Behavioral Disruption in Brachionus plicatilis Exposed to Bisphenol A: A Locomotion-Based Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Rotifer Locomotion Behavior Tracking and Analysis
3. Results
3.1. Average Swimming Speed
3.2. Speed Distribution
3.3. Temporal Change in Speed
3.4. Moving Behavior Through Abrupt Directional Change and Sinuosity
4. Discussion
4.1. Concentration-Dependent Response in Swimming Behavior
4.2. Time-Dependent Changes in Swimming Behavior
4.3. Erratic Movement as a Marker of Toxicant Exposure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hellou, J. Behavioral Ecotoxicology, an “Early Warning” Signal to Assess Environmental Quality. Environ. Sci. Pollut. Res. Int. 2011, 18, 1–11. [Google Scholar] [CrossRef]
- Van Someren Gréve, H.; Almeda, R.; Kiørboe, T. Motile Behavior and Predation Risk in Planktonic Copepods. Limnol. Oceanogr. 2017, 62, 1810–1824. [Google Scholar] [CrossRef]
- Bownik, A. Daphnia Swimming behavioral as a Biomarker in Toxicity Assessment: A Review. Sci. Total Environ. 2017, 601–602, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Dahms, H.-U.; Hagiwara, A.; Lee, J.-S. Ecotoxicology, Ecophysiology, and Mechanistic Studies with Rotifers. Aquat. Toxicol. 2011, 101, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.L.; Snell, T.W.; Ricci, C.; Nogrady, T. Rotifera: Volume 1: Biology, Ecology and Systematics; Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, 2nd ed.; Backhuys Publishers: Kerkwerve, The Netherlands, 2006; Volume 1. [Google Scholar]
- Snell, T.W.; Janssen, C.R. Rotifers in Ecotoxicology: A Review. Hydrobiologia 1995, 313, 231–247. [Google Scholar] [CrossRef]
- Lee, M.-C.; Yoon, D.-S.; Park, J.C.; Choi, H.; Shin, K.-H.; Hagiwara, A.; Lee, J.-S.; Park, H.G. Effects of Salinity and Temperature on Reproductivity and Fatty Acid Synthesis in the Marine Rotifer Brachionus Rotundiformis. Aquaculture 2022, 546, 737282. [Google Scholar] [CrossRef]
- Wang, C.; Jeong, H.; Lee, J.-S.; Maszczyk, P.; Sayed, A.E.-D.H.; Hwang, U.-K.; Kim, H.S.; Lee, J.-S.; Byeon, E. Physiological Effects and Molecular Response in the Marine Rotifer Brachionus Plicatilis after Combined Exposure to Nanoplastics and Copper. Mar. Pollut. Bull. 2023, 194, 115332. [Google Scholar] [CrossRef]
- Snell, T.W.; Joaquim-Justo, C. Workshop on Rotifers in Ecotoxicology. Hydrobiologia 2007, 593, 227–232. [Google Scholar] [CrossRef]
- Flint, S.; Markle, T.; Thompson, S.; Wallace, E. Bisphenol A Exposure, Effects, and Policy: A Wildlife Perspective. J. Environ. Manag. 2012, 104, 19–34. [Google Scholar] [CrossRef]
- Staples, C.; van der Hoeven, N.; Clark, K.; Mihaich, E.; Woelz, J.; Hentges, S. Distributions of Concentrations of Bisphenol A in North American and European Surface Waters and Sediments Determined from 19 Years of Monitoring Data. Chemosphere 2018, 201, 448–458. [Google Scholar] [CrossRef]
- Vandenberg, L.N.; Ehrlich, S.; Belcher, S.M.; Ben-Jonathan, N.; Dolinoy, D.C.; Hugo, E.R.; vom Saal, F.S. Low Dose Effects of Bisphenol A: An Integrated Review of in Vitro, Laboratory Animal, and Epidemiology Studies. Endocr. Disruptors 2013, 1, e26490. [Google Scholar] [CrossRef]
- OECD. Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption; OECD Series on Testing and Assessment; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Park, J.C.; Lee, M.-C.; Yoon, D.-S.; Han, J.; Kim, M.; Hwang, U.-K.; Jung, J.-H.; Lee, J.-S. Effects of Bisphenol A and Its Analogs Bisphenol F and S on Life Parameters, Antioxidant System, and Response of Defensome in the Marine Rotifer Brachionus Koreanus. Aquat. Toxicol. 2018, 199, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Yoon, D.-S.; Kim, J.-S.; Hong, M.-S.; Byeon, E.; Sayed, A.E.-D.H.; Park, H.G.; Lee, J.-S.; Lee, M.-C. Effects of Bisphenol A on Reproduction, Oxidative Stress, and Lipid Regulation in the Marine Rotifer Brachionus Plicatilis. Mar. Pollut. Bull. 2024, 205, 116553. [Google Scholar] [CrossRef] [PubMed]
- Koste, W. Rotatoria. Die Rädertiere Mitteleuropas, Begründet von Max Voigt. Überordnung Monogononta; Gebrüder Borntraeger: Stuttgart, Germany, 1978. [Google Scholar]
- Granada, L.; Lemos, M.F.L.; Bossier, P.; Novais, S.C. Swimming behavioral as an Alternative Endpoint to Assess Differences in Abiotic Stress Sensitivities between Strains of Brachionus Koreanus (Rotifera: Monogononta). Environ. Sci. Pollut. Res. 2023, 30, 56137–56147. [Google Scholar] [CrossRef] [PubMed]
- Kagali, R.N.; Sakakura, Y.; Hagiwara, A. Locomotory behavioral of Euryhaline Rotifer Brachionus Rotundiformis: The Potential Influence of Probiotics on Swimming Pattern and Speed. Aquac. Fish Fish. 2023, 3, 497–506. [Google Scholar] [CrossRef]
- Penttinen, O.-P.; Kukkonen, J. Chemical Stress and Metabolic Rate in Aquatic Invertebrates: Threshold, Dose–Response Relationships, and Mode of Toxic Action. Environ. Toxicol. Chem. 1998, 17, 883–890. [Google Scholar] [CrossRef]
- Jermacz, Ł.; Nowakowska, A.; Kletkiewicz, H.; Kobak, J. Experimental Evidence for the Adaptive Response of Aquatic Invertebrates to Chronic Predation Risk. Oecologia 2020, 192, 341–350. [Google Scholar] [CrossRef]
- Beler, M.; Unal, I.; Cansiz, D.; Emekli-Alturfan, E. Dose dependent effects of bisphenol A exposure on locomotor activity, acetylcholinesterase and redox system parameters in zebrafish embryos. Pharmedicine J. 2024, 1, 68–73. [Google Scholar] [CrossRef]
- Gore, A.C. Organochlorine Pesticides Directly Regulate Gonadotropin-Releasing Hormone Gene Expression and Biosynthesis in the GT1-7 Hypothalamic Cell Line. Mol. Cell. Endocrinol. 2002, 192, 157–170. [Google Scholar] [CrossRef]
- Melki, S.; Ferrari, E.; Ahmed, R.B.; Spagnuolo, A.; Corsi, I. Single but Not Combined In Vitro Exposure to Bisphenol A and Nanoplastics Affects the Cholinergic Function of the Ascidian Ciona Robusta. J. Xenobiotics 2024, 14, 1930–1940. [Google Scholar] [CrossRef]
- Abd Elkader, H.-T.A.E.A.; Al-Shami, A.S. Chronic exposure to bisphenol A induces behavioural, neurochemical, histological, and ultrastructural alterations in the ganglia tissue of the date mussels Lithophaga lithophaga. Environ. Sci. Pollut. Res. 2023, 30, 109041–109062. [Google Scholar] [CrossRef]
- Uçkun, M. Assessing the Toxic Effects of Bisphenol A in Consumed Crayfish Astacus Leptodactylus Using Multi Biochemical Markers. Environ. Sci. Pollut. Res. Int. 2022, 29, 25194–25208. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gai, T.; Zhang, L.; Chen, L.; Wang, S.; Ye, T.; Zhang, W. Neurotoxicity of Bisphenol A Exposure on Caenorhabditis elegans Induced by Disturbance of Neurotransmitter and Oxidative Damage. Ecotoxicol. Environ. Saf. 2023, 252, 114617. [Google Scholar] [CrossRef]
- Costa, H.E.; Lorigo, M.; Cairrao, E. Bisphenol A Exposure Modifies the Vasoactive Response of the Middle Cerebral Artery. Int. J. Mol. Sci. 2025, 26, 3896. [Google Scholar] [CrossRef]
- Naderi, M.; Puar, P.; JavadiEsfahani, R.; Kwong, R.W. Early developmental exposure to bisphenol A and bisphenol S disrupts socio-cognitive function, isotocin equilibrium, and excitation-inhibition balance in developing zebrafish. Neurotoxicology 2022, 88, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Deutschmann, A.; Hans, M.; Meyer, R.; Häberlein, H.; Swandulla, D. Bisphenol A Inhibits Voltage-Activated Ca2+ Channels in Vitro: Mechanisms and Structural Requirements. Mol. Pharmacol. 2012, 83, 501–511. [Google Scholar] [CrossRef]
- Gerhardt, A.; Janssens De Bisthoven, L.; Soares, A.M.V.M. Evidence for the Stepwise Stress Model: Gambusia Holbrooki and Daphnia Magna under Acid Mine Drainage and Acidified Reference Water Stress. Environ. Sci. Technol. 2005, 39, 4150–4158. [Google Scholar] [CrossRef]
- Soose, L.J.; Hügl, K.S.; Oehlmann, J.; Schiwy, A.; Hollert, H.; Jourdan, J. A Novel Approach for the Assessment of Invertebrate Behavior and Its Use in Behavioral Ecotoxicology. Sci. Total Environ. 2023, 897, 165418. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, X.; Tang, X.; Yang, Y.; Zhang, L.; Zhan, X.; Zhang, X. Behavioral Toxicity of TDCPP in Marine Zooplankton: Evidence from Feeding and Swimming Responses, Molecular Dynamics and Metabolomics of Rotifers. Sci. Total Environ. 2024, 921, 170864. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Z.; Li, G.; Guo, R. The Swimming Speed Alteration of Two Freshwater Rotifers Brachionus Calyciflorus and Asplanchna Brightwelli under Dimethoate Stress. Chemosphere 2014, 95, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.; Johnson, E.; Tupikova, A.; Anderson, J.; Tinsley, B.; Newman, J.; Widman, E.; Alfareh, A.; Davis, A.; Rodriguez, L.; et al. Bisphenol a Affects Neurodevelopmental Gene Expression, Cognitive Function, and Neuromuscular Synaptic Morphology in Drosophila Melanogaster. NeuroToxicology 2022, 89, 67–78. [Google Scholar] [CrossRef]
- Xu, X.-P.; Chen, T.; Wei, X.-Y.; Yang, X.-F.; Xi, Y.-L.; Wang, X.-M. Effects of Bromate on Life History Parameters, Swimming Speed and Antioxidant Biomarkers in Brachionus Calyciflorus. Ecotoxicol. Environ. Saf. 2021, 208, 111705. [Google Scholar] [CrossRef]
- Charoy, C.P.; Janssen, C.R.; Persoone, G.; Clement, P. The Swimming behavioral of Brachionus Calyciflorus (Rotifer) under Toxic Stress—I. The Use of Automated Trajectometry for Determining Sublethal Effects of Toxicants. Aquat. Toxicol. 1995, 32, 271–282. [Google Scholar] [CrossRef]
- Won, E.-J.; Byeon, E.; Lee, Y.H.; Jeong, H.; Lee, Y.; Kim, M.-S.; Jo, H.-W.; Moon, J.-K.; Wang, M.; Lee, J.-S.; et al. Molecular Evidence for Suppression of Swimming Behavior and Reproduction in the Estuarine Rotifer Brachionus Koreanus in Response to COVID-19 Disinfectants. Mar. Pollut. Bull. 2022, 175, 113396. [Google Scholar] [CrossRef]
- Saili, K.S.; Corvi, M.M.; Weber, D.N.; Patel, A.U.; Das, S.R.; Przybyla, J.; Anderson, K.A.; Tanguay, R.L. Neurodevelopmental Low-Dose Bisphenol A Exposure Leads to Early Life-Stage Hyperactivity and Learning Deficits in Adult Zebrafish. Toxicology 2011, 291, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, J.-Y.; Li, X.; Zhou, H.-J.; Zhang, S.-H.; Liu, X.-D.; Chen, D.-Y.; Fang, Y.-C.; Feng, X.-Z. Behavioral Effect of Low-Dose BPA on Male Zebrafish: Tuning of Male Mating Competition and Female Mating Preference during Courtship Process. Chemosphere 2016, 169, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Hanazato, T. Pesticide Effects on Freshwater Zooplankton: An Ecological Perspective. Environ. Pollut. 2001, 112, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fabrello, J.; Matozzo, V. Bisphenol Analogs in Aquatic Environments and Their Effects on Marine Species—A Review. J. Mar. Sci. Eng. 2022, 10, 1271. [Google Scholar] [CrossRef]
Treatment | Min 1 | Min 2 | Min 3 | Min 4 | Min 5 | Acceleration |
---|---|---|---|---|---|---|
0 ppm | 67.12 ± 1.52 a | 73.93 ± 3.44 a | 87.24 ± 8.73 a | 92.10 ± 12.56 a | 88.16 ± 15.02 a | 5.26 ± 1.99 |
10 ppm | 95.54 ± 21.01 abc | 105.42 ± 21.07 ab | 100.28 ± 10.02 a | 86.74 ± 8.53 a | 67.96 ± 22.18 a | −6.90 ± 6.07 |
20 ppm | 105.31 ± 2.50 bc | 107.87 ± 3.14 ab | 107.52 ± 4.10 a | 95.90 ± 17.70 a | 77.86 ± 32.26 a | −6.86± 4.30 |
30 ppm | 118.48 ± 5.66 b | 118.87 ± 4.53 b | 103.94 ± 26.24 a | 86.28 ± 41.94 a | 70.06 ± 60.21 a | −12.11 ± 8.21 |
40 ppm | 84.09 ± 17.55 ac | 81.49 ± 23.33 ab | 74.32 ± 35.18 a | 37.15 ± 11.58 a | 30.59 ± 6.14 a | −14.25± 4.62 |
Treatment | Min 1 | Min 2 | Min 3 | Min 4 | Min 5 |
---|---|---|---|---|---|
0 ppm | 0.140 ± 0.037 a | 0.130 ± 0.019 a | 0.127 ± 0.025 a | 0.144 ± 0.008 a | 0.153 ± 0.012 a |
10 ppm | 0.142 ± 0.010 a | 0.139 ± 0.015 a | 0.156 ± 0.029 a | 0.209 ± 0.062 a | 0.551 ± 0.376 a |
20 ppm | 0.139 ± 0.020 a | 0.145 ± 0.011 a | 0.149 ± 0.008 a | 0.168 ± 0.034 a | 0.260 ± 0.113 a |
30 ppm | 0.105 ± 0.016 a | 0.097 ± 0.021 a | 0.353 ± 0.448 a | 0.286 ± 0.253 ab | 1.195 ± 1.540 a |
40 ppm | 0.141 ± 0.040 a | 0.219 ± 0.153 a | 0.572 ± 0.741 a | 1.208 ± 0.741 b | 1.780 ± 0.033 a |
Target System/Molecule | BPA’s Effect | Species/Model System | Potential Consequences for Locomotion | References |
---|---|---|---|---|
Cholinergic system (AChE) | Inhibition of AChE activity | Ascidian (Ciona robusta), date mussels (Lithophaga lithophaga), crayfish (Astacus leptodactylus) | Uncoordinated movement, hyperexcitability, muscle spasms, paralysis, altered activity levels | Melki et al., 2024 [23]; Abd Elkader & Al-Shami, 2023 [24]; Uçkun M., 2022 [25]; |
GABAergic system (GABA-A receptors) | Modulation of GABA-A receptors, neuronal damage, altered mRNA expression | Nematode (Caenorhabditis elegans) | Hyperexcitability or suppression of activity, impaired coordination, altered response to stimuli | Wang et al., 2023 [26] |
Serotonergic system | Neuronal damage, Altered mRNA expression, altered neurotransmitter levels | Nematode (C. elegans), date mussels (Lithophaga lithophaga) | Changes in activity levels, altered arousal/responsiveness, altered path complexity (sinuosity) | Abd Elkader & Al-Shami, 2023 [24]; Wang et al., 2023 [26]; |
Glutamatergic system | Glutamatergic pathway upregulation, disrupted gene expression, excitation/inhibition (E/I) imbalance | Zebrafish (Danio rerio) | Reduced total distance and swimming speed, elevated anxiety-like behavior | Naderi et al., 2021 [28] |
Voltage-gated Ca2+ channels (L, N, P/Q, T, R) | Blockade (EC50: 26–35 µM) | Rat—rat endocrine cells, mouse DRG neurons, cardiac myocytes, HEK293 cells | Reduced muscle contractility, impaired neurotransmitter release, and general locomotor impairment | Deutschmann et al., 2012 [29] |
K+ channels (e.g., BKCa) | Modulation (activation or inhibition, depending on channel and context) | Wistar rats—rat coronary smooth muscle cells | Altered neuronal excitability, altered muscle cell responsiveness, changes in rhythmic activity patterns | Costa et al., 2025 [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, Q.-A.; Phan, N.-T.; Tran-Nguyen, Q.-A.; Mai, H.T.; Phan, T.L.T.; Trinh-Dang, M. Behavioral Disruption in Brachionus plicatilis Exposed to Bisphenol A: A Locomotion-Based Assessment. Toxics 2025, 13, 723. https://doi.org/10.3390/toxics13090723
Tran Q-A, Phan N-T, Tran-Nguyen Q-A, Mai HT, Phan TLT, Trinh-Dang M. Behavioral Disruption in Brachionus plicatilis Exposed to Bisphenol A: A Locomotion-Based Assessment. Toxics. 2025; 13(9):723. https://doi.org/10.3390/toxics13090723
Chicago/Turabian StyleTran, Quang-Anh, Nhat-Truong Phan, Quynh-Anh Tran-Nguyen, Hong Thi Mai, Thao Linh Thi Phan, and Mau Trinh-Dang. 2025. "Behavioral Disruption in Brachionus plicatilis Exposed to Bisphenol A: A Locomotion-Based Assessment" Toxics 13, no. 9: 723. https://doi.org/10.3390/toxics13090723
APA StyleTran, Q.-A., Phan, N.-T., Tran-Nguyen, Q.-A., Mai, H. T., Phan, T. L. T., & Trinh-Dang, M. (2025). Behavioral Disruption in Brachionus plicatilis Exposed to Bisphenol A: A Locomotion-Based Assessment. Toxics, 13(9), 723. https://doi.org/10.3390/toxics13090723