Distribution and Enrichment Regularity of Trace Elements in Meitan Cuiya Tea and Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples and Chemical Reagents
2.2. Sample Preparation
2.3. Methods
2.3.1. Operating Parameters of ICP-OES
2.3.2. Standard Curve Protracting of Elements
2.3.3. Pi Evaluation
2.3.4. Igeo Evaluation
2.3.5. pH Determination
2.3.6. Bioconcentration Factor for Trace Element
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Element Content of Soil
3.1.1. Soil Element Content
3.1.2. Evaluation of Indicators for Heavy Metal Pollution in Soil
3.1.3. Correlation Analysis of Soil Element Content and pH
3.2. Characteristics of Element Content in Tea
3.2.1. Tea Element Content
3.2.2. Correlation Analysis of Tea Trace Element Content, Soil Trace Element Content and Soil pH
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, S.-Y.; Nie, Q.; Tai, H.-C.; Song, X.-L.; Tong, Y.-F.; Zhang, L.-J.-F.; Wu, X.-W.; Lin, Z.-H.; Zhang, Y.-Y.; Ye, D.-Y.; et al. Tea and Tea Drinking: China’s Outstanding Contributions to the Mankind. Chin. Med. 2022, 17, 27. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Yang, Y.; Hu, K.; Chen, J.; Djomo, S.N.; Yang, X.; Knudsen, M.T. Economic, Environmental, and Emergy Analysis of China’s Green Tea Production. Sustain. Prod. Consum. 2021, 28, 269–280. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Y.; Liao, R.; Zhao, J.; Yang, H.; Wang, F. Authentication of the Geographical Origin of Guizhou Green Tea Using Stable Isotope and Mineral Element Signatures Combined with Chemometric Analysis. Food Control 2021, 125, 107954. [Google Scholar] [CrossRef]
- Gong, Y.; Ren, W.; Zhang, Z.; Li, F.; Xu, D.; Zhang, Y. Characterization and Influencing Factors of Trace Elements, Tea Polyphenols, Caffeine, Free Amino Acids and Water Leachate Content in Tea. Pol. J. Environ. Stud. 2024, 33, 5693–5702. [Google Scholar] [CrossRef]
- Liu, S.; Yao, X.; Zhao, D.; Lu, L. Evaluation of the Ecological Benefits of Tea Gardens in Meitan County, China, Using the InVEST Model. Environ. Dev. Sustain. 2021, 23, 7140–7155. [Google Scholar] [CrossRef]
- Ho, C.-C.; Su, Y.-Q.; Chen, C.-F.; Lin, Y.-X.; Liu, H.-F. Estimation of Pollution Export Coefficients of Tea Farms and Its Application in Watershed Management. Water 2024, 16, 1603. [Google Scholar] [CrossRef]
- Milani, R.F.; Sanches, V.L.; Morgano, M.A.; Cadore, S. Trace Elements in Ready-to-Drink Ice Tea: Total Content, in Vitro Bioaccessibility and Risk Assessment. Food Res. Int. 2020, 137, 109732. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; An, S.; Kim, L.; Byeon, Y.M.; Lee, J.; Choi, M.-J.; An, Y.-J. Translocation and Chronic Effects of Microplastics on Pea Plants (Pisum Sativum) in Copper-Contaminated Soil. J. Hazard. Mater. 2022, 436, 129194. [Google Scholar] [CrossRef]
- Manzoor; Ma, L.; Ni, K.; Ruan, J. Influence of Organic and Inorganic Fertilizers on Tea Growth and Quality and Soil Properties of Tea Orchards’ Top Rhizosphere Soil. Plants 2024, 13, 207. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, X.; Zhao, P.; Chen, Y.; Ni, D.; Wang, M. Metal Tolerance Protein CsMTP4 Has Dual Functions in Maintaining Zinc Homeostasis in Tea Plant. J. Hazard. Mater. 2024, 471, 134308. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Yang, X.; Wu, Y.; Huang, X.; He, E.; Qiu, R.; Wang, S. Enhanced Removal of Cr(VI) in the Fe(III)/Natural Polyphenols System: Role of the in Situ Generated Fe(II). J. Hazard. Mater. 2019, 377, 321–329. [Google Scholar] [CrossRef]
- Yadav, M.; George, N.; Dwibedi, V. Emergence of Toxic Trace Elements in Plant Environment: Insights into Potential of Silica Nanoparticles for Mitigation of Metal Toxicity in Plants*. Environ. Pollut. 2023, 333, 122112. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Chen, R.; Peng, Y.; Wen, X.; Gao, L. Accumulation of Heavy Metals in Tea Leaves and Potential Health Risk Assessment: A Case Study from Puan County, Guizhou Province, China. Int. J. Environ. Res. Public Health 2018, 15, 133. [Google Scholar] [CrossRef]
- Li, X.; Liu, N.; Meng, W.; He, J.; Wu, P. Accumulation and Health Risk Assessment of Heavy Metal(Loid)s in Soil-Crop Systems from Central Guizhou, Southwest China. Agriculture 2022, 12, 981. [Google Scholar] [CrossRef]
- Almeida, L.C.; da Silva Junior, J.B.; dos Santos, I.F.; de Carvalho, V.S.; de Santana Santos, A.; Hadlich, G.M.; Costa Ferreira, S.L. Assessment of Toxicity of Metals in River Sediments for Human Supply: Distribution, Evaluation of Pollution and Sources Identification. Mar. Pollut. Bull. 2020, 158, 111423. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, T.S.; de A. Xavier, D.; Santos, L.D.; Franca, E.J.; Sanders, C.J.; Passos, T.U.; Barcellos, R.L. Geochemical Background Indicators within a Tropical Estuarine System Influenced by a Port-Industrial Complex. Mar. Pollut. Bull. 2020, 161, 111794. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.A.H.; Karmaker, S.C.; Bodrud-Doza, M.; Rakib, M.A.; Saha, B.B. Enrichment, Sources and Ecological Risk Mapping of Heavy Metals in Agricultural Soils of Dhaka District Employing SOM, PMF and GIS Methods. Chemosphere 2021, 263, 128339. [Google Scholar] [CrossRef] [PubMed]
- Avila, D.V.L.; Souza, S.O.; Lopes Costa, S.S.; Borges Garcia, C.A.; do Patrocínio Hora Alves, J.; Oliveira Araujo, R.G.; Passos, E.A. Multivariate Optimization of Conditions for Digestion of Wet Feeds for Dogs and Cats Using a Closed Digester Block and Multielement Determination by ICP-OES. J. AOAC Int. 2017, 100, 1483–1491. [Google Scholar] [CrossRef]
- Su, K.; Wang, Q.; Li, L.; Cao, R.; Xi, Y. Water Quality Assessment of Lugu Lake Based on Nemerow Pollution Index Method. Sci. Rep. 2022, 12, 13613. [Google Scholar] [CrossRef]
- Liu, X.; Chen, S.; Yan, X.; Liang, T.; Yang, X.; El-Naggar, A.; Liu, J.; Chen, H. Evaluation of Potential Ecological Risks in Potential Toxic Elements Contaminated Agricultural Soils: Correlations between Soil Contamination and Polymetallic Mining Activity. J. Environ. Manag. 2021, 300, 113679. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Xu, K.; Su, X.; Sun, J. Compensation Methods for pH Direct Measurement in Soilless Culture Substrates Using the All-Solid-Stated pH Sensor. IEEE Sens. J. 2021, 21, 26856–26867. [Google Scholar] [CrossRef]
- Mazhari, M.; Kapourchal, S.A.; Homaee, M. Evaluating Capability of Two Halophyte Plants for Phytoextraction of Cadmium from Contaminated Soils. Life 2024, 17, 2313206. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhao, W.; Xia, C.; Wu, M.; Wang, Q.; Wang, Z.; Jiang, Y.; Zuza, A.V.; Tian, X. Assessment of Heavy Metals Should Be Performed before the Development of the Selenium-Rich Soil: A Case Study in China. Environ. Res. 2022, 210, 112990. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Zhou, X.; Sheng, W.; Lin, K.; Ma, X. Exploring the Risk Thresholds of Soil Heavy Metals in Carbonate and Non-Carbonate Rock Areas: The Case of Qianjiang District in Chongqing, China. Bull. Environ. Contam. Toxicol. 2022, 109, 910–919. [Google Scholar] [CrossRef]
- Ye, J.; Wang, Y.; Wang, Y.; Hong, L.; Jia, X.; Kang, J.; Lin, S.; Wu, Z.; Wang, H. Improvement of Soil Acidification in Tea Plantations by Long-Term Use of Organic Fertilizers and Its Effect on Tea Yield and Quality. Front. Plant Sci. 2022, 13, 1055900. [Google Scholar] [CrossRef]
- Li, F.; Jing, M.; Ma, F.; Wang, W.; Li, M. Comparison and Risk Assessment of Macroelements and Trace Metals in Commercial Teas from Different Regions of China. Biol. Trace Elem. Res. 2023, 201, 1503–1519. [Google Scholar] [CrossRef]
- Ren, X.; Wang, Y.; Sun, J.; Liang, K.; Zhu, H.; Li, Y.; Gao, J.; Zhang, Y.; Huang, S.; Zhu, D. Legal Standards for Selenium Enriched Foods and Agricultural Products: Domestic and International Perspectives. Nutrients 2024, 16, 3659. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kashihara, K.; Furuta, T.; Zhang, Q.; Yu, E.; Ma, J.F. Genetic Background Influences Mineral Accumulation in Rice Straw and Grains under Different Soil pH Conditions. Sci. Rep. 2024, 14, 15139. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Ye, J.; Jia, X.; Zhang, Q.; He, H. Analysis of the Absorption and Accumulation Characteristics of Rare Earth Elements in Chinese Tea. J. Sci. Food Agric. 2020, 100, 3360–3369. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Z.; Zhang, J. Quality Characteristics of Karst Plateau Tea (Niaowang) in Southwest China and Their Relationship with Trace Elements. Toxics 2023, 11, 502. [Google Scholar] [CrossRef] [PubMed]
- Swed, M.; Uzarowicz, L.; Duczmal-Czernikiewicz, A.; Kwasowski, W.; Pedziwiatr, A. Forms of Metal(Loid)s in Soils Derived from Historical Calamine Mining Waste and Tailings of the Olkusz Zn-Pb Ore District, Southern Poland: A Combined Pedological, Geochemical and Mineralogical Approach. Appl. Geochem. 2022, 139, 105218. [Google Scholar] [CrossRef]
- Asare, M.O.; Hejcman, M. Effect of Tree Species on the Elemental Composition of Wood Ashes and Their Fertilizer Values on Agricultural Soils. Glob. Change Biol. Bioenergy 2022, 14, 1321–1335. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, Q.; Liu, G.; Lin, L.; Wang, H.; Lin, S.; Wang, Y.; Wang, Y.; Zhang, Q.; Jia, X.; et al. Relationship of Soil pH Value and Soil Pb Bio-Availability and Pb Enrichment in Tea Leaves. J. Sci. Food Agric. 2022, 102, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Li, L.; Ma, S.; Han, R.; He, Y.; Zhu, J.; Li, M.; Zhuang, J.; Wang, Y.; Zhao, Z.; et al. Mn-CDF Family Genes Enhance the Manganese Tolerance of the Tea Plants (Camellia sinensis) under Acidic Condition. Plant Physiol. Biochem. 2024, 216, 109179. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Y.; Zhang, Q.; Lin, S.; Zhang, Q.; Chen, Y.; Hong, L.; Jia, X.; Ye, J.; Wang, H. Effect of Soil pH on the Uptake of Essential Elements by Tea Plant and Subsequent Impact on Growth and Leaf Quality. Agronomy 2024, 14, 1338. [Google Scholar] [CrossRef]
- Mndzebele, B.M.M.P.; Dakora, F.D. Effect of Trace Element Supply on Plant Growth and Mineral Nutrition of Cyclopia longifolia Vogel L. a Honeybush Tea Plant Growing on a Farmer’s Field in the Cape Fynbos, South Africa. S. Afr. J. Bot. 2023, 161, 428–433. [Google Scholar] [CrossRef]
Serial Number | Sampling Point | Number of Samples | Latitude and Longitude | Tea | Soil Samples | |
Topsoil (0–20 cm) | Subsoil (20–40 cm) | |||||
1 | Shilian town | 5 | 27°25′42.77″ N, 107°25′3.79″ E | SLC | SLU | SLL |
2 | Fuxing town | 5 | 27°59′48.16″ N, 107°37′18.15″ E | FXC | FXU | FXL |
3 | Xinnan town | 5 | 27°32′25.60″ N, 107°19′18.18″ E | XNC | XNU | XNL |
4 | Xima town | 5 | 27°57′29.25″ N, 107°31′7.84″ E | XMC | XMU | XML |
5 | Yuquan town | 5 | 27°52′26.22″ N, 107°29′34.00″ E | YQC | YQU | YQL |
6 | Mashan town | 5 | 28°3′16.54″ N, 107°35′20.88″ E | MSC | MSU | MSL |
7 | Xihe town | 5 | 28°9′19.95″ N, 107°32′30.31″ E | XHC | XHU | XHL |
8 | Yongxing town | 5 | 27°52′30.94″ N, 107°35′26.49″ E | YXC | YXU | YXL |
9 | Gaotai town | 5 | 27°37′13.25″ N, 107°23′21.92″ E | GTC | GTU | GTL |
10 | Chaole town | 5 | 27°40′30.97″ N, 107°34′6.49″ E | CLC | CLU | CLL |
11 | Meijiang street | 5 | 27°46′22.01″ N, 107°28′59.33″ E | MJC | MJU | MJL |
12 | Huangjiaba town | 5 | 27°44′22.12″ N, E107°25′32.78″ E | HJC | HJU | HJL |
Element | Wavelength/nm | Standard Curve Formulation | Correlation Coefficient/r | RSD/% |
---|---|---|---|---|
Cd | 214.439 | y = 12447.7579x + 0.4802 | 0.9908 | 1.55 |
Fe | 238.204 | y = 24370.3355x + 1019.2927 | 0.9983 | 0.37 |
La | 333.749 | y = 79738.8536x + 191.1089 | 0.9999 | 0.40 |
Mg | 279.553 | y = 540801.9881x + 7210.5008 | 0.9955 | 0.52 |
Mn | 257.610 | y = 168638.21418x + 1366.0338 | 0.9944 | 1.57 |
Ni | 231.604 | y = 2826.8109x + 44.7979 | 0.9999 | 0.53 |
Se | 196.026 | y = 535.1290x + 7.5406 | 0.9999 | 3.68 |
Pr | 417.939 | y = 25174.0633x + 26.5759 | 0.9998 | 2.05 |
Sm | 359.259 | y = 40242.5396x + 7.9324 | 0.9999 | 1.99 |
Zn | 213.857 | y = 25455.3631x + 148.4222 | 0.9999 | 0.35 |
Index of Geoaccumulation | Grade | The Degree of Pollution |
---|---|---|
Igeo < 0 | Level 0 | No pollution |
0 ≤ Igeo < 1 | Level 1 | No pollution to moderate pollution |
1 ≤ Igeo < 2 | Level 2 | Moderate pollution |
2 ≤ Igeo < 3 | Level 3 | Moderate to strong pollution |
3 ≤ Igeo < 4 | Level 4 | Strong pollution |
4 ≤ Igeo < 5 | Level 5 | Heavy pollution to extreme pollution |
Igeo ≥ 5 | Level 6 | Extreme pollution |
10 | Sample Information | Cd | Fe | La | Mg | Mn | Ni | Se | Pr | Sm | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
The topsoil | XMU | 0.783 ± 0.007 g | 4260.5 ± 14.7 c | 1.579 ± 0.001 e | 52.61 ± 0.24 e | 0.16 ± 0.02 k | 4.015 ± 0.008 d | 5.35 ± 0.15 b | 0.9 ± 0.02 e | 1.12 ± 0.003 e | 1.62 ± 0.02 d |
GTU | 0.842 ± 0.002 c | 4416 ± 11.4 a | 1.603 ± 0.004 d | 48.93 ± 0.35 h | 0.20 ± 0.006 j | 3.953 ± 0.024 e | 5.87 ± 0.13 a | 0.9 ± 0.01 e | 1.141 ± 0.012 d | 1.83 ± 0.02 b | |
XHU | 0.734 ± 0.008 h | 4013.5 ± 2.2 e | 1.893 ± 0.005 a | 52.09 ± 0.07 f | 0.586 ± 0.003 c | 3.456 ± 0.019 h | 5.03 ± 0.16 d | 0.99 ± 0.01 b | 1.363 ± 0.005 a | 1.635 ± 0.007 cd | |
FXU | 0.856 ± 0.006 b | 4351.5 ± 11.8 b | 1.677 ± 0.001 c | 47.97 ± 0.12 i | 0.588 ± 0.001 c | 4.495 ± 0.012 c | 5.89 ± 0.12 a | 0.98 ± 0.01 c | 1.273 ± 0.002 b | 1.648 ± 0.005 c | |
HJU | 0.824 ± 0.001 e | 4145.5 ± 6.5 d | 1.829 ± 0.005 b | 66.13 ± 0.06 c | 0.435 ± 0.001 e | 4.914 ± 0.015 a | 5.75 ± 0.14 a | 0.94 ± 0.005 d | 1.271 ± 0.006 b | 2.017 ± 0.007 a | |
MJU | 0.729 ± 0.007 h | 3816 ± 7.2 g | 1.342 ± 0.005 h | 49.37 ± 0.22 g | 0.322 ± 0.004 h | 3.431 ± 0.032 i | 4.75 ± 0.06 e | 0.72 ± 0.02 gh | 1.013 ± 0.004 h | 1.24 ± 0.03 e | |
YQU | 0.663 ± 0.005 j | 3560.5 ± 8.367 i | 1.068 ± 0.002 k | 43.06 ± 0.12 j | 0.246 ± 0.003 i | 3.061 ± 0.027 j | 4.17 ± 0.05 f | 0.63 ± 0.01 i | 0.864 ± 0.008 i | 1.06 ± 0.03 g | |
CLU | 0.554 ± 0.005 k | 2896 ± 1.4k | 1.358 ± 0.003 g | 191.62 ± 0.47 a | 2.228 ± 0.003 a | 3.519 ± 0.016 g | 3.54 ± 0.07 g | 4.37 ± 0.01 a | 0.54 ± 0.005 j | 1.005 ± 0.003 h | |
MSU | 0.871 ± 0.006 a | 3875.5 ± 24.1 f | 1.385 ± 0.007 f | 69.18 ± 0.07 b | 0.423 ± 0.008 f | 4.834 ± 0.020 b | 5.74 ± 0.18 a | 0.732 ± 0.008 g | 1.094 ± 0.005 f | 1.62 ± 0.02 d | |
XNU | 0.816 ± 0.01 f | 3589 ± 16.7 h | 1.166 ± 0.005 j | 49.61 ± 0.12 g | 0.727 ± 0.015 b | 4.492 ± 0.010 c | 5.18 ± 0.14 cd | 0.642 ± 0.003 i | 1.163 ± 0.002 c | 1.21 ± 0.02 f | |
YXU | 0.832 ± 0.004 d | 3581.5 ± 2.9 h | 1.036 ± 0.007 l | 40.52 ± 0.1 k | 0.467 ± 0.011 d | 3.974 ± 0.019 e | 5.28 ± 0.17 bc | 0.703 ± 0.008 h | 1.061 ± 0.006 g | 1.07 ± 0.007 g | |
SLU | 0.701 ± 0.001i | 3524.5 ± 15.4 j | 1.310 ± 0.006 i | 61.93 ± 0.28 d | 0.398 ± 0.01 g | 3.752 ± 0.006 f | 4.3 ± 0.05 f | 0.754 ± 0.009 f | 1.162 ± 0.004 c | 0.86 ± 0.02 i | |
Mean value | 0.767 ± 0.094 b | 3835.8 ± 436.3 a | 1.44 ± 0.28 b | 64.42 ± 40.99 b | 0.565 ± 0.55 b | 3.991 ± 0.589 b | 5.07 ± 0.75 b | 1.11 ± 1.04 b | 1.089 ± 0.216 b | 1.402 ± 0.371 b | |
The subsoil | XML | 0.859 ± 0.005 B | 4500.5 ± 5.7 A | 1.683 ± 0.002 A | 59.26 ± 0.27 C | 0.580 ± 0.012 C | 4.148 ± 0.009 G | 5.79 ± 0.16 AB | 0.943 ± 0.004 B | 1.133 ± 0.008 E | 1.966 ± 0.008 A |
GTL | 0.813 ± 0.008 E | 4279 ± 14.3 B | 1.554 ± 0.001 C | 51.63 ± 0.1 G | 0.542 ± 0.012 D | 4.046 ± 0.024 I | 4.29 ± 0.26 G | 0.799 ± 0.007 E | 1.086 ± 0.006 H | 1.687 ± 0.003 C | |
XHL | 0.757 ± 0.008 G | 4053.5 ± 7.4 E | 1.599 ± 0.01 B | 53.21 ± 0.08 F | 0.487 ± 0.009 E | 3.924 ± 0.013 J | 5.13 ± 0.05 E | 0.825 ± 0.021 D | 1.158 ± 0.004 C | 1.52 ± 0.02 D | |
FXL | 0.822 ± 0.005 D | 4161 ± 10.2 C | 1.529 ± 0.006 D | 54.51 ± 0.07 E | 0.456 ± 0.004 F | 4.077 ± 0.009 H | 5.74 ± 0.17 ABC | 0.891 ± 0.007 C | 1.117 ± 0.002 F | 1.91 ± 0.02 B | |
HJL | 0.836 ± 0.003 C | 4066.5 ± 10.5 E | 1.56 ± 0.006 C | 63.55 ± 0.17 B | 0.375 ± 0.004 I | 4.796 ± 0.011 B | 5.58 ± 0.15 CD | 0.771 ± 0.012 F | 1.095 ± 0.002 G | 1.39 ± 0.03 F | |
MJL | 0.857 ± 0.01 B | 4087.5 ± 4.7 D | 1.494 ± 0.004 F | 57.76 ± 0.05 D | 0.423 ± 0.002 G | 4.361 ± 0.025 C | 5.65 ± 0.09 BCD | 0.809 ± 0.01 DE | 1.142 ± 0.002 D | 1.44 ± 0.01 E | |
YQL | 0.889 ± 0.007 A | 4082 ± 7.4 D | 1.501 ± 0.004 E | 51.47 ± 0.21 G | 0.363 ± 0.004 J | 4.311 ± 0.015 D | 5.88 ± 0.13 A | 0.948 ± 0.009 B | 1.19 ± 0.008 B | 0.98 ± 0.02 J | |
CLL | 0.38 ± 0.004 H | 2062.5 ± 5.95 I | 1.357 ± 0.001 H | 234.71 ± 2.48 A | 1.108 ± 0.002 A | 3.769 ± 0.019 K | 2.12 ± 0.18 H | 14.08 ± 0.03 A | 0.456 ± 0.002 I | 1.052 ± 0.007 I | |
MSL | 0.83 ± 0.009 CD | 3681 ± 11.8 F | 1.387 ± 0.003 G | 58.41 ± 0.11 CD | 0.450 ± 0.004 F | 4.214 ± 0.035 F | 5.48 ± 0.11 D | 0.767 ± 0.011 F | 1.201 ± 0.005 A | 1.303 ± 0.025 G | |
XNL | 0.856 ± 0.004 B | 3694 ± 13.4 F | 1.249 ± 0.001 J | 53.22 ± 0.02 F | 0.410 ± 0.012 H | 4.246 ± 0.021 E | 5.57 ± 0.15 CD | 0.770 ± 0.005 F | 1.111 ± 0.003 F | 1.163 ± 0.014 H | |
YXL | 0.852 ± 0.008 B | 3555 ± 25.2 H | 1.162 ± 0.007 K | 46.86 ± 0.14 H | 0.807 ± 0.013 B | 4.903 ± 0.016 A | 5.15 ± 0.17 E | 0.809 ± 0.006 DE | 1.208 ± 0.012 A | 0.958 ± 0.019 J | |
SLL | 0.77 ± 0.003 F | 3647.5 ± 7.7 G | 1.332 ± 0.009 I | 62.66 ± 0.12 B | 0.408 ± 0.003 H | 3.941 ± 0.013 J | 4.77 ± 0.13 F | 0.758 ± 0.016 F | 1.207 ± 0.009 A | 0.354 ± 0.016 K | |
Mean value | 0.79 ± 0.14 B | 3822.5 ± 623 A | 1.45 ± 0.15 B | 70.6 ± 51.91 B | 0.53 ± 0.22 B | 4.23 ± 0.34 B | 5.1 ± 1.04 B | 1.93 ± 3.83 B | 1.09 ± 0.21 B | 1.31 ± 0.45 B |
Sample Information | Cd | Fe | La | Mg | Mn | Ni | Se | Pr | Sm | Zn |
---|---|---|---|---|---|---|---|---|---|---|
SLC | 0.012 ± 0.002 bc | 0.563 ± 0.018 k | 0.254 ± 0.002 a | 87.79 ± 0.39 i | 10.174 ± 0.053 a | 0.59 ± 0.02 f | 0.145 ± 0.047 cde | 0.266 ± 0.013 a | 0.006 ± 0.002 d | 1.165 ± 0.016 g |
FXC | 0.006 ± 0.001 ef | 0.776 ± 0.004 j | 0.171 ± 0.003 c | 90.76 ± 0.22 h | 5.676 ± 0.055 i | 0.621 ± 0.044 ef | 0.093 ± 0.013 f | 0.137±0.005 d | 0.011 ± 0.004 ab | 1.12 ± 0.02 g |
XNC | 0.005 ± 0.001 f | 1.19 ± 0.02 h | 0.166 ± 0.004 de | 109.07 ± 1.06 g | 6.135 ± 0.008 h | 0.678 ± 0.045 d | 0.259 ± 0.039 a | 0.121 ± 0.007 e | 0.007 ± 0.003 cd | 1.325 ± 0.005 f |
XMC | 0.01 ± 0.004 cd | 1.754 ± 0.036 f | 0.162 ± 0.001 fg | 122.71 ± 0.89 d | 6.117 ± 0.081 h | 0.641 ± 0.029 de | 0.101 ± 0.024 f | 0.108 ± 0.003 f | 0.01 ± 0.002 abc | 1.386 ± 0.033 e |
YQC | 0.005 ± 0.001 f | 2.02 ± 0.031 d | 0.146 ± 0.001 i | 140.94 ± 0.42 b | 7.074 ± 0.073 f | 0.895 ± 0.05 b | 0.116 ± 0.031 ef | 0.084 ± 0.012 g | 0.012 ± 0.003 a | 1.523 ± 0.106 d |
MSC | 0.006 ± 0.003 ef | 2.485 ± 0.043 b | 0.157 ± 0.003 h | 142.64 ± 0.55 a | 9.051 ± 0.068 c | 0.984 ± 0.018 a | 0.171 ± 0.027 c | 0.089 ± 0.007 g | 0.007 ± 0.003 cd | 1.789 ± 0.04 a |
XHC | 0.006 ± 0.001 f | 0.925 ± 0.047 i | 0.242 ± 0.003 b | 114.05 ± 0.95 f | 9.121 ± 0.09 c | 0.791 ± 0.03 c | 0.225 ± 0.034 ab | 0.212 ± 0.007 b | 0.008 ± 0.001 bcd | 1.276 ± 0.029 f |
YXC | 0.013 ± 0.001 ab | 1.563 ± 0.026 g | 0.168 ± 0.002 cd | 128.99 ± 1.35 c | 6.858 ± 0.098 g | 0.756 ± 0.026 c | 0.122 ± 0.019 def | 0.123 ± 0.008 e | 0.012 ± 0.002 a | 0.319 ± 0.059 h |
GTC | 0.007 ± 0.003 ef | 2.238 ± 0.024 c | 0.16 ± 0.003 g | 129.01 ± 0.931 c | 7.921 ± 0.046 e | 0.915 ± 0.021 b | 0.154 ± 0.016 cd | 0.093 ± 0.005 g | 0.009 ± 0.004 abc | 1.703 ± 0.035 b |
HJC | 0.009 ± 0.001 de | 2.613 ± 0.081 a | 0.157±0.003 h | 141.51 ± 0.37 b | 9.876 ± 0.028 b | 0.924 ± 0.025 b | 0.121 ± 0.03 def | 0.107 ± 0.009 f | 0.011 ± 0.003 ab | 1.834 ± 0.012 a |
CLC | 0.005 ± 0.001 f | 2.225 ± 0.034 c | 0.164 ± 0.002 ef | 121.79 ± 0.2 d | 3.715 ± 0.026 j | 1.01 ± 0.01 a | 0.128 ± 0.017 def | 0.12 ± 0.006 e | 0.012 ± 0.001 a | 1.606 ± 0.015 c |
MJC | 0.015 ± 0.003 a | 1.892 ± 0.024 e | 0.166 ± 0.002 de | 117.9 ± 0.75 e | 8.229 ± 0.039 d | 0.593 ± 0.009 f | 0.218 ± 0.018 b | 0.149 ± 0.004 c | 0.009 ± 0.001 abc | 1.526 ± 0.007 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Zhou, H.; Liu, Q.; Bai, L.; Han, M.; Liu, G.; Pei, S.; Zhang, F.; Tian, X.; Zhang, G. Distribution and Enrichment Regularity of Trace Elements in Meitan Cuiya Tea and Soil. Toxics 2025, 13, 741. https://doi.org/10.3390/toxics13090741
Wei J, Zhou H, Liu Q, Bai L, Han M, Liu G, Pei S, Zhang F, Tian X, Zhang G. Distribution and Enrichment Regularity of Trace Elements in Meitan Cuiya Tea and Soil. Toxics. 2025; 13(9):741. https://doi.org/10.3390/toxics13090741
Chicago/Turabian StyleWei, Jia, Haiyun Zhou, Qiao Liu, Lin Bai, Minjie Han, Gendi Liu, Shuyan Pei, Fumei Zhang, Xiaojing Tian, and Guoheng Zhang. 2025. "Distribution and Enrichment Regularity of Trace Elements in Meitan Cuiya Tea and Soil" Toxics 13, no. 9: 741. https://doi.org/10.3390/toxics13090741
APA StyleWei, J., Zhou, H., Liu, Q., Bai, L., Han, M., Liu, G., Pei, S., Zhang, F., Tian, X., & Zhang, G. (2025). Distribution and Enrichment Regularity of Trace Elements in Meitan Cuiya Tea and Soil. Toxics, 13(9), 741. https://doi.org/10.3390/toxics13090741