Fulvic Acid Promotes the Reduction of Hexavalent Chromium by Shewanella putrefaciens via N-acylated-L-homoserine Lactones-Mediated Quorum Sensing
Highlights
- Fulvic acid had higher Cr(VI) reduction efficiency than AQS;
- Fulvic acid stimulated the release of AHLs such as C6-HSL, C8-HSL, and 3OC10-HSL.
- C6-HSL, C8-HSL, C10-HSL, C12-HSL and 3OC10-HSL promoted microbial Cr(VI) reduction;
- AHL-related genes could regulate the synthesis of riboflavin.
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms and Chemicals
2.2. Quorum Sensing Genes in S. putrefaciens
2.3. Microbial Cr(VI) Reduction in the Presence of Electron Shuttle and AHLs
2.4. Effect of AHLs on the Release of Riboflavin
2.5. Analytical and Statistical Methods
3. Results and Discussion
3.1. Effect of FA and AQS on Cr(VI) Reduction
3.2. Potential QS Genes in Genomes of S. putrefaciens
3.3. AHL Identification in the Process of the Microbial Cr(VI) Reduction
3.4. Effect of Exogenous AHLs on the Microbial Cr(VI) Reduction
3.5. Functional Analysis of FA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, Y.; Zhao, Z.; Burgos, W.D.; Li, Y.; Zhang, B.; Wang, Y.; Liu, W.; Sun, L.; Lin, L.; Luan, F. Iron(III) Minerals and Anthraquinone-2,6-Disulfonate (AQDS) Synergistically Enhance Bioreduction of Hexavalent Chromium by Shewanella Oneidensis MR-1. Sci. Total Environ. 2018, 640–641, 591–598. [Google Scholar] [CrossRef]
- Zhou, T.; Chen, H.; Guo, X.; Zhang, J.; Meng, Y.; Luan, F. AQDS-Functionalized Biochar Enhances the Bioreduction of Cr(VI) by Shewanella Putrefaciens CN32. Chemosphere 2024, 363, 142866. [Google Scholar] [CrossRef]
- Mo, Z.; Tai, D.; Zhang, H.; Shahab, A. A Comprehensive Review on the Adsorption of Heavy Metals by Zeolite Imidazole Framework (ZIF-8) Based Nanocomposite in Water. Chem. Eng. J. 2022, 443, 136320. [Google Scholar] [CrossRef]
- Zeng, H.; Zeng, H.; Zhang, H.; Shahab, A.; Zhang, K.; Lu, Y.; Nabi, I.; Naseem, F.; Ullah, H. Efficient Adsorption of Cr (VI) from Aqueous Environments by Phosphoric Acid Activated Eucalyptus Biochar. J. Clean. Prod. 2021, 286, 124964. [Google Scholar] [CrossRef]
- Pei, Y.; Tao, C.; Ling, Z.; Yu, Z.; Ji, J.; Khan, A.; Mamtimin, T.; Liu, P.; Li, X. Exploring Novel Cr(VI) Remediation Genes for Cr(VI)-Contaminated Industrial Wastewater Treatment by Comparative Metatranscriptomics and Metagenomics. Sci. Total Environ. 2020, 742, 140435. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Zhang, Q.; Gao, B.; Li, M.; Fan, Z.; Sang, W.; Hao, H.; Wei, X. Removal Mechanisms of Cr(VI) and Cr(III) by Biochar Supported Nanosized Zero-Valent Iron: Synergy of Adsorption, Reduction and Transformation. Environ. Pollut. 2020, 265, 115018. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Du, Y.; Chen, S.; Du, D.; Ye, H.; Zhang, T.C. Highly Efficient Removal of Cr(VI) from Aqueous Solution by Pinecone Biochar Supported Nanoscale Zero-Valent Iron Coupling with Shewanella oneidensis MR-1. Chemosphere 2022, 287, 132184. [Google Scholar] [CrossRef]
- Cheng, Z.-H.; Xiong, J.-R.; Min, D.; Cheng, L.; Liu, D.-F.; Li, W.-W.; Jin, F.; Yang, M.; Yu, H.-Q. Promoting Bidirectional Extracellular Electron Transfer of Shewanella Oneidensis MR-1 for Hexavalent Chromium Reduction via Elevating Intracellular cAMP Level. Biotechnol. Bioeng. 2020, 117, 1294–1303. [Google Scholar] [CrossRef]
- Liu, T.; Luo, X.; Wu, Y.; Reinfelder, J.R.; Yuan, X.; Li, X.; Chen, D.; Li, F. Extracellular Electron Shuttling Mediated by Soluble C-Type Cytochromes Produced by Shewanella oneidensis MR-1. Environ. Sci. Technol. 2020, 54, 10577–10587. [Google Scholar] [CrossRef]
- Cologgi, D.L.; Lampa-Pastirk, S.; Speers, A.M.; Kelly, S.D.; Reguera, G. Extracellular Reduction of Uranium via Geobacter Conductive Pili as a Protective Cellular Mechanism. Proc. Natl. Acad. Sci. USA 2011, 108, 15248–15252. [Google Scholar] [CrossRef]
- Karthik, C.; Ramkumar, V.S.; Pugazhendhi, A.; Gopalakrishnan, K.; Arulselvi, P.I. Biosorption and Biotransformation of Cr(VI) by Novel Cellulosimicrobium Funkei Strain AR6. J. Taiwan Inst. Chem. Eng. 2017, 70, 282–290. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Liu, T.; Yuan, T.; Zhang, W.; Li, F.; Zhou, S.; Li, Y. Electron Transfer Capacity Dependence of Quinone-Mediated Fe(III) Reduction and Current Generation by Klebsiella Pneumoniae L17. Chemosphere 2013, 92, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wu, Y.; Liu, T.; Li, F.; Dong, H.; Jing, M. Influence of Incubation Temperature on 9,10-Anthraquinone-2-Sulfonate (AQS)-Mediated Extracellular Electron Transfer. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhuang, L.; Zhou, S.; Yuan, Y.; Yuan, T.; Li, F. Humic Substance-Mediated Reduction of Iron(III) Oxides and Degradation of 2,4-D by an Alkaliphilic Bacterium, Corynebacterium humireducens MFC-5. Microb. Biotechnol. 2013, 6, 141–149. [Google Scholar] [CrossRef]
- Héry, M.; Rizoulis, A.; Sanguin, H.; Cooke, D.A.; Pancost, R.D.; Polya, D.A.; Lloyd, J.R. Microbial Ecology of Arsenic-Mobilizing Cambodian Sediments: Lithological Controls Uncovered by Stable-Isotope Probing. Environ. Microbiol. 2015, 17, 1857–1869. [Google Scholar] [CrossRef]
- Roden, E.E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A.; Stoesser, R.; Konishi, H.; Xu, H. Extracellular Electron Transfer through Microbial Reduction of Solid-Phase Humic Substances. Nat. Geosci. 2010, 3, 417–421. [Google Scholar] [CrossRef]
- Liu, W.; Cai, W.; Ma, A.; Ren, G.; Li, Z.; Zhuang, G.; Wang, A. Improvement of Bioelectrochemical Property and Energy Recovery by Acylhomoserine Lactones (AHLs) in Microbial Electrolysis Cells (MECs). J. Power Sources 2015, 284, 56–59. [Google Scholar] [CrossRef]
- Svenningsen, S.L.; Tu, K.C.; Bassler, B.L. Gene Dosage Compensation Calibrates Four Regulatory RNAs to Control Vibrio Cholerae Quorum Sensing. EMBO J. 2009, 28, 429–439. [Google Scholar] [CrossRef]
- Paquete, C.M.; Rosenbaum, M.A.; Bañeras, L.; Rotaru, A.-E.; Puig, S. Let’s Chat: Communication between Electroactive Microorganisms. Bioresour. Technol. 2022, 347, 126705. [Google Scholar] [CrossRef]
- Venkataraman, A.; Rosenbaum, M.; Arends, J.B.A.; Halitschke, R.; Angenent, L.T. Quorum Sensing Regulates Electric Current Generation of Pseudomonas aeruginosa PA14 in Bioelectrochemical Systems. Electrochem. Commun. 2010, 12, 459–462. [Google Scholar] [CrossRef]
- Yong, Y.-C.; Yu, Y.-Y.; Yang, Y.; Liu, J.; Wang, J.-Y.; Song, H. Enhancement of Extracellular Electron Transfer and Bioelectricity Output by Synthetic Porin. Biotechnol. Bioeng. 2013, 110, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ji, M.; Wang, F.; Tian, Z.; Wang, T.; Wang, S.; Wang, S.; Yan, Z. Insight into the Short-Term Effect of Fulvic Acid on Nitrogen Removal Performance and N-Acylated-L-Homoserine Lactones (AHLs) Release in the Anammox System. Sci. Total Environ. 2020, 704, 135285. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, M.; Wang, D.; Du, F.; Xu, N.; Sun, W.; Han, Z. Cr(VI) Removal during Cotransport of Nano-Iron-Particles Combined with Iron Sulfides in Groundwater: Effects of D. vulgaris and S. putrefaciens. J. Hazard. Mater. 2024, 472, 134583. [Google Scholar] [CrossRef]
- Zhang, B.; Jiao, W. Biochar Facilitated Bacterial Reduction of Cr(VI) by Shewanella putrefaciens CN32: Pathways and Surface Characteristics. Environ. Res. 2022, 214, 113971. [Google Scholar] [CrossRef] [PubMed]
- Ryden, J.C.; Syers, J.K.; Tillman, R.W. Inorganic Anion Sorption and Interactions with Phosphate Sorption by Hydrous Ferric Oxide Gel. J. Soil Sci. 1987, 38, 211–217. [Google Scholar] [CrossRef]
- Du, Q.; Mu, Q.; Wu, G. Metagenomic and Bioanalytical Insights into Quorum Sensing of Methanogens in Anaerobic Digestion Systems with or without the Addition of Conductive Filter. Sci. Total Environ. 2021, 763, 144509. [Google Scholar] [CrossRef]
- Li, X.; Fekete, A.; Englmann, M.; Götz, C.; Rothballer, M.; Frommberger, M.; Buddrus, K.; Fekete, J.; Cai, C.; Schröder, P.; et al. Development and Application of a Method for the Analysis of N-Acylhomoserine Lactones by Solid-Phase Extraction and Ultra High Pressure Liquid Chromatography. J. Chromatogr. A 2006, 1134, 186–193. [Google Scholar] [CrossRef]
- Hu, H.; He, J.; Liu, J.; Yu, H.; Zhang, J. Biofilm Activity and Sludge Characteristics Affected by Exogenous N-Acyl Homoserine Lactones in Biofilm Reactors. Bioresour. Technol. 2016, 211, 339–347. [Google Scholar] [CrossRef]
- Zhao, J.; Li, F.; Kong, S.; Chen, T.; Song, H.; Wang, Z. Elongated Riboflavin-Producing Shewanella Oneidensis in a Hybrid Biofilm Boosts Extracellular Electron Transfer. Adv. Sci. 2023, 10, 2206622. [Google Scholar] [CrossRef]
- Li, F.; Zhang, B.; Long, X.; Yu, H.; Shi, S.; You, Z.; Liu, Q.; Li, C.; Tang, R.; Wu, S.; et al. Dynamic Synthesis and Transport of Phenazine-1-Carboxylic Acid to Boost Extracellular Electron Transfer Rate. Nat. Commun. 2025, 16, 2882. [Google Scholar] [CrossRef]
- Yu, Y.; Li, A.; Fan, S.-Q.; Zhao, H.-P. Biogenic Amorphous FeOOH Activated Additional Intracellular Electron Flow Pathways for Accelerating Reductive Dechlorination of Tetrachloroethylene. Water Res. 2024, 267, 122489. [Google Scholar] [CrossRef]
- McBride, S.G.; Strickland, M.S. Quorum Sensing Modulates Microbial Efficiency by Regulating Bacterial Investment in Nutrient Acquisition Enzymes. Soil Biol. Biochem. 2019, 136, 107514. [Google Scholar] [CrossRef]
- Fu, W.; Li, M.; Dang, W.; Zhu, K.; Chen, G.; Zhang, J.; Wang, S.; Guo, Y.; Wang, Z. Study on the Mechanism of Inhibiting the Calcification of Anaerobic Granular Sludge Induced by the Addition of Trace Signal Molecule (3O-C6-HSL). Bioresour. Technol. 2022, 344, 126232. [Google Scholar] [CrossRef]
- Li, Y.; Fan, C.; Liu, L.; Zhai, X.; Zang, B.; Li, Y.-Y.; Chen, R. Biochar-Induced Quorum Sensing Enhances Methane Production by Strengthening Direct Interspecies Electron Transfer. Bioresour. Technol. 2025, 434, 132845. [Google Scholar] [CrossRef]
- Yong, Y.-C.; Yu, Y.-Y.; Li, C.-M.; Zhong, J.-J.; Song, H. Bioelectricity Enhancement via Overexpression of Quorum Sensing System in Pseudomonas aeruginosa-Inoculated Microbial Fuel Cells. Biosens. Bioelectron. 2011, 30, 87–92. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, P.; Li, Y.; Liang, J.; Zhang, G. Genome-Centric Metagenomic Analysis Reveals Mechanisms of Quorum Sensing Promoting Anaerobic Digestion under Sulfide Stress: Syntrophic Metabolism and Microbial Self-Adaptation. Sci. Total Environ. 2024, 954, 176240. [Google Scholar] [CrossRef] [PubMed]
Additives | Electron Shuttle | AHLs | |
---|---|---|---|
Group 1 | 1 | 0.2% FA | None |
2 | 0.2 AQS | ||
3 | None | ||
Group 2 | 1 | 0.2% FA | None |
2 | 2.0% FA | ||
3 | 0.2% AQS | ||
4 | 2.0% AQS | ||
5 | None | ||
Group 3 | 1 | None | C6-HSL |
2 | C8-HSL | ||
3 | C10-HSL | ||
4 | C12-HSL | ||
5 | 3OC8-HSL | ||
6 | 3OC10-HSL | ||
7 | 3OC12-HSL | ||
8 | None | ||
9 | AHLs quencher |
Electron Shuttle | AHLs | Time (d) | Pseudo-First-Order | Pseudo-Second-Order | ||
---|---|---|---|---|---|---|
k1 (d−1) a | R2 b | k2(d−1) a | R2 b | |||
Group 1 | ||||||
FA | 0–7 | 0.478 ± 0.022 | 0.99 | 2.049 ± 0.519 | 0.71 | |
AQS | 0.283 ± 0.006 | 0.99 | 0.528 ± 0.100 | 0.82 | ||
control | 0.175 ± 0.013 | 0.97 | 0.312 ± 0.046 | 0.88 | ||
Group 2 | ||||||
C6 | 0–18 | 0.087 ± 0.002 | 0.99 | 0.125 ± 0.015 | 0.87 | |
C8 | 0.089 ± 0.001 | 0.99 | 0.126 ± 0.015 | 0.86 | ||
C10 | 0.098 ± 0.002 | 0.99 | 0.148 ± 0.018 | 0.87 | ||
C12 | 0.089 ± 0.002 | 0.99 | 0.125 ± 0.015 | 0.87 | ||
3OC8 | 0.083 ± 0.002 | 0.99 | 0.115 ± 0.013 | 0.88 | ||
3OC10 | 0.091 ± 0.001 | 0.99 | 0.132 ± 0.015 | 0.87 | ||
3OC12 | 0.082 ± 0.001 | 0.99 | 0.108 ± 0.011 | 0.89 | ||
control | 0.084 ± 0.002 | 0.99 | 0.118 ± 0.013 | 0.88 | ||
acylase | 0.062 ± 0.002 | 0.99 | 0.079 ± 0.007 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Li, X.; Liu, Y.; Liu, G.; Yang, Z.; Zou, D. Fulvic Acid Promotes the Reduction of Hexavalent Chromium by Shewanella putrefaciens via N-acylated-L-homoserine Lactones-Mediated Quorum Sensing. Toxics 2025, 13, 708. https://doi.org/10.3390/toxics13090708
Zheng X, Li X, Liu Y, Liu G, Yang Z, Zou D. Fulvic Acid Promotes the Reduction of Hexavalent Chromium by Shewanella putrefaciens via N-acylated-L-homoserine Lactones-Mediated Quorum Sensing. Toxics. 2025; 13(9):708. https://doi.org/10.3390/toxics13090708
Chicago/Turabian StyleZheng, Xusheng, Xiaoyue Li, Yanping Liu, Guangqing Liu, Ziyi Yang, and Dexun Zou. 2025. "Fulvic Acid Promotes the Reduction of Hexavalent Chromium by Shewanella putrefaciens via N-acylated-L-homoserine Lactones-Mediated Quorum Sensing" Toxics 13, no. 9: 708. https://doi.org/10.3390/toxics13090708
APA StyleZheng, X., Li, X., Liu, Y., Liu, G., Yang, Z., & Zou, D. (2025). Fulvic Acid Promotes the Reduction of Hexavalent Chromium by Shewanella putrefaciens via N-acylated-L-homoserine Lactones-Mediated Quorum Sensing. Toxics, 13(9), 708. https://doi.org/10.3390/toxics13090708