Mercury Bioaccumulation in Mangrove Oysters (Crassostrea rhizophorae) (Guilding, 1828) and Associated Human Exposure from the Parnaíba River Delta, Equatorial Coast of Brazil
Abstract
1. Introduction
Study Area
2. Materials and Methods
3. Results and Discussion
3.1. Total Hg Concentrations in the Mangrove Oysters of the PRD
3.2. Concentrations of Hg Across the Biogeographical Distribution of C. rhizophorae
Estuary | Shell Size (mm) | Hg Oyster (ng g−1) Dry Weight | Article |
---|---|---|---|
Parnaíba River Delta-Western ECB | 20–40 | 12.5–195.4 | Present study |
40–60 | 9.1–187.2 | ||
60–80 | 5.5–88.8 | ||
80–100 | 40.4–112.5 | ||
100–120 | 38.4–78.6 | ||
Jaguaribe Estuary-Eastern ECB | <40–60 | 22–123 | [24] |
Ceará Estuary-Eastern ECB | <40–60 | 56–300 | |
Cocó Estuary-Eastern ECB | <40–60 | 39–116 | |
Pacoti Estuary-Eastern ECB | <40–60 | 21–65 | |
Ceará Estuary-Eastern ECB | <30/20–40 | 59.7–96.9 | [25] |
>35/40–60 | 74.9–120.9 | ||
Cocó Estuary-Eastern ECB | <30/20–40 | 43.9–67.2 | |
>35/40–60 | 53.6–76.3 | ||
Pacoti Estuary-Eastern ECB | <30/20–40 | 45.1–59.7 | |
>35/40–60 | 40.2–59.4 | ||
Jaguaribe Estuary-Eastern ECB | <30/20–40 | 55.5–86.0 | |
>35/40–60 | 67.0–85.8 | ||
Ceará Estuary-Eastern ECB | 46.3 ± 12.2 | 38.5–71.0 | [26] |
Botafogo Estuary-Eastern ECB | 40–50 | 101–1644 | [7] |
Pernambuco Coast–Eastern ECB | 40–80 | 135–1344 | [49] |
Piraquê Estuary-Eastern ECB | - | <0.15–87.9 | [23] |
Santa Cruz Canal Estuarine Complex-Eastern ECB | - | <0.15–1798 | |
Todos os Santos Bay, Eastern Brazil | - | 40–120 | [52] |
Sepetiba Bay-SE Brazil | 31–47 | 15–23 | [19] |
Cananeia, estuarine complex, SE Brazil | - | <2–30 | [53] |
Santos Bay-SE Brazil | - | <0.2–370 | [22] |
Paranaguá Bay-South Brazil | - | <0.2–350 | |
Paranaguá Bay-South Brazil | - | 63.9–168.7 | [23] |
Gulf of Paria, Venezuela and Trinidad-Caribbean | 40–100 | 10–70 | [13] |
Sagua la Grande River and coastal zone, Cuba-Caribbean | - | 190–690 | [48] |
3.3. Assessment of Exposure Metrics Through Oyster Consumption According to Brazilian Legislation
Shell Size | Hg Minimum-Maximum (ng g−1) | a Hg Mean ± SD | IR Max (kg dia−1) | IR Mm (n mes−1) | b EDI (mg kgbw−1 dia−1) | THQ |
---|---|---|---|---|---|---|
20–40 | 10.4–39.1 | 21.2 ± 10.2 | 0.36 ± 0.14 | 74 ± 29 | <0.0001 | <1 |
40–60 | 7.0–37.4 | 14.6 ± 7.1 | 0.51 ± 0.19 | 104 ± 19 | <0.0001 | <1 |
60–80 | 8.1–17.76 | 12.2 ± 3.9 | 0.57 ± 0.13 | 116 ± 26 | <0.0001 | <1 |
80–100 | 8.1–22.5 | 12.8 ± 4.2 | 0.60 ± 0.16 | 121 ± 33 | <0.0001 | <1 |
100–120 | 7.7–15.7 | 12.4 ± 3.4 | 0.62 ± 0.21 | 126 ± 42 | <0.0001 | <1 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leal, M.; Spalding, M.D. The State of the World’s Mangroves 2024. Global Mangrove Alliance. 2024. Available online: https://www.mangrovealliance.org/wp-content/uploads/2024/07/SOWM-2024-HR.pdf (accessed on 25 May 2025).
- Marins, R.V.; Lacerda, L.D.; Gonçalves, G.O.; Paiva, E.C. Effects of root metabolism on the post-depositional mobilization of mercury in salt marsh soils. Bull. Environ. Contam. Toxicol. 1997, 58, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Lacerda, L.D.; Marins, R.V.; Dias, F.J.S. An Arctic Paradox: Response of fluvial Hg inputs and its bioavailability to global climate change in an extreme coastal environment. Front. Earth Sci. 2020, 93, 93. [Google Scholar] [CrossRef]
- Lacerda, L.D.; Ward, R.D.; Borges, R.; Ferreira, A.C. Mangrove Trace Metal Biogeochemistry Response to Global Climate Change. Front. For. Glob. Change 2022, 5, 81792. [Google Scholar] [CrossRef]
- Lacerda, L.D.; Paraquetti, H.H.M.; Rezende, C.E.; Silva, L.F.F.; Silva Filho, E.V.; Marins, R.V.; Ribeiro, M.G. Mercury concentrations in bulk atmospheric deposition over the coast of Rio de Janeiro, SE Brazil. J. Braz. Chem. Soc. 2002, 13, 165–169. [Google Scholar] [CrossRef]
- Obrist, D.; Kirk, J.L.; Zhang, L.; Elsie, M.; Sunderland, E.M.; Jiskra, M.; Selin, N.E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 2018, 47, 116–140. [Google Scholar] [CrossRef]
- Araújo, P.R.M.; Biondi, C.M.; Nascimento, C.W.A.; Silva, F.V.B.; Alvarez, A.M. Bioavailability and sequential extraction of mercury in soils and organisms of a mangrove contaminated by a chlor-alkali plant. Ecotoxicol. Environ. Saf. 2019, 183, 109469. [Google Scholar] [CrossRef]
- Costa, M.F.; Landing, W.M.; Kehrig, H.A.; Barletta, M.; Holmes, C.D.; Barrocas, P.R.G.; Evers, D.C.; Buck, D.G.; Vasconcellos, A.C.; Hacon, S.S.; et al. Mercury in tropical and subtropical coastal environments. Environ. Res. 2012, 119, 88–100. [Google Scholar] [CrossRef]
- Marins, R.V.; Paula Filho, F.J.; Maia, S.R.; Lacerda, L.D.; Marques, W.S. Distribuição de mercúrio total como indicador de poluição urbana e industrial na costa Brasileira. Química Nova 2004, 27, 763–770. [Google Scholar] [CrossRef]
- Paula Filho, F.J.; Marins, R.V.; Aguiar, J.E.; Peres, T.A.; Lacerda, L.D. Emisiones naturales y antrópicas de Zn, Cu, Pb, Cr, Cd y Hg al Delta de Río Parnaíba/NE/Brasil. In Procesos Geoquímicos Superficiales en Iberoamérica; Marcovecchio, J.E., Botté, S.E., Freije, H., Eds.; Sociedad Iberoamericana de Física y Química Ambiental: Bahía Blanca, Argentina, 2014; pp. 251–278. Available online: https://www.sifyqa.org.es/libro_pqsi.pdf (accessed on 25 May 2025).
- Paula Filho, F.J.; Marins, R.V.; Lacerda, L.D.; Aguiar, J.E.; Peres, T.A. Background values for evaluation of heavy metal contamination in sediments in the Parnaíba River Delta estuary, NE Brazil. Mar. Pollut. Bull. 2015, 91, 424–428. [Google Scholar] [CrossRef]
- Rodrigues, A.C.M.; Torres-Rodriguez, N.; Yuan, J.; Dufron, A.; Lacerda, L.D.; Heimbürger-Boavida, L.-E. Mercury dynamics in a large tropical mangrove-influenced estuary: The Parnaíba Delta, Brazil. Chemosphere 2025, 376, 144262. [Google Scholar] [CrossRef]
- Astudilo, L.R.; Yen, I.C.; Bekele, I. Heavy metals in sediments, mussels and oysters from Trinidad and Venezuela. Rev. Biol. Trop. 2005, 53, 41–51. Available online: http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442005000300009&lng=en&nrm=iso (accessed on 5 June 2025).
- Azevedo, J.A.M.; Barros, A.B.; Miranda, P.R.B.; Costa, J.G.; Nascimento, V.X. Biomonitoring of heavy metals (Fe, Zn, Cu, Mn, Cd and Cr) in oysters: Crassostrea rhizophorae of mangrove areas of Alagoas (Brazil). Braz. Arch. Biol. Technol. 2019, 62, e19180211. [Google Scholar] [CrossRef]
- Santos, N.M.V.; Sousa Neto, A.P.; Cunha, F.E.A.; Fernandes, C.A.F. A produção extrativista da ostra Crassostrea spp. na região do Delta do Rio Parnaíba 2016, Brasil. Rev. Bras. Eng. Pesca 2016, 9, 1104. [Google Scholar] [CrossRef]
- BRASIL. Boletim da Aquicultura em Águas da União—2022: Relatório Anual de Produção—RAP; Ministério da Pesca e Aquicultura: Brasília, Brazil, 2023. Available online: https://www.gov.br/mpa (accessed on 26 May 2025).
- Freitas, S.T.; Pamplin, P.A.Z.; Legat, J.; Fogaça, F.H.S.; Barros, R.F.M. Conhecimento tradicional das marisqueiras de Barra Grande, Área de Proteção Ambiental do Delta do Rio Paraíba, Piauí, Brasil. Ambiente Soc. 2012, 15, 91–112. [Google Scholar] [CrossRef]
- Iitembu, J.A.; Fitzgerald, D.; Altintzoglou, T.; Boudry, P.; Britz, P.; Byron, C.J.; Delago, D.; Girard, S.; Hannon, C.; Kafensztok, M.; et al. Comparative description and analysis of oyster aquaculture in selected Atlantic regions: Production, market dynamics, and consumption patterns. Fishes 2023, 8, 584. [Google Scholar] [CrossRef]
- Kehrig, H.A.; Costa, M.; Moreira, I.; Malm, O. Total and methyl mercury in different species of molluscs from two estuaries in Rio de Janeiro State. J. Braz. Chem. Soc. 2006, 17, 1409–1418. [Google Scholar] [CrossRef]
- Páez-Osuna, F.; Osuna-Martínez, C.C. Bioavailability of cadmium, copper, mercury, lead, and zinc in subtropical coastal lagoons from the Southeast Gulf of California using mangrove oysters (Crassostrea corteziensis and Crassostrea palmula). Arch. Environ. Contam. Toxicol. 2015, 68, 305–316. [Google Scholar] [CrossRef]
- Le, D.Q.; Tanaka, K.; Dung, L.V.; Siau, Y.F.; Lachs, L.; Kadir, S.M.T.S.; Sano, Y.; Shirai, K. Biomagnification of total mercury in the mangrove lagoon foodweb in east coast of Peninsula, Malaysia. Reg. Stud. Mar. Sci. 2017, 16, 49–55. [Google Scholar] [CrossRef]
- Torres, R.J.; Cesar, A.; Pereira, C.D.S.; Choueri, R.B.; Abessa, D.M.S.; Nascimento, M.R.L.; Fadini, P.S.; Mozeto, A.A. Bioaccumulation of polycyclic aromatic hydrocarbons and mercury in oysters (Crassostrea rhizophorae) from two Brazilian estuarine zones. Int. J. Oceanogr. 2012, 2012, 132–147. [Google Scholar] [CrossRef]
- Niencheski, L.F.; Machado, E.C.; Silveira, I.M.O.; Flores Montes, M.J. Metais traço em peixes e filtradores em quatro estuários da costa brasileira. Trop. Ocean. 2014, 42, 94–106. [Google Scholar] [CrossRef]
- Vaisman, A.G.; Marins, R.V.; Lacerda, L.D. Characterization of the mangrove oyster, Crassostrea rhizophorae, as a biomonitor for mercury in tropical estuarine systems, northeast Brazil. Bull. Environ. Contam. Toxicol. 2005, 74, 582–588. [Google Scholar] [CrossRef]
- Rios, J.H.L.; Marins, R.V.; Oliveira, K.F.; Lacerda, L.D. Long-term (2002–2015) changes in mercury contamination in NE Brazil depicted by the mangrove oyster Crassostraea rhizophorae (Guilding, 1828). Bull. Environ. Contam. Toxicol. 2016, 97, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Nilin, J.; Santana, L.M.B.M.; Silva, A.; Costa-Lotufo, L.V. Biological responses of mangrove oysters (Crassostrea rhizophorae) and mercury contamination in an urban tropical estuary. Mar. Pollut. Bull. 2021, 166, 112233. [Google Scholar] [CrossRef] [PubMed]
- Farias, A.C.S.; Fonteles, A.A.; Ivo, C.R.C.; Fernandes, C.A.F.; Cunha, F.E.A. Cadeia Produtiva da Pesca no Interior do Delta do Parnaíba a Área Marinha Adjacente; Fortaleza, Brazil, 2015. Available online: https://fr.scribd.com/document/693086210/Livro-Delta-Do-Parnaiba-completo-1 (accessed on 7 June 2025).
- ICMBio. Plano de Manejo da Área de Proteção Ambiental Delta do Parnaíba Plano de Manejo da Área de Proteção Ambiental Delta do Parnaíba; Instituto Chico Mendes de Conservação da Biodiversidade, Ministério do Meio Ambiente e Mudança Climática: Brasília, Brazil, 2020; 77p. Available online: https://www.gov.br/icmbio/pt-br/assuntos/biodiversidade/unidade-de-conservacao/unidades-de-biomas/marinho/lista-de-ucs/apa-delta-do-parnaiba/arquivos/plano_de_manejo_da_apa_delta_do_parnaiba.pdf (accessed on 19 May 2025).
- Oliveira, W.R.; Silva, E.V. Geografia e educação ambiental na prática do turismo sustentável: A APA do Delta do Parnaíba. Rev. Equador 2016, 5, 61–74. [Google Scholar] [CrossRef]
- Santos, F.C.V.; Souto, W.M.S.; Ribeiro, A.S.N.; Lucena, R.F.P.; Guzzi, A. Traditional knowledge and perception of birds in the Parnaíba Delta environmental protection area, Northeast Brazil. Acta Sci. Biol. Sci. 2020, 42, 1–12. [Google Scholar] [CrossRef]
- Smith, F.S.G.; Vital, H.; Silva, A.A.; Stattgger, K.; Perez, Y. Late Holoceno evolution of the Parnaíba River Delta (Brazilian Equatorial Margin): Evidence of lobe switching process from mineralogical analysis and age dating on sediment cores. J. S. Am. Earth Sci. 2021, 9, 103530. [Google Scholar] [CrossRef]
- Chielle, R.S.A.; Marins, R.V.; Cavalcante, M.S.; Cotovicz, L.C., Jr. Seasonal and spatial variability of CO2 emissions in a large tropical mangrove-dominated delta. Limnol. Oceanogr. 2024, 69, 246–261. [Google Scholar] [CrossRef]
- Chielle, R.S.A.; Marins, R.V.; Dias, F.J.S.; Borges, K.K.; Rezende, C.E. Contributions from the main river of the largest open sea delta in the Americas to the CO2 fluxes. Reg. Stud. Mar. Sci. 2023, 62, 102922. [Google Scholar] [CrossRef]
- Marengo, J. Estudo Sobre a Vulnerabilidade na Região do Delta do Parnaíba e da Costa Brasileira aos Efeitos das Mudanças Climáticas; Observatório do Clima: Brasília, Brazil, 2021; 39p, Available online: https://climaeoceano.oc.eco.br/wp-content/uploads/2023/08/CLO-vulnerabilidade-delta-BR.pdf (accessed on 20 May 2025).
- IBGE. Pesquisa de Orçamentos Familiares 2008–2009: Análise do Consumo Alimentar Pessoal no Brasil. Rio de Janeiro; Instituto Brasileiro de Geografia e Estatística, Diretoria de Pesquisas, Coordenação de Trabalho e Rendimento: Rio de Janeiro, Brazil, 2018. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv50063.pdf (accessed on 20 May 2025).
- USEPA. Water Quality Criterion for the Protection of Human Health: Methylmercury Final; US Environmental Protection Agency: Washington, DC, USA, 2001; EPA-823-R-:303. Available online: https://www.epa.gov/sites/default/files/2020-01/documents/methylmercury-criterion-2001.pdf (accessed on 18 May 2025).
- USEPA. Regional Screening Levels for Chemical Contaminants at Superfund Sites; US Environmental Protection Agency: Washington, DC, USA, 2022. Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide#special (accessed on 11 May 2025).
- Bezerra, M.F.; Goyanna, F.A.; Lacerda, L.D. Risk assessment of human Hg exposure through consumption of fishery products in Ceará state, northeastern Brazil. Mar. Pollut. Bull. 2023, 189, 114713. [Google Scholar] [CrossRef]
- R Development Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 11 May 2025).
- Barr, J.M.; Munroe, D.; Rose, J.M.; Calvo, L.; Cheng, K.M.; Bayer, S.; Kreeger, D. Seasonal feeding behavior of aquaculture eastern oysters (Crassostrea virginica) in the Mid-Atlantic. Estuaries Coasts 2024, 47, 789–804. [Google Scholar] [CrossRef]
- Fabra, M.; Morrall, Z.; Helmer, L.; Watson, G.; Preston, J. Filtration behavior of Ostrea edulis: Diurnal rhythmicity influenced Includedby light cycles, body size and water temperature. Estuaries Coasts 2025, 48, 18. [Google Scholar] [CrossRef]
- Cutrim, M.V.J.; Cruz, Q.S.; Costa, D.S.; Oliveira, A.L.L.; Sá, A.K.D.S.; Cavalcante-Lima, L.F.; Azevedo-Cutrim, A.C.G.; Santos, T.P.S. Influence of river tide dynamics on phytoplankton variability and its ecological implications in three Brazilian tropical estuaries (Delta do Parnaíba Environmental Protection Area). Chem. Ecol. 2024, 40, 2349008. [Google Scholar] [CrossRef]
- Oliveira, R.C.B.; Marins, R.V. Trace metals dynamics in soil and estuarine sediment as a major factor controlling contaminants’ contribution to the aquatic environment. Rev. Virtual Química 2021, 3, 88–102. [Google Scholar] [CrossRef]
- Santos, T.T.L.; Marins, R.V.; Alves, L.P. Review on metal contamination in equatorial estuaries in the Brazilian Northeast. Front. Earth Sci. 2023, 11, 1142649. [Google Scholar] [CrossRef]
- Moura, V.L.; Lacerda, L.D. Mercury sources, emissions, distribution and bioavailability along an estuarine gradient under semiarid conditions in NE Brazil. Int. J. Pollut. Res. Public Health 2022, 19, 17092. [Google Scholar] [CrossRef]
- Santos, T.T.L.; Mounier, J.L.S.; Marins, R.V. Trace metal partitioning in the Parnaíba delta in a dry season, equatorial coast of Brazil. Environ. Pollut. 2024, 345, 123500. [Google Scholar] [CrossRef]
- Silva, A.G.A.; Stattegger, K.; Schwarzer, K.; Vita, H.; Heise, B. The influence of climatic variations on river delta hydrodynamics and morphodynamics in the Parnaíba Delta, Brazil. J. Coast. Res. 2015, 314, 930–940. [Google Scholar] [CrossRef]
- Olivares-Rieumont, S.; Lima, L.; Rivero, S.; Graham, D.W.; Alonso-Hernandez, C.; Bolaño, Y. Mercury levels in sediments and mangrove oysters, Crassostrea rhizophorae, from the north coast of Villa Clara, Cuba. Bull. Environ. Contam. Toxicol. 2012, 88, 589–593. [Google Scholar] [CrossRef]
- Cavalcanti, A.D. Monitoring of trace elements in oysters marketed in Recife, Pernambuco, Brazil. Cad. Saúde Pública 2003, 19, 1545–1551. [Google Scholar] [CrossRef]
- Julio, T.G.; Moura, V.L.; Lacerda, L.D.; Lessa, R.P.T. Mercury concentrations in coastal Elasmobranchs (Hypanus guttatus and Rhizoprionodon porosus) and human exposure in Pernambuco, Northeastern Brazil. An. Acad. Bras. Ciências 2022, 94, e20220045. [Google Scholar] [CrossRef]
- Marins, R.V.; Lacerda, L.D.; Mounier, S.; Paraquetti, H.H.M.; Marques, W.S. Caracterização hidroquímica, distribuição e especiação de mercúrio nos estuários dos Rios Ceará e Pacotí, Região Metropolitana de Fortaleza, Ceará, Brasil. Geochim. Bras. 2002, 16, 37–48. Available online: https://geobrasiliensis.emnuvens.com.br/geobrasiliensis/article/view/497/pdf (accessed on 19 May 2025).
- Machado, I.C.; Maio, F.D.; Kira, C.S.; Carvalho, M.F.H. Estudo da ocorrência dos metais pesados Pb, Cd, Hg, Cu e Zn na ostra de mangue Crassostrea brasiliana do estuário de Cananéia-SP, Brasil. Rev. Inst. Adolfo Lutz 2002, 61, 13–18. [Google Scholar] [CrossRef]
- Souza, M.M.; Windmöller, C.C.; Hatje, V. Shellfish from Todos os Santos Bay, Bahia, Brazil: Treat or threat? Mar. Pollut. Bull. 2011, 62, 2254–2263. [Google Scholar] [CrossRef]
- ANVISA. Dispõe Sobre o Regulamento Técnico MERCOSUL Sobre Limites Máximos de Contaminantes Inorgânicos em Alimentos; Ministério da Saúde, Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2013. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2013/rdc0042_29_08_2013.html (accessed on 19 May 2025).
- Lacerda, L.D.; Moura, V.L.; Oliveira, R.W.S.; Carmo, K.L.C.F.; Nunes, J.L.S.; Freitas, A.S.; Bezerra, M.F. Mercury (Hg) concentration in fish marketed in the São Luís Fish Market (MA) and potential exposure of consumers. An. Acad. Bras. Ciências 2024, 96, e20230238. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luz-Santos, T.T.; Moura, V.L.; Bezerra, M.F.; Drude de Lacerda, L. Mercury Bioaccumulation in Mangrove Oysters (Crassostrea rhizophorae) (Guilding, 1828) and Associated Human Exposure from the Parnaíba River Delta, Equatorial Coast of Brazil. Toxics 2025, 13, 678. https://doi.org/10.3390/toxics13080678
Luz-Santos TT, Moura VL, Bezerra MF, Drude de Lacerda L. Mercury Bioaccumulation in Mangrove Oysters (Crassostrea rhizophorae) (Guilding, 1828) and Associated Human Exposure from the Parnaíba River Delta, Equatorial Coast of Brazil. Toxics. 2025; 13(8):678. https://doi.org/10.3390/toxics13080678
Chicago/Turabian StyleLuz-Santos, Thays Thayanne, Victor Lacerda Moura, Moisés Fernandes Bezerra, and Luiz Drude de Lacerda. 2025. "Mercury Bioaccumulation in Mangrove Oysters (Crassostrea rhizophorae) (Guilding, 1828) and Associated Human Exposure from the Parnaíba River Delta, Equatorial Coast of Brazil" Toxics 13, no. 8: 678. https://doi.org/10.3390/toxics13080678
APA StyleLuz-Santos, T. T., Moura, V. L., Bezerra, M. F., & Drude de Lacerda, L. (2025). Mercury Bioaccumulation in Mangrove Oysters (Crassostrea rhizophorae) (Guilding, 1828) and Associated Human Exposure from the Parnaíba River Delta, Equatorial Coast of Brazil. Toxics, 13(8), 678. https://doi.org/10.3390/toxics13080678