Heavy Metal Accumulation in Cattle from Western Pará: Human Health Risk Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Sample Collection
2.2. Sample Preparation
2.3. Toxic Element Analysis
2.4. Human Health Risk Assessment
2.4.1. Estimated Daily Intake (EDI)
2.4.2. Non-Carcinogenic Risk
Determination of Hazard Quotient (HQ)
Determination of Target Hazard Quotient (THQ)
Determination of Total Target Hazard Quotient (TTHQ)
2.4.3. Carninogenic Risk
Cancer Risk (CR) for Arsenic e Cadmium
Total Cancer Risk (TCR)
2.5. Statistical Analysis
3. Results
3.1. Concentration of Toxic Metals in the Muscle of Cattle
3.2. Principal Component Analysis (PCA) of the Distribution of Toxic Metals
3.3. Human Health Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Moura Meneses, H.d.N.; Oliveira-da-Costa, M.; Basta, P.C.; Morais, C.G.; Pereira, R.J.B.; de Souza, S.M.S.; de Souza Hacon, S. Mercury Contamination: A Growing Threat to Riverine and Urban Communities in the Brazilian Amazon. Int. J. Environ. Res. Public Health 2022, 19, 2816. [Google Scholar] [CrossRef]
- Albuquerque, F.E.A.; Miranda, M.; López-Alonso, M.; Minervino, A.H.H. Metais Pesados Em Organismos Aquáticos Do Oeste Do Pará. In Sociedade, Natureza e Desenvolvimento na Amazônia: Volume I; Minervino, A.H.H., Brasileiro, T.S.A., Eds.; Universidade Federal do Oeste do Pará: Santarém, Brazil, 2019; pp. 271–292. ISBN 978-85-65791-51-9. [Google Scholar]
- Albuquerque, F.E.A.; Herrero-Latorre, C.; Miranda, M.; Barrêto Júnior, R.A.; Oliveira, F.L.C.; Sucupira, M.C.A.; Ortolani, E.L.; Minervino, A.H.H.; López-Alonso, M. Fish Tissues for Biomonitoring Toxic and Essential Trace Elements in the Lower Amazon. Environ. Pollut. 2021, 283, 117024. [Google Scholar] [CrossRef]
- Crespo-Lopez, M.E.; Augusto-Oliveira, M.; Lopes-Araújo, A.; Santos-Sacramento, L.; Yuki Takeda, P.; Macchi, B.d.M.; do Nascimento, J.L.M.; Maia, C.S.F.; Lima, R.R.; Arrifano, G.P. Mercury: What Can We Learn from the Amazon? Environ. Int. 2021, 146, 106223. [Google Scholar] [CrossRef]
- Uddin, S.; Khanom, S.; Islam, M.R. Source and Distribution of Mercury in Environment—A Review. In Mercury Toxicity Mitigation: Sustainable Nexus Approach; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Fritz, B.; Peregovich, B.; da Silva Tenório, L.; da Silva Alves, A.C.; Schmidt, M. Mercury and CO2 Emissions from Artisanal Gold Mining in Brazilian Amazon Rainforest. Nat. Sustain. 2024, 7, 15–22. [Google Scholar] [CrossRef]
- De Lacerda, L.D.; Dos Santos, A.F.; Marins, R.V. Emissão de Mercúrio Para a Atmosfera Pela Queima de Gás Natural No Brasil. Quim. Nova 2007, 30, 366–369. [Google Scholar] [CrossRef]
- Albuquerque, F.E.A.; Minervino, A.H.H.; Miranda, M.; Herrero-Latorre, C.; Júnior, R.A.B.; Oliveira, F.L.C.; Sucupira, M.C.A.; Ortolani, E.L.; López-Alonso, M. Toxic and Essential Trace Element Concentrations in Fish Species in the Lower Amazon, Brazil. Sci. Total Environ. 2020, 732, 138983. [Google Scholar] [CrossRef]
- Rodrigues, A.S.d.L.; Malafaia, G. A Importância Dos Estudos Sobre a Contaminação Por Arsênio Na Saúde Pública. Rev. Bras. Saúde Biol. SaBios 2010, 5, 34–38. [Google Scholar]
- Seyler, P.T.; Boaventura, G.R. Distribution and Partition of Trace Metals in the Amazon Basin. Hydrol. Process 2003, 17, 1345–1361. [Google Scholar] [CrossRef]
- Gonçalves, D.A.M.; da Silveira Pereira, W.V.; Johannesson, K.H.; Pérez, D.V.; Guilherme, L.R.G.; Fernandes, A.R. Geochemical Background for Potentially Toxic Elements in Forested Soils of the State of Pará, Brazilian Amazon. Minerals 2022, 12, 674. [Google Scholar] [CrossRef]
- do Nascimento, C.W.A.; Lima, L.H.V.; da Silva, F.L.; Biondi, C.M.; Campos, M.C.C. Natural Concentrations and Reference Values of Heavy Metals in Sedimentary Soils in the Brazilian Amazon. Environ. Monit. Assess. 2018, 190, 606. [Google Scholar] [CrossRef]
- De Oliveira, A.F.S.; Pereira, S.F.P.; E Silva, T.M.; Rocha, R.M.; Da Costa, H.C.; E Silva, C.S.; Nogueira, D.P.; Dos Santos, D.C.; Santos, L.P. Evaluation and Geostatistical Study of Toxicological Risk by Water Ingestion with Al, Ba, Fe and Pb in Communities Close to Industrial Areas in the Brazilian Amazon. J. Braz. Chem. Soc. 2020, 31, 1492–1508. [Google Scholar] [CrossRef]
- Albuquerque, F.E.A.; Minervino, A.H.H.; Miranda, M.; Herrero-Latorre, C.; Barrêto Júnior, R.A.; Oliveira, F.L.C.; Dias, S.R.; Ortolani, E.L.; López-Alonso, M. Toxic and Essential Trace Element Concentrations in the Freshwater Shrimp Macrobrachium Amazonicum in the Lower Amazon, Brazil. J. Food Compos. Anal. 2020, 86, 103361. [Google Scholar] [CrossRef]
- Barbosa, F.; Fillion, M.; Lemire, M.; Sousa Passos, C.J.; Lisboa Rodrigues, J.; Philibert, A.; Guimarães, J.R.; Mergler, D. Elevated Blood Lead Levels in a Riverside Population in the Brazilian Amazon. Environ. Res. 2009, 109, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F.; Corrêa Rodrigues, M.H.; Buzalaf, M.R.; Krug, F.J.; Gerlach, R.F.; Tanus-Santos, J.E. Evaluation of the Use of Salivary Lead Levels as a Surrogate of Blood Lead or Plasma Lead Levels in Lead Exposed Subjects. Arch. Toxicol. 2006, 80, 633–637. [Google Scholar] [CrossRef]
- Barbosa, F.; Tanus-Santos, J.E.; Gerlach, R.F.; Parsons, P.J. A Critical Review of Biomarkers Used for Monitoring Human Exposure to Lead: Advantages, Limitations, and Future Needs. Environ. Health Perspect. 2005, 113, 1669–1674. [Google Scholar] [CrossRef]
- Paoliello, M.M.B.; De Capitani, E.M. Occupational and Environmental Human Lead Exposure in Brazil. Environ. Res. 2007, 103, 288–297. [Google Scholar] [CrossRef]
- Yuan, Z.; Luo, T.; Liu, X.; Hua, H.; Zhuang, Y.; Zhang, X.; Zhang, L.; Zhang, Y.; Xu, W.; Ren, J. Tracing Anthropogenic Cadmium Emissions: From Sources to Pollution. Sci. Total Environ. 2019, 676, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.; Khanom, S.; Islam, M.R.; Hossain, M. Cadmium Contamination: Sources, Behavior, and Environmental Implications. In Cadmium Toxicity: Challenges and Solutions; Springer: Cham, Switzerland, 2024; pp. 67–101. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Nava-Ruíz, C.; Méndez-Armenta, M. Efectos Neurotóxicos de Metales Pesados (Cadmio, Plomo, Arsénico y Talio). Arch. Neurocienc. 2011, 16, 140–147. [Google Scholar]
- Schaefer, C.E.G.R.; De Lima, H.N.; Teixeira, W.G.; Do Vale, J.F.; De Souza, K.W.; Corrêa, G.R.; Ruivo, M.L. Solos da região amazônica. In Pedologia: Solos dos Biomas Brasileiros; Curi, N., Ker, J.C., Novais, R.F., Vidal-Torrado, P., Schaefer, C.E.G.R., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, MG, Brazil, 2017. [Google Scholar]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The Flood Pulse Concept in River-Floodplain Systems. Can. Spec. Publ. Fish. Aquat. Sci. 1989, 106, 110–127. [Google Scholar]
- de Lima, C.A.I.; de Almeida, M.G.; Pestana, I.A.; Bastos, W.R.; do Nascimento Recktenvald, M.C.N.; de Souza, C.M.M.; Pedrosa, P. Impact of Land Use on the Mobility of Hg Species in Different Compartments of a Tropical Watershed in Brazil. Arch. Environ. Contam. Toxicol. 2017, 73, 578–592. [Google Scholar] [CrossRef] [PubMed]
- Rupngam, T.; Messiga, A.J. Unraveling the Interactions between Flooding Dynamics and Agricultural Productivity in a Changing Climate. Sustainability 2024, 16, 6141. [Google Scholar] [CrossRef]
- Gordon, B.A.; Dorothy, O.; Lenhart, C.F. Nutrient Retention in Ecologically Functional Floodplains: A Review. Water 2020, 12, 2762. [Google Scholar] [CrossRef]
- Siqueira, G.W.; Pereira, S.D.F.P.; Aprile, F.M. Determinação Dos Elementos-Traço (Zn, Co e Ni) Em Sedimentos Da Plataforma Continental Amazônica Sob Influência Da Descarga Do Rio Amazonas. Acta Amaz. 2006, 36, 321–326. [Google Scholar] [CrossRef]
- Ponting, J.; Kelly, T.J.; Verhoef, A.; Watts, M.J.; Sizmur, T. The Impact of Increased Flooding Occurrence on the Mobility of Potentially Toxic Elements in Floodplain Soil—A Review. Sci. Total Environ. 2021, 754, 142040. [Google Scholar] [CrossRef]
- Ferreira, A.D.; Duckworth, O.W.; Queiroz, H.M.; Nóbrega, G.N.; Barcellos, D.; Bernardino, Â.F.; Otero, X.L.; Ferreira, T.O. Seasonal Drives on Potentially Toxic Elements Dynamics in a Tropical Estuary Impacted by Mine Tailings. J. Hazard. Mater. 2024, 474, 134592. [Google Scholar] [CrossRef]
- Dorea, J.G.; Barbosa, A.C.; Silva, G.S. Fish Mercury Bioaccumulation as a Function of Feeding Behavior and Hydrological Cycles of the Rio Negro, Amazon. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2006, 142, 275–283. [Google Scholar] [CrossRef]
- Espirilla, A.T.; de Gómez, T.B.P. Distribuição e Avaliação Do Risco Ambiental de Metais Pesados No Reservatório Aguada Blanca, Peru. Rev. Ambiente Água 2022, 17, e2838. [Google Scholar] [CrossRef]
- de Aguiar, C.P.O.; Peleja, J.R.P.; Sousa, K.N.S. Qualidade Da Água Em Microbacias Hidrográficas Com Agricultura Nos Municípios de Santarém e Belterra, Pará. Rev. Arvore 2014, 38, 983–992. [Google Scholar] [CrossRef]
- Toledo, M. Os Processos de Modernização Agrícola Na Região Amazônica: Transformações Recentes Na Dinâmica Produtiva Do Município de Santarém (Pará). Geosul 2012, 26, 77. [Google Scholar] [CrossRef]
- Plessl, C.; Gilbert, B.M.; Sigmund, M.F.; Theiner, S.; Avenant-Oldewage, A.; Keppler, B.K.; Jirsa, F. Mercury, Silver, Selenium and Other Trace Elements in Three Cyprinid Fish Species from the Vaal Dam, South Africa, Including Implications for Fish Consumers. Sci. Total Environ. 2019, 659, 1158–1167. [Google Scholar] [CrossRef]
- Ramos-Miras, J.J.; Sanchez-Muros, M.J.; Morote, E.; Torrijos, M.; Gil, C.; Zamani-Ahmadmahmoodi, R.; Rodríguez Martin, J.A. Potentially Toxic Elements in Commonly Consumed Fish Species from the Western Mediterranean Sea (Almería Bay): Bioaccumulation in Liver and Muscle Tissues in Relation to Biometric Parameters. Sci. Total Environ. 2019, 671, 280–287. [Google Scholar] [CrossRef]
- Rey-Crespo, F.; Miranda, M.; López-Alonso, M. Essential Trace and Toxic Element Concentrations in Organic and Conventional Milk in NW Spain. Food Chem. Toxicol. 2013, 55, 513–518. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Risk Based Concentration Table; United States Environmental Protection Agency: Philadelphia, PA, USA; Washington DC, USA, 2000.
- López-Alonso, M.; Miranda, M.; Benedito, J.L.; Pereira, V.; García-Vaquero, M. Essential and Toxic Trace Element Concentrations in Different Commercial Veal Cuts in Spain. Meat Sci. 2016, 121, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Chien, L.C.; Hung, T.C.; Choang, K.Y.; Yeh, C.Y.; Meng, P.J.; Shieh, M.J.; Han, B.C. Daily Intake of TBT, Cu, Zn, Cd and As for Fishermen in Taiwan. Sci. Total Environ. 2002, 285, 177–185. [Google Scholar] [CrossRef]
- Varol, M.; Sünbül, M.R. Multiple Approaches to Assess Human Health Risks from Carcinogenic and Non-Carcinogenic Metals via Consumption of Five Fish Species from a Large Reservoir in Turkey. Sci. Total Environ. 2018, 633, 684–694. [Google Scholar] [CrossRef]
- Yi, Y.; Tang, C.; Yi, T.; Yang, Z.; Zhang, S. Health Risk Assessment of Heavy Metals in Fish and Accumulation Patterns in Food Web in the Upper Yangtze River, China. Ecotoxicol. Environ. Saf. 2017, 145, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.I.; Alam, M.R. Health Effects of Heavy Metals in Meat and Poultry Consumption in Noakhali, Bangladesh. Toxicol. Rep. 2024, 12, 168–177. [Google Scholar] [CrossRef]
- Porto, I.S.A.; Dantas, S.V.A.; Felix, C.S.A.; Cunha, F.A.S.; de Andrade, J.B.; Ferreira, S.L.C. Human Health Risk Assessment of Mercury in Highly Consumed Fish in Salvador, Brazil. Mar. Pollut. Bull. 2024, 198, 115842. [Google Scholar] [CrossRef]
- CONAB. Companhia Nacional de Abastecimento. Agroconab 2022, 1, 1–44. [Google Scholar]
- Song, B.; Lei, M.; Chen, T.; Zheng, Y.; Xie, Y.; Li, X.; Gao, D. Assessing the Health Risk of Heavy Metals in Vegetables to the General Population in Beijing, China. J. Environ. Sci. 2009, 21, 1702–1709. [Google Scholar] [CrossRef]
- IRIS Integrated Risk Information System (IRIS) Online Database. US Environmental Protection Agency. 2020. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 10 April 2020).
- Bleam, W.F. Risk Assessment. In Soil and Environmental Chemistry; Academic Press: Cambridge, MA, USA, 2012; pp. 409–447. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780124157972000108 (accessed on 8 January 2025).
- USEPA Risk Assessment Guidance for Superfund. In Human Health Evaluation Manual Part A, Interim Final; United States Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1.
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the Potential Health Risks Associated with the Aluminium, Arsenic, Cadmium and Lead Content in Selected Fruits and Vegetables Grown in Jamaica. Toxicol. Rep. 2017, 4, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Ogbomida, E.T.; Nakayama, S.M.M.; Bortey-Sam, N.; Oroszlany, B.; Tongo, I.; Enuneku, A.A.; Ozekeke, O.; Ainerua, M.O.; Fasipe, I.P.; Ezemonye, L.I.; et al. Accumulation Patterns and Risk Assessment of Metals and Metalloid in Muscle and Offal of Free-Range Chickens, Cattle and Goat in Benin City, Nigeria. Ecotoxicol. Environ. Saf. 2018, 151, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of Heavy Metals in Soil and Vegetables and Associated Health Risks in Mojo Area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef] [PubMed]
- Emurotu, J.E.; Olawale, O.; Dallatu, E.M.; Abubakar, T.A.; Umudi, Q.E.; Eneogwe, G.O.; Atumeyi, A. Carcinogenic and Non-Carcinogenic Health Risk Assessment of Heavy Metals in the Offal of Animals from Felele Abattoir, Lokoja, Nigeria. Toxicol. Rep. 2024, 13, 101701. [Google Scholar] [CrossRef]
- European Union Commission Regulation as Regards Heavy Metals, Directive 2001/22/EC, No. 466/2001; Official Journal of the European Union: Brussels, Belgium, 2001; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001R0466&qid=1752560779949 (accessed on 8 January 2025).
- Anvisa Agência Nacional de Vigilância Sanitária, Instrução Normativa. In No 88. Limites Máximos Tolerados (LTM) de Contaminantes Em Alimentos, de 26 de Março de 2021. Available online: https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-88-de-26-de-marco-de-2021-311655598 (accessed on 8 January 2025).
- Jolliffe, I.T.; Jones, B.; Morgan, B.J.T. Comparison of Cluster Analyses of the English Personal Social Services Authorities. J. R. Stat. Soc. Ser. A 1986, 149, 253–270. [Google Scholar] [CrossRef]
- de Lima, E.A.R.; Siqueira, G.W.; Lima, W.N. de Utilização Dos Critérios de Avaliação Ambiental de Metais Pesados Nos Sedimentos de Fundo Da Plataforma Continental Do Amazonas. Bol. Mus. Para. Emílio Goeldi Ciências Nat. 2006, 1, 105–114. [Google Scholar] [CrossRef]
- Scarpelli, W. Arsenic in the Rivers of the Amazon Basin. Terræ 2005, 2, 20–27. [Google Scholar]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar] [CrossRef]
- Förstner, U.; Salomons, W. Trace Metal Analysis on Polluted Sediments: Part I: Assessment of Sources and Intensities. Environ. Technol. Lett. 1980, 1, 494–505. [Google Scholar] [CrossRef]
- Roulet, M.; Lucotte, M.; Canuel, R.; Rheault, I.; Tran, S.; De Freitos Gog, Y.G.; Farella, N.; Souza Do Vale, R.; Sousa Passos, C.J.; De Jesus Da Silva, E.; et al. Distribution and Partition of Total Mercury in Waters of the Tapajos River Basin, Brazilian Amazon. Sci. Total Environ. 1998, 213, 203–211. [Google Scholar] [CrossRef]
- Roulet, M.; Guimarães, J.R.D.; Lucotte, M. Methylmercury Production and Accumulation in Sediments and Soils of an Amazonian Floodplain-Effect of Seasonal Inundation. Water Air Soil Pollut. 2001, 128, 41–60. [Google Scholar] [CrossRef]
- Malm, O. Gold Mining as a Source of Mercury Exposure in the Brazilian Amazon. Environ. Res. 1998, 77, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, W.C.; Lacerda, L.D. De Mercury Inputs into the Amazon Region, Brazil. Environ. Technol. Lett. 1988, 9, 325–330. [Google Scholar] [CrossRef]
- Hashemi, M. Heavy Metal Concentrations in Bovine Tissues (Muscle, Liver and Kidney) and Their Relationship with Heavy Metal Contents in Consumed Feed. Ecotoxicol. Environ. Saf. 2018, 154, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Akele, M.L.; Desalegn, S.K.; Asfaw, T.B.; Assefa, A.G.; Alemu, A.K.; de Oliveira, R.R. Heavy Metal Contents in Bovine Tissues (Kidney, Liver and Muscle) from Central Gondar Zone, Ethiopia. Heliyon 2022, 8, e12416. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.D.; Bomjardim, H.d.A.; Campos, K.F.; Duarte, M.D.; Bezerra Júnior, P.S.; Gava, A.; Salvarani, F.M.; Oliveira, C.M.C. Lead Poisoning in Cattle and Chickens in the State of Pará, Brazil. Pesqui. Vet. Bras. 2014, 34, 1077–1080. [Google Scholar] [CrossRef]
- Santana, A.; Silva, E.; Viana, Z.; Korn, M.G.; Santos, V.L. Avaliação de Elementos Químicos Essenciais e Chumbo Em Tecidos Bovinos Na Bahia, Brasil. Enciclopédia Biosf. 2015, 11, 395–407. [Google Scholar] [CrossRef]
- Dogruyol, H.; Erkan, N.; Özden, Ö.; Can Tuncelli, I.; Karakulak, F.S. Assessment of Health Risks Due to Toxic Metals in Demersal Fish Captured from Saros and Edremit Bays, Northern Aegean Sea. Environ. Sci. Pollut. Res. 2023, 30, 111357–111368. [Google Scholar] [CrossRef]
- Amerizadeh, A.; Gholizadeh, M.; Karimi, R. Meta-Analysis and Health Risk Assessment of Toxic Heavy Metals in Muscles of Commercial Fishes in Caspian Sea. Environ. Monit. Assess. 2023, 195, 457. [Google Scholar] [CrossRef]
- de Souza-Araujo, J.; Hussey, N.E.; Hauser-Davis, R.A.; Rosa, A.H.; de O. Lima, M.; Giarrizzo, T. Human Risk Assessment of Toxic Elements (As, Cd, Hg, Pb) in Marine Fish from the Amazon. Chemosphere 2022, 301, 134575. [Google Scholar] [CrossRef]
- Barani, H.K.; Alavi-Yeganeh, M.S.; Bakhtiari, A.R. Metals Bioaccumulation, Possible Sources and Consumption Risk Assessment in Five Sillaginid Species, a Case Study: Bandar Abbas (Persian Gulf) and Chabahar Bay (Oman Sea), Iran. Mar. Pollut. Bull. 2023, 187, 114551. [Google Scholar] [CrossRef]
- Hashempour-baltork, F.; Jannat, B.; Tajdar-oranj, B.; Aminzare, M.; Sahebi, H.; Mirza Alizadeh, A.; Hosseini, H. A Comprehensive Systematic Review and Health Risk Assessment of Potentially Toxic Element Intakes via Fish Consumption in Iran. Ecotoxicol. Environ. Saf. 2023, 249, 114349. [Google Scholar] [CrossRef] [PubMed]
- Raissy, M.; Ansari, M.; Chaleshtori, R.S.; Mahdavi, V.; Hadian, Z.; Lorenzo, J.M.; Oliver Conti, G.; Huseyn, E.; Mousavi Khaneghah, A. A Systematic Review of the Concentration of Potentially Toxic Elements in Fish from the Persian Gulf: A Health Risk Assessment Study. Food Chem. Toxicol. 2022, 163, 112968. [Google Scholar] [CrossRef]
- Pipoyan, D.; Hovhannisyan, A.; Beglaryan, M.; Mantovani, A. Risk Assessment of Potentially Toxic Trace Elements via Consumption of Dairy Products Sold in the City of Yerevan, Armenia. Food Chem. Toxicol. 2022, 163, 112922. [Google Scholar] [CrossRef] [PubMed]
- Kilic, S. Determination of Potentially Toxic Elements and Health Risk Assessment of Dried Fruits. J. Food Sci. Technol. 2024, 61, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Sthiannopkao, S.; Kim, K.W.; Wong, M.H.; Sao, V.; Hashim, J.H.; Mohamed Yasin, M.S.; Aljunid, S.M. Health Risk Assessment of Inorganic Arsenic Intake of Cambodia Residents through Groundwater Drinking Pathway. Water Res. 2010, 44, 5777–5788. [Google Scholar] [CrossRef]
- Salim, S.A.; Sarraf ov, N.; Dana, Z.; Hashami, Z.; Afrah, A.; Sadeghi, E.; Bashiry, M. A Comprehensive Image of Environmental Toxic Heavy Metals in Red Meat: A Global Systematic Review and Meta-Analysis and Risk Assessment Study. Sci. Total Environ. 2023, 889, 164100. [Google Scholar] [CrossRef]
- Alkmim Filho, J.F.; Germano, A.; Dibai, W.L.S.; Vargas, E.A.; Melo, M.M. Heavy Metals Investigation in Bovine Tissues in Brazil. Food Sci. Technol. 2014, 34, 110–115. [Google Scholar] [CrossRef]
- Mandal, P. An Insight of Environmental Contamination of Arsenic on Animal Health. Emerg. Contam. 2017, 3, 17–22. [Google Scholar] [CrossRef]
- Albert, J.S.; Carnaval, A.C.; Flantua, S.G.A.; Lohmann, L.G.; Ribas, C.C.; Riff, D.; Carrillo, J.D.; Fan, Y.; Figueiredo, J.J.P.; Guayasamin, J.M.; et al. Human Impacts Outpace Natural Processes in the Amazon. Science 2023, 379, eabo5003. [Google Scholar] [CrossRef] [PubMed]
Cities | Metal Concentration in Muscle Tissue (mg/kg) | |||
---|---|---|---|---|
As | Cd | Hg | Pb | |
Mean ± SEM (Range) | Mean ± SEM (Range) | Mean ± SEM (Range) | Mean ± SEM (Range) | |
Itaituba | 0.01 ± 0.001 (0.004–0.013) | 0.004 ± 0.001 (0.0004–0.014) | 0.01 ± 0.01 (0.003–0.035) | 0.04 ± 0.01 (0.011–0.125) |
Monte Alegre | 0.009 ± 0.01 (0.0003–0.059) | 0.011 ± 0.01 (0.001–0.031) | 0.004 ± 0.001 (0.001–0.011) | 0.07 ± 0.03 (0.011–0.242) |
Oriximiná | 0.006 ± 0.002 (0.001–0.019) | 0.015 ± 0.004 (0.001–0.037) | 0.005 ± 0.001 (0.001–0.014) | 0.02 ± 0.004 (0.004–0.043) |
MRL Brazil α | 0.5 | 0.05 | 0.03 | 0.1 |
MRL EU β | 0.5 | 0.05 | 0.01 | 0.1 |
Metals | PC 1 | PC 2 |
---|---|---|
As | 0.65037 | −0.00361 |
Cd | 0.43893 | 0.51714 |
Hg | −0.13484 | 0.83566 |
Pb | 0.60513 | −0.18501 |
City | Metal | |||
---|---|---|---|---|
As | Cd | Hg | Pb | |
Itaituba | 0.0000071 | 0.00000406 | 0.00000913 | 0.0000375 |
Monte Alegre | 0.00000913 | 0.0000112 | 0.00000406 | 0.0000669 |
Oriximiná | 0.00000609 | 0.0000152 | 0.00000507 | 0.0000223 |
RfD | 0.0003 | 0.001 | 0.005 | 0.004 |
City | HQ | |||
---|---|---|---|---|
As | Cd | Hg | Pb | |
Itaituba | 0.020 | 0.004 | 0.020 | 0.009 |
Monte Alegre | 0.030 | 0.011 | 0.008 | 0.017 |
Oriximiná | 0.020 | 0.015 | 0.010 | 0.006 |
City | THQ | TTHQ | |||
---|---|---|---|---|---|
As | Cd | Hg | Pb | ||
Itaituba | 0.02 | 0.004 | 0.02 | 0.01 | 0.06 |
Monte Alegre | 0.03 | 0.01 | 0.01 | 0.017 | 0.07 |
Oriximiná | 0.02 | 0.02 | 0.01 | 0.006 | 0.02 |
City | CR | TCR | |
---|---|---|---|
As | Cd | ||
Itaituba | 0.11 × 10−4 | 0.015 × 10−4 | 0.12 × 10−4 |
Monte Alegre | 0.14 × 10−4 | 0.04 × 10−4 | 0.18 × 10−4 |
Oriximiná | 0.09 × 10−4 | 0.06 × 10−4 | 0.15 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minervino, A.H.H.; Nunes Neto, O.G.; Albuquerque, F.E.A.; Albuquerque, K.C.G.d.P.; Assis, F.F.V.d.; Sousa, R.S.; Barrêto Júnior, R.A.; López-Alonso, M.; Miranda, M. Heavy Metal Accumulation in Cattle from Western Pará: Human Health Risk Assessment. Toxics 2025, 13, 740. https://doi.org/10.3390/toxics13090740
Minervino AHH, Nunes Neto OG, Albuquerque FEA, Albuquerque KCGdP, Assis FFVd, Sousa RS, Barrêto Júnior RA, López-Alonso M, Miranda M. Heavy Metal Accumulation in Cattle from Western Pará: Human Health Risk Assessment. Toxics. 2025; 13(9):740. https://doi.org/10.3390/toxics13090740
Chicago/Turabian StyleMinervino, Antonio Humberto Hamad, Osvaldo Gato Nunes Neto, Fábio Edir Amaral Albuquerque, Kelly Cristiny Gomes da Paixão Albuquerque, Francisco Flávio Vieira de Assis, Rejane Santos Sousa, Raimundo Alves Barrêto Júnior, Marta López-Alonso, and Marta Miranda. 2025. "Heavy Metal Accumulation in Cattle from Western Pará: Human Health Risk Assessment" Toxics 13, no. 9: 740. https://doi.org/10.3390/toxics13090740
APA StyleMinervino, A. H. H., Nunes Neto, O. G., Albuquerque, F. E. A., Albuquerque, K. C. G. d. P., Assis, F. F. V. d., Sousa, R. S., Barrêto Júnior, R. A., López-Alonso, M., & Miranda, M. (2025). Heavy Metal Accumulation in Cattle from Western Pará: Human Health Risk Assessment. Toxics, 13(9), 740. https://doi.org/10.3390/toxics13090740