 | 8.00 | BDL | 16.60 | 11.70 | 20.80 | 13.00 |
18 | 13,580 | 37.40 | 4.00 | 4.50 | 36.80 | 8.30 | BDL | 13.80 | 40.30 | 24.30 | 30.30 |
19 | 11,770 | 16.50 | 3.20 | 2.80 | 40.10 | 7.10 | 1.30 | 3.10 | 66.70 | 7.00 | 16.10 |
20 | 3906 | 40.70 | BDL | 6.20 | 111.10 | 9.10 | BDL | 7.80 | 93.90 | 20.50 | 30.70 |
21 | 2096 | 45.70 | 5.40 | 2.70 | 37.30 | 7.70 | 0.10 | 4.30 | 66.30 | 9.40 | 20.50 |
22 | 4488 | 47.90 | BDL | 1.30 | 50.10 | 7.10 | 4.10 | 3.50 | 4.40 | 5.30 | 19.00 |
23 | 8510 | 35.70 | 1.80 | 0.90 | 27.80 | 6.50 | 0.90 | 3.00 | 34.00 | 6.60 | 16.20 |
24 | 31,389 | 38.20 | 5.00 | 5.70 | 52.60 | 9.60 | 0.90 | 13.00 | 13.70 | 19.70 | 30.40 |
25 | 30,114 | 35.50 | 0.40 | 3.10 | 27.60 | 7.80 | 1.00 | 9.80 | 12.30 | 12.00 | 24.30 |
26 | 2773 | 67.30 | 0.60 | 113.10 | 38.60 | 6.70 | 3.10 | 2.30 | 5.30 | 2.40 | 2.90 |
27 | 3948 | 43.20 | BDL | 0.70 | 32.00 | 6.80 | 3.30 | 4.20 | 3.20 | 9.50 | 16.90 |
28 | 3985 | 65.10 | BDL | 66.50 | 50.10 | 7.40 | 3.90 | 5.50 | 3.50 | 4.40 | 1.80 |
29 | 2085 | 38.20 | 1.80 | 0.60 | 36.80 | 7.40 | 1.60 | 3.50 | 26.30 | 1.50 | 16.30 |
30 | 969 | 69.80 | 4.20 | 1.50 | 81.60 | 7.60 | 2.40 | 4.10 | 76.40 | 3.80 | 17.20 |
31 | 4985 | 53.70 | BDL | 0.90 | 11.50 | 7.10 | 0.50 | 2.30 | 14.30 | 5.50 | 16.30 |
32 | 3302 | 52.20 | 1.20 | 0.10 | 43.00 | 7.10 | 1.40 | 4.20 | 5.10 | 10.30 | 19.50 |
33 | 2831 | 73.70 | 0.20 | 120.80 | 40.20 | 7.00 | 2.10 | 3.70 | BDL | 5.30 | BDL |
34 | 1831 | 88.10 | 3.70 | 109.40 | 42.50 | 6.80 | 4.80 | 5.00 | BDL | 1.20 | BDL |
35 | 1609 | 66.40 | 1.50 | 53.60 | 37.80 | 7.00 | 1.80 | 4.00 | BDL | 0.10 | BDL |
36 | 9293 | 51.90 | 4.00 | 2.40 | 59.60 | 9.10 | 1.80 | 3.40 | 16.60 | 7.50 | 19.00 |
37 | 11,151 | 41.30 | 0.80 | 2.10 | 26.20 | 6.90 | 2.90 | 4.20 | 7.00 | 7.10 | 20.30 |
38 | 5414 | 25.30 | 1.80 | 0.20 | 31.40 | 6.90 | 0.80 | 3.60 | 48.50 | 6.20 | 16.00 |
39 | 1974 | 55.10 | BDL | 97.70 | 48.80 | 7.30 | 2.80 | 4.10 | BDL | BDL | 2.50 |
40 | 2429 | 33.70 | 4.30 | BDL | 33.30 | 9.80 | 0.90 | 3.30 | 18.80 | 1.60 | 17.40 |
Min. | 969 | 16.50 | BDL | BDL | 11.50 | 6.50 | BDL | 2.30 | BDL | BDL | BDL |
Max. | 31,389 | 91.60 | 5.40 | 120.80 | 379.70 | 15.60 | 4.80 | 76.80 | 93.90 | 165.50 | 73.50 |
Average | 9655 | 51.80 | 1.67 | 26.05 | 63.07 | 8.05 | 1.55 | 11.30 | 25.96 | 18.85 | 21.30 |
UCC | 80,400 | 1.50 | 0.098 | 10.00 | 35.00 | 25.00 | 1.50 | 20.00 | 20.00 | 60.00 | 71.00 |
As | Cd | Co | Cr | Cu | Mo | Ni | Pb | V | Zn | ||
---|---|---|---|---|---|---|---|---|---|---|---|
EF | Min. | 63.19 | 0.00 | 0.00 | 2.11 | 0.83 | 0.00 | 1.06 | 0.00 | 0.00 | 0.00 |
Max. | 3862.92 | 3557.74 | 480.33 | 200.38 | 25.24 | 140.50 | 20.56 | 317.11 | 7.15 | 20.11 | |
Average | 725.64 | 431.51 | 56.24 | 31.84 | 6.12 | 24.51 | 5.83 | 29.59 | 2.43 | 4.24 | |
Min. | 2.87 | 0.00 | −7.23 | −2.19 | −2.53 | −4.49 | −3.71 | −3.23 | −9.81 | −5.89 | |
Igeo | Max. | 5.35 | 5.20 | 3.01 | 2.85 | −1.27 | 1.09 | 1.36 | 1.65 | 0.88 | −0.54 |
Average | 4.45 | 2.53 | −1.51 | −0.06 | −2.24 | −0.57 | −2.13 | −0.60 | −3.29 | −2.32 |
Pn | PLI | PERI | |
---|---|---|---|
Min. | 2.71 | 0.42 | 298.34 |
Max. | 3.95 | 4.43 | 1981.13 |
Average. | 3.32 | 1.10 | 887.08 |
OM | Al2O3 | Fe2O3 | MnO | TiO2 | CaO | As | Cd | Co | Cr | Cu | Mo | Ni | Pb | V | Zn | |
Mud | 0.39 | 0.51 | −0.05 | 0.05 | 0.10 | −0.30 | −0.35 | 0.00 | −0.24 | −0.15 | −0.05 | −0.10 | −0.15 | −0.03 | −0.13 | 0.00 |
OM | 0.75 | 0.64 | 0.44 | 0.70 | 0.17 | 0.09 | −0.26 | −0.02 | 0.36 | 0.48 | −0.17 | 0.57 | −0.03 | 0.55 | 0.65 | |
Al2O3 | 0.78 | 0.58 | 0.85 | 0.17 | 0.12 | −0.13 | 0.02 | 0.51 | 0.66 | −0.31 | 0.72 | 0.07 | 0.70 | 0.73 | ||
Fe2O3 | 0.77 | 0.94 | 0.50 | 0.22 | −0.20 | 0.04 | 0.53 | 0.69 | −0.30 | 0.85 | 0.06 | 0.80 | 0.84 | |||
MnO | 0.73 | 0.42 | −0.03 | 0.02 | −0.07 | 0.26 | 0.38 | −0.32 | 0.53 | 0.14 | 0.50 | 0.56 | ||||
TiO2 | 0.44 | 0.23 | −0.22 | 0.06 | 0.67 | 0.79 | −0.37 | 0.89 | 0.20 | 0.87 | 0.89 | |||||
CaO | 0.05 | −0.03 | −0.24 | 0.25 | 0.33 | −0.18 | 0.40 | 0.08 | 0.43 | 0.53 | ||||||
As | −0.26 | 0.75 | 0.46 | 0.35 | 0.22 | 0.47 | −0.17 | 0.45 | 0.11 | |||||||
Cd | −0.30 | −0.10 | 0.01 | −0.19 | −0.21 | 0.36 | −0.19 | −0.08 | ||||||||
Co | 0.29 | 0.19 | 0.23 | 0.27 | −0.19 | 0.24 | −0.18 | |||||||||
Cr | 0.87 | −0.26 | 0.87 | 0.48 | 0.89 | 0.74 | ||||||||||
Cu | −0.38 | 0.88 | 0.35 | 0.89 | 0.83 | |||||||||||
Mo | −0.26 | −0.54 | −0.28 | −0.40 | ||||||||||||
Ni | 0.21 | 0.99 | 0.88 | |||||||||||||
Pb | 0.27 | 0.34 | ||||||||||||||
V | 0.88 | |||||||||||||||
Very Weak | Weak | Moderate | Strong | Very Strong |
Sample No. | 238U (Bq kg−1) | 232Th (Bq kg−1) | 226Ra (Bq kg−1) | 40K (Bq kg−1) | eTh/eU | eTh/K | eU/Ra | Raeq | Hex | D | AEDE | ELCR × 10−3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 49.60 | 48.48 | 11.10 | 65.73 | 3.00 | 57.14 | 4.00 | 85.41 | 0.33 | 54.94 | 0.07 | 0.24 |
2 | 8.31 | 36.36 | 11.10 | 21.91 | 13.43 | 128.57 | 0.67 | 64.73 | 0.17 | 26.71 | 0.03 | 0.11 |
3 | 37.20 | 44.44 | 22.20 | 15.65 | 3.67 | 220.00 | 1.50 | 86.89 | 0.28 | 44.68 | 0.05 | 0.19 |
4 | 74.40 | 8.08 | 7.55 | 184.67 | 0.33 | 3.39 | 8.82 | 33.30 | 0.27 | 46.95 | 0.06 | 0.20 |
5 | 37.20 | 8.08 | 11.10 | 56.34 | 0.67 | 11.11 | 3.00 | 26.98 | 0.14 | 24.42 | 0.03 | 0.10 |
6 | 12.40 | 8.08 | 22.20 | 140.85 | 2.00 | 4.44 | 0.50 | 44.58 | 0.09 | 16.48 | 0.02 | 0.07 |
7 | 37.20 | 12.12 | 22.20 | 50.08 | 1.00 | 18.75 | 1.50 | 43.37 | 0.16 | 26.60 | 0.03 | 0.11 |
8 | 74.40 | 4.04 | 11.10 | 278.57 | 0.17 | 1.12 | 6.00 | 38.30 | 0.27 | 48.43 | 0.06 | 0.21 |
9 | 8.18 | 8.08 | 11.10 | 25.04 | 3.03 | 25.00 | 0.66 | 24.57 | 0.06 | 9.71 | 0.01 | 0.04 |
10 | 10.91 | 8.08 | 9.77 | 115.81 | 2.27 | 5.41 | 1.00 | 30.22 | 0.08 | 14.75 | 0.02 | 0.06 |
11 | 12.40 | 20.20 | 6.22 | 300.48 | 5.00 | 5.21 | 1.79 | 58.19 | 0.17 | 30.46 | 0.04 | 0.13 |
12 | 12.40 | 20.20 | 11.10 | 84.51 | 5.00 | 18.52 | 1.00 | 46.46 | 0.13 | 21.45 | 0.03 | 0.09 |
13 | 24.80 | 16.16 | 9.55 | 162.76 | 2.00 | 7.69 | 2.33 | 45.15 | 0.16 | 28.01 | 0.03 | 0.12 |
14 | 49.60 | 8.08 | 33.30 | 184.67 | 0.50 | 3.39 | 1.33 | 59.05 | 0.20 | 35.50 | 0.04 | 0.15 |
15 | 12.40 | 28.28 | 22.20 | 93.90 | 7.00 | 23.33 | 0.50 | 69.82 | 0.16 | 26.73 | 0.03 | 0.11 |
16 | 62.00 | 52.52 | 44.40 | 18.78 | 2.60 | 216.67 | 1.25 | 120.87 | 0.37 | 61.15 | 0.07 | 0.26 |
17 | 24.80 | 20.20 | 22.20 | 153.37 | 2.50 | 10.20 | 1.00 | 62.85 | 0.18 | 30.05 | 0.04 | 0.13 |
18 | 6.94 | 44.44 | 22.20 | 81.38 | 19.64 | 42.31 | 0.28 | 91.95 | 0.21 | 33.44 | 0.04 | 0.14 |
19 | 24.80 | 16.16 | 22.20 | 6.26 | 2.00 | 200.00 | 1.00 | 45.77 | 0.13 | 21.48 | 0.03 | 0.09 |
20 | 74.40 | 32.32 | 22.20 | 43.82 | 1.33 | 57.14 | 3.00 | 71.74 | 0.33 | 55.72 | 0.07 | 0.24 |
21 | 10.29 | 20.20 | 22.20 | 81.38 | 6.02 | 19.23 | 0.42 | 57.32 | 0.12 | 20.35 | 0.02 | 0.09 |
22 | 37.20 | 20.20 | 11.10 | 53.21 | 1.67 | 29.41 | 3.00 | 44.05 | 0.19 | 31.61 | 0.04 | 0.14 |
23 | 12.40 | 8.08 | 11.10 | 165.89 | 2.00 | 3.77 | 1.00 | 35.40 | 0.10 | 17.53 | 0.02 | 0.08 |
24 | 62.00 | 16.16 | 11.10 | 3.13 | 0.80 | 400.00 | 5.00 | 34.43 | 0.23 | 38.54 | 0.05 | 0.17 |
25 | 136.40 | 32.32 | 9.77 | 13.77 | 0.73 | 181.82 | 12.50 | 57.00 | 0.50 | 83.11 | 0.10 | 0.36 |
26 | 24.80 | 8.08 | 11.10 | 15.65 | 1.00 | 40.00 | 2.00 | 23.85 | 0.10 | 16.99 | 0.02 | 0.07 |
27 | 24.80 | 12.12 | 11.10 | 131.46 | 1.50 | 7.14 | 2.00 | 38.53 | 0.14 | 24.26 | 0.03 | 0.10 |
28 | 62.00 | 16.16 | 11.10 | 103.29 | 0.80 | 12.12 | 5.00 | 42.13 | 0.25 | 42.71 | 0.05 | 0.18 |
29 | 8.06 | 8.08 | 11.10 | 40.69 | 3.08 | 15.38 | 0.65 | 25.77 | 0.06 | 10.30 | 0.01 | 0.04 |
30 | 5.58 | 8.08 | 11.10 | 143.98 | 4.44 | 4.35 | 0.45 | 33.72 | 0.08 | 13.46 | 0.02 | 0.06 |
31 | 6.08 | 12.12 | 7.33 | 137.72 | 6.12 | 6.82 | 0.74 | 35.23 | 0.09 | 15.87 | 0.02 | 0.07 |
32 | 8.18 | 12.12 | 11.10 | 172.15 | 4.55 | 5.45 | 0.66 | 41.66 | 0.10 | 18.28 | 0.02 | 0.08 |
33 | 62.00 | 6.26 | 11.10 | 25.04 | 0.31 | 19.38 | 5.00 | 21.97 | 0.20 | 33.47 | 0.04 | 0.14 |
34 | 8.18 | 8.08 | 8.88 | 169.02 | 3.03 | 3.70 | 0.83 | 33.42 | 0.09 | 15.71 | 0.02 | 0.07 |
35 | 9.55 | 4.04 | 11.10 | 68.86 | 1.30 | 4.55 | 0.77 | 22.17 | 0.06 | 9.72 | 0.01 | 0.04 |
36 | 24.80 | 8.08 | 11.10 | 18.78 | 1.00 | 33.33 | 2.00 | 24.09 | 0.10 | 17.12 | 0.02 | 0.07 |
37 | 49.60 | 12.12 | 11.10 | 187.80 | 0.75 | 5.00 | 4.00 | 42.86 | 0.22 | 38.07 | 0.05 | 0.16 |
38 | 6.82 | 24.24 | 11.10 | 100.16 | 10.91 | 18.75 | 0.55 | 53.43 | 0.13 | 21.97 | 0.03 | 0.09 |
39 | 12.40 | 8.08 | 9.10 | 87.64 | 2.00 | 7.14 | 1.22 | 27.39 | 0.08 | 14.26 | 0.02 | 0.06 |
40 | 12.28 | 24.24 | 11.10 | 9.39 | 6.06 | 200.00 | 0.99 | 46.45 | 0.13 | 20.70 | 0.03 | 0.09 |
Min. | 5.58 | 4.04 | 6.22 | 3.13 | 0.17 | 1.12 | 0.28 | 21.97 | 0.06 | 9.71 | 0.01 | 0.04 |
Max. | 136.40 | 52.52 | 44.40 | 300.48 | 19.64 | 400.00 | 12.50 | 120.87 | 0.50 | 83.11 | 0.10 | 0.36 |
Average | 30.94 | 17.83 | 14.47 | 95.34 | 3.38 | 51.92 | 2.25 | 47.28 | 0.17 | 29.04 | 0.04 | 0.12 |
World average | 33 | 45 | 32 | 412 |
OM | Al2O3 | Fe2O3 | MnO | TiO2 | CaO | 238U | 232Th | 40K | |
Mud | 0.39 | 0.51 | −0.05 | 0.05 | 0.10 | −0.30 | 0.44 | 0.41 | −0.38 |
OM | 0.75 | 0.64 | 0.44 | 0.70 | 0.17 | 0.31 | 0.57 | 0.10 | |
Al2O3 | 0.78 | 0.58 | 0.85 | 0.17 | 0.37 | 0.57 | −0.16 | ||
Fe2O3 | 0.77 | 0.94 | 0.50 | 0.07 | 0.42 | 0.13 | |||
MnO | 0.73 | 0.42 | 0.02 | 0.38 | −0.01 | ||||
TiO2 | 0.44 | 0.22 | 0.64 | −0.03 | |||||
CaO | −0.22 | 0.16 | 0.20 | ||||||
238U | 0.20 | −0.11 | |||||||
232Th | −0.34 | ||||||||
very weak | weak | moderate | strong | very strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shlemy, E.S.; Gad, A.; El Feky, M.G.; Mahmoud, A.-M.A.; El-Sayed, O.; Abed, N.S. Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake. Toxics 2025, 13, 745. https://doi.org/10.3390/toxics13090745
El-Shlemy ES, Gad A, El Feky MG, Mahmoud A-MA, El-Sayed O, Abed NS. Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake. Toxics. 2025; 13(9):745. https://doi.org/10.3390/toxics13090745
Chicago/Turabian StyleEl-Shlemy, Esraa S., Ahmed Gad, Mohammed G. El Feky, Abdel-Moneim A. Mahmoud, Omnia El-Sayed, and Neveen S. Abed. 2025. "Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake" Toxics 13, no. 9: 745. https://doi.org/10.3390/toxics13090745
APA StyleEl-Shlemy, E. S., Gad, A., El Feky, M. G., Mahmoud, A.-M. A., El-Sayed, O., & Abed, N. S. (2025). Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake. Toxics, 13(9), 745. https://doi.org/10.3390/toxics13090745