Levoglucosan and Its Isomers as Markers and Biomarkers of Exposure to Wood Burning
Abstract
1. Introduction
2. Materials and Methods
2.1. Ambient Air Quality Monitoring
2.2. Human Biomonitoring Study
2.2.1. Study Population
2.2.2. Urine Sample Collection
2.2.3. Determination of Levoglucosan, Mannosan, and Galactosan Concentrations in Urine
2.3. Questionnaire Survey
2.4. Statistical Analyses
3. Results and Discussions
3.1. Air Quality
3.1.1. PM2.5 Mass Concentrations
3.1.2. Levoglucosan, Mannosan, and Galactosan Concentrations in PM2.5
3.2. Urinary Concentrations of Monosaccharide Anhydrides
3.2.1. Association Between the Concentrations of Levoglucosan in PM2.5 and in Urine
3.2.2. Impact of Different Factors on Urinary Levoglucosan Concentration
3.3. Comparison with Other Studies
3.4. Limitations of Using Levoglucosan as a Biomarker
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Household Air Pollution and Health; World Health Organization: Geneva, Switzerland, 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 1 August 2025).
- Sigsgaard, T.; Forsberg, B.; Annesi-Maesano, I.; Blomberg, A.; Bølling, A.; Boman, C.; Bønløkke, J.; Brauer, M.; Bruce, N.; Hérôux, M.E.; et al. Health impacts of anthropogenic biomass burning in the developed world. Eur. Respir. J. 2015, 46, 1577–1588. [Google Scholar] [CrossRef]
- Cascio, W. Wildland fire smoke and human health. Sci. Total Environ. 2018, 624, 586–595. [Google Scholar] [CrossRef]
- Simoneit, B.R.T.; Schauer, J.J.; Nolte, C.G.; Oros, D.R.; Elias, V.O.; Fraser, M.P.; Rogge, W.F.; Cass, G.R. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 1999, 33, 173–182. [Google Scholar] [CrossRef]
- Simoneit, B.R. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Bhattarai, H.; Saikawa, E.; Wan, X.; Zhu, H.; Ram, K.; Gao, S.; Kang, S.; Zhang, Q.; Zhang, Y.; Wu, G.; et al. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmos. Res. 2019, 220, 20–33. [Google Scholar] [CrossRef]
- Ryšavý, J.; Domingos Vicente, E.A.; Jaroch, M.; Alves, C.A.; de la Campa, A.S.; Horák, J. Reducing the impact of biomass combustion in residential units on local air quality by using innovative low-loading Pt-based heterogeneous catalyst. Biomass Bioenerg. 2024, 183, 107147. [Google Scholar] [CrossRef]
- Alves, C.A.; Vicente, E.D.; Rocha, S.; Nunes, T.; Fernandes, A.P.; Correia, L.; Lucena, A.; Custódio, D.; Evtyugina, M. Organic tracers in aerosols from the residential combustion of pellets and agro-fuels. Air Qual. Atmos. Health 2017, 10, 37–45. [Google Scholar] [CrossRef]
- Migliaccio, C.T.; Bergauff, M.A.; Palmer, C.P.; Jessop, F.; Noonan, C.W.; Ward, T.J. Urinary levoglucosan as a biomarker of wood smoke exposure: Observations in a mouse model and in children. Environ. Health Perspect. 2009, 117, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Bergauff, M.A.; Ward, T.J.; Noonan, C.W.; Migliaccio, C.T.; Simpson, C.D.; Evanoski, A.R.; Palmer, C.P. Urinary levoglucosan as a biomarker of wood smoke: Results of human exposure studies. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Wallner, P.; Kundi, M.; Moshammer, H.; Scharf, S.; Schmutzer, M.; Weiss, S.; Hohenblum, P.; Hutter, H.P. Urinary levoglucosan levels in Austrian communities differing in agrarian quota. Int. J. Hyg. Environ. Health 2013, 216, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Moshammer, H.; Weiss, S.; Neuberger, M. Woodsmoke marker levoglucosan: Kinetics in a self-experiment. Int. J. Occup. Med. Environ. Health 2012, 25, 122–125. [Google Scholar] [CrossRef]
- Angerer, J.; Ewers, U.; Wilhelm, M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 2007, 210, 201–228. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, T.; Phillips, R.D.; Money, C.D.; Quackenboss, J.J.; Clewell, H.J.; Bus, J.S.; Kauffman, R.M. Making sense of human biomonitoring data: Findings and recommendations of a workshop. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 308–313. [Google Scholar] [CrossRef]
- Needham, L.L.; Calafat, A.M.; Barr, D.B. Uses and issues of biomonitoring. Int. J. Hyg. Environ. Health 2007, 210, 229–238. [Google Scholar] [CrossRef]
- Dills, R.L.; Zhu, X.; Kalman, D.A. Measurement of urinary methoxyphenols and their use for biological monitoring of wood smoke exposure. Environ. Res. 2001, 85, 145–158. [Google Scholar] [CrossRef]
- Dills, R.L.; Paulsen, M.; Ahmad, J.; Kalman, D.A.; Elias, F.N.; Simpson, C.D. Evaluation of urinary methoxyphenols as biomarkers of woodsmoke exposure. Environ. Sci. Technol. 2006, 40, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Paulsen, M.; Smith, K.R.; Canuz, E.; Simpson, C.D. Urinary methoxyphenol biomarkers and woodsmoke exposure: Comparisons in rural Guatemala with personal CO and kitchen CO, levoglucosan, and PM2.5. Environ. Sci. Technol. 2007, 41, 3481–3487. [Google Scholar] [CrossRef]
- Li, Z.; Trinidad, D.; Pittman, E.N.; Riley, E.A.; Sjodin, A.; Dills, R.L.; Paulsen, M.; Simpson, C.D. Urinary polycyclic aromatic hydrocarbon metabolites as biomarkers to woodsmoke exposure—Results from a controlled exposure study. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Naeher, L.P.; Barr, D.B.; Adetona, O.; Simpson, C.D. Urinary levoglucosan as a biomarker for woodsmoke exposure in wildland firefighters. Int. J. Occup. Environ. Health 2013, 19, 304–310. [Google Scholar] [CrossRef]
- Sankaranarayanan, L.; Semmens, E.O.; Noonan, C.W.; Ward, T.J. Urinary levoglucosan as a biomarker for residential wood smoke exposure. Int. J. Environ. Anal. Chem. 2016, 96, 137–147. [Google Scholar] [CrossRef]
- Navarro, K.M.; Fent, K.; Mayer, A.C.; Brueck, S.E.; Toennis, C.; Law, B.; Meadows, J.; Sammons, D.; Brown, S. Characterization of inhalation exposures at a wildfire incident during the Wildland Firefighter Exposure and Health Effects (WFFEHE) Study. Ann. Work Expo. Health 2023, 67, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Hinwood, A.L.; Trout, M.; Murby, J.; Barton, C.; Symons, B. Assessing urinary levoglucosan and methoxyphenols as biomarkers for use in woodsmoke exposure studies. Sci. Total Environ. 2008, 402, 139–146. [Google Scholar] [CrossRef]
- Guillén, M.D.; Manzanos, M.J.; Ibargoitia, M.L. Carbohydrate and nitrogenated compounds in liquid smoke flavorings. J. Agric. Food Chem. 2001, 49, 2395–2403. [Google Scholar] [CrossRef]
- Balogh, B.S.; Csákó, Z.; Nyiri, Z.; Berlinger, B.; Molnár, M.; Major, I.; Gergely, V.; Szigeti, T. Residential solid fuel combustion and its contribution to air pollution in Hungary: A comparative study. Atmos. Environ. 2025, 360, 121399. [Google Scholar] [CrossRef]
- Falcó, P.C.; Tortajada, L.A.; Meseger, S.; Blasco, F.; Sevillano, A.; Molins, C. Creatinine determination in urine samples by batchwise kinetic procedure and flow injection analysis using the Jaffé reaction: Chemometric study. Talanta 2001, 55, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Lotz, A.; Kendzia, B.; Gawrych, K.; Lehnert, M.; Brüning, T.; Pesch, B. Statistical methods for the analysis of left-censored variables. GMS Med. Inform. Biom. Epidemiol. 2013, 9, 1860–9171. [Google Scholar] [CrossRef]
- Maenhaut, W.; Vermeylen, R.; Claeys, M.; Vercauteren, J.; Roekens, E. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning. Sci. Total Environ. 2016, 562, 550–560. [Google Scholar] [CrossRef]
- Janoszka, K.; Czaplicka, M.; Klejnowski, K. Comparison of biomass burning tracer concentrations between two winter seasons in Krynica Zdrój. Air Qual. Atmos. Health 2020, 13, 379–385. [Google Scholar] [CrossRef]
- Yttri, K.E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; et al. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples. Atmos. Meas. Tech. 2005, 8, 125–147. [Google Scholar] [CrossRef]
- Glasius, M.; Ketzel, M.; Wåhlin, P.; Boss, R.; Stubkjae, J.; Hertel, O.; Palmgren, F. Characterization of particles from residential wood combustion and modelling of spatial variation in low-strength emission area. Atmos. Environ. 2008, 42, 8686–8697. [Google Scholar] [CrossRef]
- Caseiro, A.; Bauer, H.; Schmidl, C.; Pio, C.A.; Puxbaum, H. Wood burning impact on PM10 in three Austrian regions. Atmos. Environ. 2009, 43, 2186–2195. [Google Scholar] [CrossRef]
- Szidat, S.; Ruff, M.; Perron, N.; Wacker, L.; Synal, H.-A.; Hallquist, M.; Shannigrahi, A.S.; Yttri, K.E.; Dye, C.; Simpson, D. Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Göteborg, Sweden. Atmos. Chem. Phys. 2009, 9, 1521–1535. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Vojtěšek, M.; Večeřa, Z. Seasonal variations of monosaccharide anhydrides in PM1 and PM2.5 aerosol in urban areas. Atmos. Environ. 2010, 44, 5148–5155. [Google Scholar] [CrossRef]
- Bari, M.A.; Baumbach, G.; Kuch, B. Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany. Air Qual. Atmos. Health 2010, 3, 103–116. [Google Scholar] [CrossRef]
- Schwarz, J.; Cusack, M.; Karban, J.; Chalupníčková, E.; Havránek, V.; Smolík, J.; Ždímal, V. PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmos. Res. 2016, 176–177, 108–120. [Google Scholar] [CrossRef]
- Janoszka, K.; Czaplicka, M. Correlation Between Biomass Burning Tracers in Urban and Rural Particles in Silesia—Case Study. Water Air Soil Pollut. 2022, 233, 62. [Google Scholar] [CrossRef]
- Neri, M.; Bonassi, S.; Knudsen, L.E.; Sram, R.J.; Holland, N.; Ugolini, D.; Merlo, D.F. Children’s exposure to environmental pollutants and biomarkers of genetic damage: I. Overview and critical issues. Mutat. Res. 2006, 612, 1–13. [Google Scholar] [CrossRef]
- Trasande, L.; Thurston, G.D. The role of air pollution in asthma and other pediatric morbidities. J. Allergy Clin. Immunol. 2005, 115, 689–699. [Google Scholar] [CrossRef]
- Garcia, E.; Rice, M.B.; Gold, D.R. Air pollution and lung function in children. J. Allergy Clin. Immunol. 2021, 148, 1–14. [Google Scholar] [CrossRef]
- Ye, X.; Pierik, F.H.; Angerer, J.; Meltzer, H.M.; Jaddoe, V.W.; Tiemeier, H.; Hoppin, J.A.; Longnecker, M.P. Levels of metabolites of organophosphate pesticides, phthalates, and bisphenol A in pooled urine specimens from pregnant women participating in the Norwegian Mother and Child Cohort Study (MoBa). Int. J. Hyg. Environ. Health. 2009, 212, 481–491. [Google Scholar] [CrossRef]
- Schumacher, J.N.; Green, C.R.; Best, F.W.; Newell, M.P. Smoke composition. An extensive investigation of the water-soluble portion of cigarette smoke. J. Agric. Food Chem. 1977, 25, 310–320. [Google Scholar] [PubMed]
- Saint-Jalm, Y. Qualitative analysis of the hydroxyl fraction of cigarette smoke. Ann. Tab. Sect. 1 1981, 18, 41–48. [Google Scholar]
- Sakuma, H.; Ohsumi, T.; Sugawara, S. Particulate phase of cellulose cigarette smoke. Agric. Biol. Chem. 1980, 44, 555–561. [Google Scholar] [CrossRef]
- Jarvis, M.J.; Russell, M.A.; Benowitz, N.L.; Feyerabend, C. Elimination of cotinine from body fluids: Implications for noninvasive measurement of tobacco smoke exposure. Am. J. Public Health 1988, 78, 696–698. [Google Scholar] [CrossRef] [PubMed]
Variables | All Study Participants (n = 192) | Participants at the Rural Site (n = 99) | Participants at the Urban Site (n = 93) |
---|---|---|---|
Age group: | |||
Adults, n (%) | 99 (51.6%) | 52 (52.5%) | 47 (50.5%) |
Children, n (%) | 93 (48.4%) | 47 (47.5%) | 46 (49.5%) |
Age (years): | |||
Adults, mean (min, max) | 40 (21–68) | 37 (21–68) | 42 (31–59) |
Children, mean (min, max) | 10 (5–13) | 10 (5–13) | 9 (6–13) |
Gender: | |||
Male, n (%) | 63 (32.8%) | 33 (33.3%) | 30 (32.3%) |
Female, n (%) | 129 (67.2%) | 66 (66.7%) | 63 (67.7%) |
Smoker (adults), n (%) | 15 (15.2%) | 13 (25.0%) | 2 (4.3%) |
Body mass index (kg/m2): | |||
Adults, mean (SD) | 25.3 (±5.5) | 27.3 (±4.6) | 23.3 (±5.7) |
Children, mean (SD) | 18.2 (±4.1) | 18.9 (±4.5) | 17.5 (±3.6) |
Levoglucosan | Galactosan | Mannosan | |
---|---|---|---|
Creatinine-Adjusted Concentrations (µg/mg Creatinine) | |||
Number of samples | n = 380 | ||
Minimum | 0.19 | 0.02 | 0.02 |
5th percentile | 0.59 | 0.04 | 0.03 |
Median | 2.52 | 0.35 | 0.25 |
Arithmetic mean (SD) | 4.48 (±0.35) | 0.52 (±1.40) | 0.40 (±0.70) |
Geometric mean (95% CI) | 2.77 (2.51–3.05) | 0.18 (0.16–0.21) | 0.20 (0.18–0.23) |
95th percentile | 15.40 | 1.25 | 1.17 |
Maximum | 52.67 | 26.08 | 11.81 |
Factor | Number of Samples (n) | Median Urinary Levoglucosan Concentration (µg/mg Creatinine) | Mann–Whitney Test Heating Season Uncorrected p-Value (Adjusted p-Value) | Mann–Whitney Test Non-Heating Season Uncorrected p-Value (Adjusted p-Value) |
---|---|---|---|---|
Age group | ||||
| 196 | 2.13 | p < 0.05 | p < 0.001 |
| 184 | 3.38 | (0.044) | (<0.001) |
Gender | ||||
| 125 | 3.54 | 0.311 | p < 0.001 |
| 255 | 2.30 | (0.533) | (<0.001) |
Residential area | ||||
| 198 | 2.77 | 0.089 | 0.814 |
| 182 | 2.43 | (0.214) | (0.888) |
Smoking (only adults) | ||||
| 166 | 2.17 | 0.768 | 0.924 |
| 30 | 2.17 | (0.922) | (0.924) |
Wood stove in home (only heating season) | ||||
| 82 | 2.57 | 0.733 | - |
| 110 | 2.46 | (0.977) | |
Green waste burning (only non-heating season) | ||||
| 77 | 3.88 | - | 0.410 |
| 111 | 2.53 | (0.615) | |
Consumption of caramel-containing food | ||||
| 245 | 2.50 | p < 0.05 | 0.190 |
| 35 | 4.79 | (0.063) | (0.380) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balogh, B.S.; Csákó, Z.; Nyiri, Z.; Szabados, M.; Kakucs, R.; Erdélyi, N.; Szigeti, T. Levoglucosan and Its Isomers as Markers and Biomarkers of Exposure to Wood Burning. Toxics 2025, 13, 742. https://doi.org/10.3390/toxics13090742
Balogh BS, Csákó Z, Nyiri Z, Szabados M, Kakucs R, Erdélyi N, Szigeti T. Levoglucosan and Its Isomers as Markers and Biomarkers of Exposure to Wood Burning. Toxics. 2025; 13(9):742. https://doi.org/10.3390/toxics13090742
Chicago/Turabian StyleBalogh, Boglárka S., Zsófia Csákó, Zoltán Nyiri, Máté Szabados, Réka Kakucs, Norbert Erdélyi, and Tamás Szigeti. 2025. "Levoglucosan and Its Isomers as Markers and Biomarkers of Exposure to Wood Burning" Toxics 13, no. 9: 742. https://doi.org/10.3390/toxics13090742
APA StyleBalogh, B. S., Csákó, Z., Nyiri, Z., Szabados, M., Kakucs, R., Erdélyi, N., & Szigeti, T. (2025). Levoglucosan and Its Isomers as Markers and Biomarkers of Exposure to Wood Burning. Toxics, 13(9), 742. https://doi.org/10.3390/toxics13090742