Next Article in Journal
Gestational GenX Exposure Induces Maternal Hepatotoxicity by Disrupting the Lipid and Bile Acid Metabolism Distinguished from PFOA-Induced Pyroptosis
Previous Article in Journal
Cognitive Functions Among Pupils in Schools Near and Around an Electronic Waste Recycling Site at Agbogbloshie in Accra, Ghana
Previous Article in Special Issue
Presence of Thioxanthones and Their Metabolites in Human Urine and Human Exposure Assessment
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review

1
Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Kuala Lumpur 50603, Malaysia
2
Institute of Art and Design, Huaihua University, Huaihua 418000, China
3
Faculty of Business and Management, City University Malaysia, Petaling Jaya 46100, Malaysia
4
Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
*
Authors to whom correspondence should be addressed.
Toxics 2025, 13(8), 616; https://doi.org/10.3390/toxics13080616
Submission received: 27 May 2025 / Revised: 19 July 2025 / Accepted: 21 July 2025 / Published: 24 July 2025

Abstract

With the rapid progression of global industrialization and urbanization, emerging contaminants (ECs) have become pervasive in environmental media, posing considerable risks to ecosystems and human health. While multidisciplinary evidence continues to accumulate regarding their environmental persistence and bioaccumulative hazards, critical knowledge gaps persist in understanding their spatiotemporal distribution, cross-media migration mechanisms, and cascading ecotoxicological consequences. This review systematically investigates the global distribution patterns of ECs in aquatic environments over the past five years and evaluates their potential ecological risks. Furthermore, it examines the performance of various treatment technologies, focusing on economic cost, efficiency, and environmental sustainability. Methodologically aligned with PRISMA 2020 guidelines, this study implements dual independent screening protocols, stringent inclusion–exclusion criteria (n = 327 studies). Key findings reveal the following: (1) Occurrences of ECs show geographical clustering in highly industrialized river basins, particularly in Asia (37.05%), Europe (24.31%), and North America (14.01%), where agricultural pharmaceuticals and fluorinated compounds contribute disproportionately to environmental loading. (2) Complex transboundary pollutant transport through atmospheric deposition and oceanic currents, coupled with compound-specific partitioning behaviors across water–sediment–air interfaces. (3) Emerging hybrid treatment systems (e.g., catalytic membrane bioreactors, plasma-assisted advanced oxidation) achieve > 90% removal for recalcitrant ECs, though requiring 15–40% cost reductions for scalable implementation. This work provides actionable insights for developing adaptive regulatory frameworks and advancing green chemistry principles in environmental engineering practice.

Graphical Abstract

1. Introduction

In recent decades, the rapid expansion of global industrialization has driven an exponential surge in the production of synthetic chemicals, with petrochemical products (25.7%), specialty chemicals (26.2%), and polymer materials (19.2%) dominating the market [1]. These anthropogenic chemicals are persistently released into the environment through diverse pathways. Their sources include pharmaceuticals, agriculture, food processing, and electronics manufacturing, leading to the emergence of a novel category of ECs [2]. Unlike conventional pollutants, ECs represent a complex and diverse class of substances identified in recent years due to advancements in analytical techniques [3]. These ECs commonly encompass personal care products (PCPs), endocrine-disrupting chemicals (EDCs), antibiotics, MPs (MPs), per- and polyfluoroalkyl substances (PFASs), and disinfection by-products [4]. Although present in low concentrations, ECs exhibit pronounced bioaccumulation, persistence, and toxicity [5]. Their chemical diversity and variability render their migration and transformation processes highly intricate, thereby complicating ecological risk assessment and remediation strategies [6]. Furthermore, these contaminants pose significant threats to both ecosystems and human health, being linked to neurological disorders, endocrine disruption, cardiovascular diseases, and reproductive dysfunction, thus presenting considerable challenges to environmental safety and public well-being [7,8].
ECs enter the environment through multiple pathways. Direct emissions from healthcare facilities often result in elevated pollutant concentrations, with 58% of pharmaceutical residues resistant to removal by conventional treatment methods [9]. Agricultural non-point source pollution is particularly pronounced during heavy rainfall, with surface runoff concentrations of ECs reaching 0.11–25 ppm [10]. Atmospheric deposition contributes to over 30 types of ECs, with marked concentration increases observed during the rainy season [11]. Advances in detection technologies have significantly enhanced the identification of ECs, improving accuracy, sensitivity, and specificity [12]. Fang et al. [13] validated a dual-enzyme electrode sensor capable of detecting methyl salicylate with a detection limit of 2.3 μM. Similarly, optical sensors have achieved notable advancements in real-time monitoring, as demonstrated by Chen et al. [14], who developed a carbon dot-based trichannel optical detection method for PFOS with a detection limit of 10.8 ppb. Moreover, integrating multiple sensing technologies has further improved detection efficacy. Li et al. [15] engineered a molecularly imprinted Fe-doped porous carbon composite sensor with a detection limit of 0.2 nM for lomefloxacin. These innovations underscore the transformative role of novel sensing technologies in enhancing environmental contaminant detection’s precision, selectivity, and responsiveness.
The presence and adverse effects of ECs in ecosystems present significant threats to ecological integrity and human health [5,16]. Vera-Chang et al. [17] demonstrated that the antidepressant fluoxetine reduces reproductive success and induces embryonic deformities in zebrafish. Morales et al. [18] found that EDCs, such as BPA, disrupt freshwater snails’ growth, reproduction, and survival by mimicking natural hormones like estrogen, thereby interfering with normal hormonal processes. Additionally, the cumulative ecological risks of ECs have been substantiated, as illustrated by Li et al. [19], who examined the persistence and bioaccumulation potential of perfluorooctane sulfonate. MPs have been detected in various human tissues, including the lungs, bloodstream, and placenta [20]. Research indicates that MPs induce oxidative stress, disrupt metabolic processes, impair gut microbiota and gastrointestinal function, and adversely affect the liver, cardiopulmonary, and immune systems, ultimately diminishing reproductive health [21]. Niu et al. [22] highlighted the role of extensive antibiotic use in propagating antibiotic resistance genes (ARGs) in the environment, potentially facilitating the emergence of superbugs. Moreover, the interaction between MPs and antibiotics exacerbates the persistence of antibiotics in the environment, compounding the challenge of antibiotic resistance. Addressing ECs through practical measures and technologies is thus critical to ensuring environmental safety [23].
To date, the occurrence and migration of ECs in aquatic environments have been extensively investigated. Nevertheless, most studies remain confined to specific pollutant types or geographically restricted areas, lacking a comprehensive and systematic assessment of the global distribution patterns and migration mechanisms of diverse EC categories. To bridge this knowledge gap, the present review aims to (1) systematically examine the sources, spatial distributions, and migratory pathways of ECs (PCPs, EDCs, antibiotics, MPs, and PFAS) across global aquatic systems; (2) elucidate their potential ecological and human health risks; and (3) evaluate the feasibility and efficacy of various remediation technologies—including physical, chemical, biological, and integrated approaches—under varying environmental conditions. Ultimately, this review endeavors to offer practical insights for the optimization of management strategies and to promote a more scientific, systematic, and sustainable framework for EC governance.

2. Literature Review Methodology

2.1. Search Strategy

This systematic review complies with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Figure 1). To identify relevant studies, a comprehensive search was performed across ACS Publications, ScienceDirect, Google Scholar, and Web of Science databases. The search period spanned from January 2020 to December 2024, focusing on recent advances concerning five categories of ECs: PCPs, antibiotics, EDCs, PFAS, and MPs in wastewater, surface water, and groundwater. The rationale for limiting the search to a 5-year period was to provide a comprehensive yet current snapshot of ECs specifically for evaluating recent spatial distribution trends. This 5-year criterion was applied exclusively to the distribution aspects of this review. Foundational and older references beyond the 5-year scope were selectively incorporated in the Introduction and Discussion sections to provide historical context, explain technological evolutions, and establish comparative trends. The detailed search strategy and results are provided in Table S1.

2.2. Inclusion and Exclusion Criteria

The studies included in this review met the following criteria: (1) published in English; (2) focused on the five specified categories of ECs; (3) limited to research articles (excluding reviews, book chapters, theses, conference papers, and editorial letters); (4) provided concentration data and sampling information for target compounds in aquatic environments (wastewater, surface water, groundwater); (5) explicitly described analytical methods and quality assurance/quality control (QA/QC) procedures or allowed their inference; (6) reported concentration data including mean values, median values, or concentration ranges to enable comparative analysis.
It is important to note that the geographical distribution of reported ECs is shaped by disparities in regional monitoring efforts and research intensity. The absence of EC reports in certain regions should not be interpreted as a lack of contamination but rather as a reflection of limited environmental surveillance.
Database searches initially yielded 3241 records. After removing 223 duplicates, 3018 records were screened based on title, abstract, and article type, excluding 2602 non-qualifying records. The remaining 416 records underwent full-text screening, where 89 were excluded due to inadequate treatment, insufficient results, or inappropriate controls. Ultimately 327 studies were included in the systematic review (Table S2).

2.3. Data Extraction

Two researchers independently extracted and cross-validated the following information from the selected studies: (1) Publication Details: Authors, publication year, and study region (country or specific area); (2) Target Pollutants: Specific categories of ECs (PCPs, antibiotics, EDCs, PFAS, MPs), along with maximum, minimum, and mean/median concentrations (ng/L or items/L), and occurrence frequencies across continents; (3) Sampling and Analytical Methods: Details on water body type (wastewater, surface water, groundwater), sampling dates, geographical coordinates, detection methods, and limits of detection/quantification (LOD/LOQ). For graphical data, numerical values were extracted using GetData Graph Digitizer 2.26, with concentrations below LOD or LOQ recorded as half the respective limits. Measurements were excluded if LOD or LOQ were excessively high; (4) Water Treatment Processes and Removal Efficiencies: Information on treatment processes, including specific wastewater treatment plant units (biological treatment, membrane filtration, disinfection, etc.) and reduction rates for target pollutants. (5) Handling of Overlapping Categories: For chemicals with overlapping classifications, each was categorized based on its primary characteristics and main role within the study. When a compound could fit multiple categories, it was assigned according to its dominant function, with overlaps noted for clarity.

3. Distribution of EC Occurrences in Published Studies

Advancements in environmental monitoring and analytical technologies have facilitated the detection and reporting of numerous ECs that were previously undetected in natural ecosystems [24]. The spatial distribution of literature reporting on ECs—including PCPs, antibiotics, EDCs, PFAS, and MPs—exhibits considerable heterogeneity (Figure 2F). Asia represents the most frequently reported region, contributing 37.05% of global research outputs on ECs over the past five years, with particular emphasis on MPs and antibiotics. This pattern may reflect the region’s high population density, extensive use of agricultural antibiotics, and ongoing challenges in plastic waste management [25,26]. Europe follows with 24.31% of the reports, where PCPs and EDCs are commonly studied, potentially due to historical industrial activities and high pharmaceutical consumption [27,28]. North America accounts for 14.01% of the documented studies, with PFASs frequently examined, likely linked to the region’s legacy in chemical manufacturing [29]. In contrast, Africa and South America represent 8.92% and 7.32% of reported studies, respectively. Antibiotics are the primary focus in Africa, while MPs dominate in South America, potentially reflecting regional concerns related to agricultural practices, fisheries, and plastic pollution [30,31]. Oceania contributes 8.39% of the global EC-related literature, with MPs and PFASs being the most reported contaminants. This trend may be influenced by the region’s geographic characteristics and exposure to international shipping activities [32,33].

3.1. Spatial Distribution of PCPs

PCPs comprise various substances for human application, such as preservatives, disinfectants, insect repellents, fragrances, and ultraviolet (UV) protectants. Their primary functions are cleaning and safeguarding personal hygiene and aesthetic appearance [34]. As illustrated in Figure 2A, PCP contamination is pervasive worldwide. North America and Europe exhibit relatively high occurrences of PCP pollution, likely due to advanced pharmaceutical industries, well-established healthcare systems, and significant PCP consumption [34,35]. In Asia, high detection frequencies are also observed, driven by pressures from large populations, increasing consumption demand, and underdeveloped wastewater treatment and environmental regulatory infrastructure [36]. Monitoring sites in developing regions like South America and Africa remain sparse. Nevertheless, PCPs have been detected in some Latin American countries and South Africa, reflecting a growing recognition of PCP-related environmental risks and underscoring the necessity for a more robust global research network and regulatory framework.

3.2. Spatial Distribution of Antibiotics

Antibiotics are compounds with the capacity to inhibit or destroy microorganisms [37]. Figure 2B depicts the global distribution of antibiotics across various regions. Several Asian countries exhibit relatively high incidences of antibiotic contamination, indicative of focused attention and extensive research in these areas. Factors such as high population density, well-developed healthcare infrastructure, and significant antibiotic consumption contribute to this trend [38]. Moreover, intensive livestock farming and aquaculture activities amplify antibiotic discharges into the environment [39,40]. North America and Europe also exhibit high antibiotic distribution frequencies, attributable to the increasing scale of antibiotic use in both medical and agricultural applications [41]. Research and monitoring efforts in South America and Africa are comparatively limited, highlighting resource constraints and insufficient monitoring capacities. Additionally, inadequate regulatory frameworks and enforcement mechanisms in these regions exacerbate antibiotic use and discharge, posing a significant pollution challenge.

3.3. Spatial Distribution of EDCs

EDCs include natural hormones, such as estrone (E1), 17β-estradiol (E2), and estriol (E3), as well as synthetic hormones like 17α-ethinylestradiol (EE2) [42]. The global distribution of EDCs is substantial, with notable research attention focused on regions of high industrialization and intensive agricultural activity (Figure 2C). Developed regions in North America and Europe feature comprehensive monitoring systems and high-density distribution records, reflecting the long-term accumulation of chemical production and consumption [43].
In rapidly developing areas of East and South Asia, significant quantities of potential EDCs are discharged through agricultural practices and plastic production, resulting in a complex, multi-center, and multi-pathway pollution pattern [44]. Despite the relatively long history of EDC research, significant gaps remain in both investigation and regulation in underdeveloped regions such as Africa, underscoring the critical need for improved monitoring and governance [45,46].

3.4. Spatial Distribution of PFASs

PFASs are synthetic organic fluorinated compounds known for their exceptional chemical stability, resulting in environmental persistence and bioaccumulation [47]. Figure 2D indicates that PFASs have been detected extensively in aquatic environments worldwide, ranging from surface waters in industrial areas (0.11–26.5 ng/L) to snow layers in the Arctic (50 pg/L) [48,49]. Sampling sites in North America and Europe are densely distributed, primarily in regions characterized by high industrialization and urbanization. This prevalence is attributed to the widespread use of PFASs in industrial and consumer applications, including surface protectants, flame retardants, and firefighting foams [47]. In East Asia, particularly along coastal industrial zones, research on PFASs is significant. These areas face increasingly severe PFAS accumulation due to concentrated chemical industries, manufacturing activities, and large populations [50,51]. Conversely, PFAS detections in South America and Africa remain relatively sparse. These regions often lack adequate regulatory frameworks, advanced detection methodologies, and research investments, likely underestimating the true extent of PFAS pollution. These underexplored regions urgently require comprehensive and systematic monitoring studies [52,53].

3.5. Spatial Distribution of MPs

MPs, recognized as prominent emerging environmental pollutants, have drawn substantial attention owing to their pervasive distribution and potential ecological risks [54]. MPs are extensively distributed globally (Figure 2E). Research efforts are more pronounced in regions with dense populations, advanced economies, and established industrial systems, such as North America, Europe, and East Asia’s coastal areas. The continuous increase in global plastic production exacerbates MP pollution, with estimates projecting approximately 12 billion tons of plastic waste in landfills or natural environments by 2050. This makes MP contamination one of the most critical environmental challenges of the modern era [55]. During the COVID-19 pandemic, the surge in disposable plastic usage, including an estimated 129 billion masks and 65 billion gloves per month globally, significantly intensified MP pollution [56].
Overall, the distribution patterns of ECs are influenced by a confluence of factors, including population density, levels of economic development, industrial activity, and international trade [57,58,59]. Asia and Europe are major pollution hotspots, driven by industrial processes and consumer demand, while North America’s high contamination levels are largely attributed to historical chemical production. Africa, South America, and Oceania necessitate increased attention to cross-regional pollutant migration and the cumulative effects of local pollution.

4. Sources and Migration of ECs

ECs enter the environment through various pathways, including industrial processes, agricultural activities, healthcare operations, wastewater discharge, and landfill sites [24] (Figure 3). Moreover, their migration and transformation in the environment display substantial multidimensional complexity (Figure 4). Global environmental monitoring data reveal that ECs interact across different media and undergo cross-regional transmission via atmospheric circulation, hydrological cycles, and biological chains, resulting in persistent ecological impacts [7,60,61].

4.1. Industrial Activities

The emission of ECs from industrial activities arises from the production characteristics and insufficient treatment technologies in various sectors [62,63]. The pharmaceutical industry reports average concentrations of halogenated hydrocarbons from point sources reaching 18.9 ppm, constituting 28.8% of its total volatile organic compounds (VOCs) emissions. These VOCs directly impair air quality and contribute to the formation of secondary pollutants, such as ozone, through photochemical reactions, thereby aggravating regional air pollution [64]. The electronics manufacturing industry presents significant environmental and health risks, primarily associated with heavy metal contamination, the release of organic pollutants, and the generation of secondary pollutants [65]. These findings underscore the high concentration, significant hazard, and treatment challenges associated with ECs from various industries, highlighting the urgent necessity for technological innovation and policy intervention to enable effective governance.

4.2. Agricultural Activities

ECs in agricultural activities predominantly originate from agricultural chemicals, waste, and irrigation water, presenting distinct and far-reaching environmental and health risks. First, these pollutants are derived from various sources, including excessive use of pesticides, insecticides, fertilizers, and soil amendments. These substances not only contaminate soil and water through runoff or leaching but also disrupt ecosystem stability due to their persistence [66]. Lastly, agricultural activities significantly contribute to greenhouse gas emissions, particularly methane and nitrous oxide. These gases exacerbate global warming and alter pollutant migration pathways, thereby heightening ecological and environmental risks [67,68,69].

4.3. Emissions from Healthcare Activities

The extensive use and discharge of pharmaceuticals constitute the primary sources of ECs in healthcare. Studies indicate that compounds such as amoxicillin and caffeine are frequently detected in aquatic environments due to widespread usage, with concentrations reaching micrograms per liter or higher, posing considerable threats to aquatic ecosystems [70]. Improper disposal of medical waste is another critical source of pollution. Since the SARS outbreak 2002, medical waste generation has surged by approximately 240%, with projections forecasting a further 50% increase by 2030. This includes mercury-containing medical devices, where mercury emissions in some regions exceed those from domestic wastewater by more than double, leading to long-term soil and water contamination [71]. Hospital wastewater also contains pharmaceutical residues and hazardous substances such as bacteria and radioactive isotopes, which are often discharged into sewer systems without adequate treatment. This practice poses severe environmental and public health risks, as hospital wastewater typically exhibits higher concentrations of pathogens and chemicals compared to municipal wastewater [72].

4.4. Wastewater Treatment Plants and Landfills

Wastewater treatment plants (WWTPs) and landfills represent major sources of ECs, harboring substantial quantities of complex and persistent contaminants [73]. These pollutants infiltrate groundwater and soil through leakage, adversely impacting the environment and human health. ECs in wastewater and waste exhibit considerable long-term contamination potential [74]. Huang et al. [75] discovered that persistent pollutants, including pharmaceuticals and personal care products, exert prolonged effects on surface waters well beyond their initial introduction. PFAS concentrations in landfill leachate reached 12.7 μg/L; even landfills closed for over 30 years exhibited high pollutant levels [76]. Over time, the risks associated with groundwater pollution from wastewater and landfill leachate progressively increase [77].
Current research on EC sources and their fate encounters two critical challenges necessitating breakthrough solutions. First, existing research paradigms are constrained, favoring fragmented analyses of individual pollutants, media, or local environments. This limitation hinders the establishment of an integrated research framework incorporating multi-dimensional, multi-scale, and multi-omics approaches. Second, mechanistic understanding and model construction remain inadequate. There is a lack of comprehensive knowledge regarding EC migration, transformation, and bioaccumulation mechanisms across trans-regional, trans-media, and multi-biogeochemical cycles. This deficiency is exacerbated by the absence of high-precision dynamic models and long-term monitoring data.

4.5. Co-Occurrence of ECs

ECs are frequently detected concurrently within aquatic environments due to their overlapping sources [78]. PFAS concentrations ranged from several hundred to several thousand ng/L, while antibiotics were present at ng/L levels, and MPs ranged from hundreds to over a thousand particles per liter [79]. Furthermore, the co-existence of PCPs, antibiotics, EDCs, PFAS, and MPs has been consistently reported in urban surface waters and effluents from wastewater treatment plants, highlighting that ECs rarely exist as isolated pollutants in real-world settings, but rather as complex and interactive mixtures.
The coexistence of multiple ECs can significantly influence their individual environmental behaviors (Table S3). Owing to their high specific surface area and hydrophobicity, MPs readily act as carriers for hydrophobic organic pollutants. These substances can adsorb onto MP surfaces, thereby facilitating their mobility and enhancing their dispersion and transport distances in aquatic environments [80]. Recent research has highlighted the strong affinity between MPs and PFASs, noting that PFAS molecules can adhere to MP surfaces, consequently increasing their bioavailability to aquatic organisms [81]. Although studies investigating such sorption/desorption interactions are still relatively limited, growing evidence suggests that these processes play a critical role in shaping the distribution, fate, and transport of coexisting ECs.

5. Risks of ECs to Ecosystems and Human Health

5.1. Aquatic Ecosystem Risks

ECs pose multifaceted threats to aquatic ecosystems through persistence, diffusion, and bioaccumulation mechanisms, leading to complex ecological challenges [82] (Figure 5). Antibiotics, due to the inefficiencies of conventional wastewater treatment, substantially promote the dissemination of ARGs. The selective proliferation of resistant bacteria further diminishes microbial diversity and destabilizes ecosystem functions [83]. EDCs interfere with hormonal regulation, significantly impacting fish sex differentiation and reproductive capacity. Their accumulation in aquatic environments disrupts lower trophic organisms and amplifies ecological toxicity through bioaccumulation in higher trophic levels [83,84]. MPs exacerbate the toxicity of antibiotics and PFASs due to their high adsorption capacity, while directly impairing metabolism and reproduction in aquatic organisms. At elevated concentrations, algae growth inhibition rates can reach 22.8% [85,86]. PFAS, characterized by chemical stability and long-chain molecular structures, exhibit wastewater treatment removal rates below 48% [87]. These compounds bioaccumulate significantly in aquatic species, with bioconcentration factors in mussels recorded at approximately 120 L/kg for PFDA and 48–81 L/kg for PFOS, leading to prolonged endocrine and immune system dysfunction [88]. Nanomaterials compromise cellular membranes and disrupt redox reactions in plankton, causing metabolic disorders in pathways such as amino acid metabolism, energy metabolism, and substance transport. At high concentrations (50 mg/L), growth inhibition rates can reach 20–30%, accompanied by significant alterations in the expression of protein synthesis-related genes [86]. Collectively, ECs jeopardize the functional balance and biodiversity of aquatic ecosystems through bioaccumulation, ecological toxicity, and metabolic disruption [89].

5.2. Atmospheric Environmental Risks

ECs exert escalating impacts on atmospheric systems and associated ecological processes through intricate physical and chemical pathways [7]. Antibiotics transmitted via aerosols intensify the spread of ARGs. Research indicates elevated concentrations of ARGs in aerosols, with their transmission potentially extending thousands of kilometers under favorable wind and humidity conditions, significantly exacerbating regional resistance proliferation [22]. EDCs enter human systems through ingestion, inhalation, and dermal absorption of indoor dust. BPA, widely detected in indoor dust (0.01–32 μg/g), disrupts endocrine functions even at low exposure levels [90]. MPs, capable of long-range atmospheric transport, act as vectors for antibiotics and other pollutants, compounding the toxicity and complexity of atmospheric contamination [91]. PFASs are transported across long distances in both gaseous and particulate phases. Their environmental behavior is influenced by chain length, with long-chain PFASs (C > 6) exhibiting a strong tendency to bind with particles, while ultrashort-chain perfluoroalkyl acids (C2–C4) are more likely to transfer from the atmosphere to surface waters. Persistent atmospheric deposition makes PFASs a critical environmental issue [92]. Due to their ultrafine size, nanomaterials penetrate biological systems via inhalation, inducing cytotoxicity and DNA damage in alveolar epithelial cells. They disrupt lysosomal membrane integrity and increase permeability, potentially leading to inflammation and cell death [93].

5.3. Soil Ecosystem Risks

ECs pose significant threats to the health and functionality of soil ecosystems through complex migration, transformation, and accumulation processes, impacting microbial communities, ecological balance, and food chain safety [94]. Research indicates that average antibiotic concentrations in northern China’s soils reach 21.79 µg/kg, with levels in farmlands and orchards being 2–3 times higher than in other land-use types. This contamination, strongly associated with applying organic fertilizers and wastewater irrigation, reduces soil microbial diversity and heightens the risk of ARG dissemination [95]. EDCs represent another pollutant class with profound effects on soil ecosystems. These substances demonstrate strong biotoxicity, potentially disrupting soil microbial metabolic pathways and enzyme activities, thereby diminishing soil ecological functionality [96]. MP particles, characterized by high mobility and persistence in soils, create complex pollution systems in conjunction with other contaminants. Through adsorption and biofilm formation, they impair soil organism functions, inducing reproductive toxicity and DNA damage [97]. Due to their nanoscale size and high surface area, nanomaterials present considerable toxicity risks to soil ecosystems. They alter microbial metabolic pathways, disrupt root-zone environments, and traverse food chains to higher trophic levels, exerting long-term adverse effects on ecosystems and human health [98].

5.4. Human Health Risks

ECs infiltrate the human body through various pathways, posing significant health risks. Due to their persistence and bioaccumulation, they cause intricate disruptions to metabolic, immune, endocrine, and gene expression systems [99]. Antibiotics enter the human body via contaminated water sources and the food chain, accelerating the spread of ARGs [100]. Studies reveal that environmental exposure to antibiotics significantly upregulates resistance gene expression in gut microbiota, diminishing the efficacy of antibacterial drugs and heightening the risk of infections [101]. EDCs interfere with hormonal functions by mimicking or blocking endogenous hormone signals, potentially causing health conditions such as obesity, diabetes, reproductive disorders, and cancers [102]. As ubiquitous pollutants, MPs are ingested through inhalation, food, and drinking water, posing health threats, including oxidative stress, inflammatory responses, and metabolic dysregulation [20]. Exposure to PFASs has been associated with a range of adverse health effects, including developmental and reproductive toxicity, immunotoxicity, neurotoxicity, hepatotoxicity, genotoxicity, endocrine disruption, and carcinogenicity [103]. Furthermore, mixed chemical exposures may exhibit additive, antagonistic, or synergistic effects, complicating health risk assessments [104].
Current research on the health risks of ECs in water, air, soil ecosystems, and humans exhibits several critical deficiencies. First, research paradigms remain predominantly focused on individual pollutants’ environmental behavior and toxicity, neglecting the systematic investigation of interactions and synergistic toxicities among multiple pollutants. Second, the limited scope of studies across diverse ecological conditions impedes the development of globally applicable and context-specific risk assessments. Moreover, insufficient attention to nutrient cycling, carbon fixation, and alterations in the structure and functionality of key biological communities in aquatic, atmospheric, and soil ecosystems constrains the understanding of overall ecosystem health and service capacity. In terms of human health, causal research on chronic exposure to ECs remains inadequate. Additionally, uneven regional data distribution, particularly in developing countries, hampers the availability of comprehensive risk assessments and decision-support information. This disparity further restricts the scientific basis for formulating and effectively implementing strategies to manage ECs.

6. Removal Methods for ECs

Wastewater treatment technologies can be broadly categorized into four main types based on their mechanisms and processes: physical, chemical, biological, and hybrid [105]. Each method offers distinct advantages and applicability, playing a crucial role in mitigating ECs (Tables S4 and S5).

6.1. Physical Removal Methods

Physical remediation techniques exhibit notable advantages and diverse application potential in the treatment of ECs [106]. Studies indicate that during the primary treatment phase of MPs, removal rates for fibrous and granular pollutants range from 79% to 83%, with efficiencies for particles and fragments reaching as high as 91% [107]. However, Monsalvo et al. [108] demonstrated that anaerobic membrane bioreactor processes exhibit limited efficacy for certain persistent pesticides, such as atrazine and linuron, achieving removal rates of only 6.8% and 10.5%, respectively. Similarly, Singer et al. [109] reported that conventional secondary treatment and tertiary sand filtration yielded removal rates below 50% for pesticides like atrazine and diuron, and even negative removal rates for certain compounds such as metolachlor. These pronounced discrepancies underscore the critical influence of the physicochemical properties of pollutants on the effectiveness of treatment processes [110].

Adsorption Treatment

Adsorption technology is extensively employed in the removal of ECs [111]. The adsorption efficiency and selectivity are influenced by the physicochemical properties of the pollutants and the functional characteristics of the adsorbent surface [112]. Natural materials are frequently used as adsorbents in water treatment due to their abundance and low cost [113]. Clay minerals, with their high specific surface areas and layered structures, are among the most effective natural adsorbents, demonstrating remarkable adsorption performance for pharmaceutical pollutants [114]. Thiebault et al. [115] demonstrated that sodium montmorillonite achieved adsorption capacities of 223.5 mg/g for tramadol and 263.4 mg/g for dothiepin. Similarly, Huang et al. [116] found that modified β-cyclodextrin materials exhibited excellent adsorption performance and reusability for BPA. Agricultural waste, a cost-effective adsorbent, is increasingly utilized in wastewater treatment [117].

6.2. Chemical Removal Methods

Chemical precipitation, coagulation–flocculation, and other chemical processes play pivotal roles in addressing conventional pollutants in water treatment. Advanced oxidation processes (AOPs) have emerged as indispensable technical solutions for the efficient degradation and mineralization of pollutants, effectively addressing new challenges in water pollution. AOPs encompass catalytic ozonation, electrochemical oxidation, photocatalytic oxidation, and ultrasonic oxidation, all exhibiting exceptional removal efficiencies for ECs [118]. Catalytic ozonation generates hydroxyl radicals through the synergistic interaction of ozone and catalysts, facilitating the rapid decomposition of pollutants [119]. Zhang et al. [120] demonstrated that degradation efficiency using a Cu-CuFe2O4 catalyst is 2.2 times higher than that achieved by ozonation alone. Electrochemical oxidation enables the degradation of recalcitrant pollutants without adding additional chemical reagents. Photocatalytic oxidation employs UV light to activate semiconductor catalysts, generating hydroxyl radicals and achieving significant degradation of various ECs [121]. Ultrasonic oxidation, regarded as an environmentally friendly AOP technology, has garnered attention for its high efficiency in wastewater treatment [122]. Zhang et al. [123] observed that with an ozone flow rate of 80 L/h and an ultrasonic power density of 80 W/L, cyanide removal reached 99.96%, compared to 92% with ozone alone.

6.3. Biological Remediation Methods

Aerobic and anaerobic technologies form the foundation of biological removal methods, offering distinct advantages and considerable application potential in wastewater treatment [124]. Activated sludge systems are particularly effective for removing antibiotic pharmaceuticals. Watkinson et al. [125] demonstrated that activated sludge treatment reduced ciprofloxacin, trimethoprim, and lincomycin concentrations from 0.34–4.6 μg/L to 0.05–0.6 μg/L. In anaerobic treatment, Akcal Comoglu et al. [126] reported that upflow anaerobic sludge blanket reactors achieved chemical COD removal efficiencies of 93–97%. Notably, combined anaerobic–aerobic processes often yield superior outcomes; Shi et al. [127] confirmed that such hybrid systems achieved COD removal rates of 94.7% and 91.8%, respectively.
Enzymatic treatment technology, characterized by high efficiency, environmental sustainability, and operational simplicity, shows significant promise for EC remediation [128]. Studies revealed that chloroperoxidase at a concentration of 20 μg/mL degraded over 88% of levofloxacin and rifaximin within 30 min [129]. Furthermore, Das et al. [130] demonstrated that laccase immobilized on magnetic nanoparticles removed over 99% of chlorpyrifos within 12 h under pH 7 and 60 °C conditions. Both peroxidase and laccase effectively treat industrial pollutants, including phenolic compounds [131].

6.4. Hybrid Treatment Methods

Biologically activated carbon (BAC) forms biofilms on the surface of activated carbon, enabling biological regeneration of the adsorbent and extending its lifespan, thereby effectively removing ECs. Studies revealed that BAC achieved removal rates of over 85% for 52 organic micropollutants in WWTP effluent. For specific drugs such as ibuprofen, acetaminophen, and simvastatin, the removal efficiency reached 96% [132]. Additionally, BAC systems exhibit stable removal performance for EDCs, with BPA removal rates of 90–95% [133]. Furthermore, studies showed that BAC filtration achieved an 81% removal rate for MPs during drinking water treatment [134].
Constructed wetland (CW) technology, as a nature-friendly water treatment method, has shown significant potential in removing ECs. Horizontal subsurface flow wetlands achieved removal rates of 39–98% for complex organic pollutants, with more than 50% removal efficiency for 12 pollutants, highlighting their potential in low-cost wastewater treatment [135]. Vertical flow wetlands, combining plant root filtration and activated carbon matrix adsorption, achieved over 90% overall removal rates for 27 pollutants, with 18 pollutants meeting national discharge standards, further optimizing system efficiency and stability [136]. Studies further indicated that CW performance is influenced by key parameters such as hydraulic retention time, dissolved oxygen, and oxidation–reduction potential, with vertical flow systems demonstrating optimal performance due to superior oxygen transfer properties [137]. Through system optimization and integrated mechanisms, CW technology offers high efficiency and sustainability and provides viable solutions for low-cost and resource-limited regions.

6.5. Interference of Treatment Processes Under Multi-ECs Conditions

The simultaneous presence of multiple ECs frequently leads to competitive interactions during treatment processes. In adsorption-based technologies, contaminants exhibiting higher hydrophobicity, elevated concentrations, or favorable structural attributes often preferentially occupy adsorption sites, thereby diminishing the removal efficiency of coexisting pollutants. Consequently, the actual elimination performance for individual ECs in mixed systems is typically inferior to that observed under single-contaminant scenarios [138]. For instance, studies on ozonation have revealed that varying fractions of organic matter can significantly influence the degradation kinetics of target micropollutants, often suppressing their overall removal efficiency [139]. Such competitive interference underscores the need for process refinement or the incorporation of synergistic treatment approaches, which may, however, increase operational complexity, elevate treatment costs, and lead to the formation of unintended byproducts.
MPs play dual and complex roles in multi-contaminant systems, acting both as pollutant carriers and shielding agents. Their large specific surface area and hydrophobic nature enable them to adsorb a broad spectrum of ECs, thereby reducing the freely dissolved concentrations of these contaminants in the aqueous phase. In the short term, this adsorption may appear beneficial by mitigating interference with biological or oxidative degradation pathways. However, MPs are typically resistant to removal by conventional treatment methods and may be discharged into receiving environments along with the pollutants they carry [140]. This phenomenon becomes particularly concerning when considering the potential for synergistic ecotoxicological effects associated with MP-bound contaminant complexes. Empirical studies have demonstrated that ingestion of such complexes by aquatic organisms can prolong the residence time of toxic substances within biological systems, thereby amplifying their toxic effects [141]. Taken together, these findings highlight the critical role of MPs as “hidden carriers” in multi-contaminant scenarios. Their ability to simultaneously serve as pollutant vectors and protective microenvironments for other ECs presents significant obstacles to effective remediation and poses serious implications for environmental and public health protection.

7. Conclusions and Prospection

With the accelerated global industrialization and urbanization, the environmental distribution and potential hazards of ECs have garnered increasing attention. Compared to previous research on emerging contaminants, studies from the past five years have exhibited explosive growth. Research on ECs is undergoing an unparalleled metamorphosis, marked by perpetually shifting distribution patterns, a deepening comprehension of ecotoxicological mechanisms, and rapidly advancing remediation technologies. A meta-analysis of 327 publications (2020–2024) delineates a dynamic landscape wherein global contamination profiles evolve alongside industrial transitions and exogenous shocks—for example, the 240% escalation in medical waste during the COVID-19 pandemic that profoundly reconfigured worldwide microplastic dispersal. Conceptual frameworks have progressed from isolated compound evaluations to intricate assessments of multi-contaminant consortia, underscoring the predominance of synergistic toxicities and the role of microplastics as clandestine vectors amplifying co-occurring pollutants. Concomitantly, remedial innovations have proliferated: hybrid treatment systems now routinely achieve > 90% removal of recalcitrant species, although economic constraints continue to impede large-scale deployment. Future research should strengthen the following aspects:
(1)
Shift from the single-pollutant and single-medium studies paradigm to comprehensive research on multi-pollutant interactions and all environmental media. Emphasis should be placed on exploring ECs’ migration and transformation mechanisms across water, soil, and air media, as well as the interactions, synergistic, or antagonistic toxic effects among multiple pollutants. This will help construct multidimensional environmental behavior models, providing a scientific basis for comprehensive environmental risk assessment.
(2)
Strengthen research on ECs in developing countries. Enhancing monitoring capabilities can address data gaps in developing regions, contributing to a globally unified database of ECs. This would improve the accuracy and comprehensiveness of global risk assessments.
(3)
Develop technologies for the collaborative treatment of multiple pollutants, enabling the efficient removal of complex pollution systems. Additionally, optimize the integration of treatment technologies to enhance overall remediation performance. Focus should also be given to the economic feasibility of treatment technologies, reducing implementation costs, particularly in resource-constrained areas.
(4)
Enhance public awareness and education regarding ECs. This will increase societal support for pollution control measures. Furthermore, establish multi-stakeholder collaboration platforms to integrate efforts from governments, research institutions, enterprises, and the public, thereby advancing the implementation of emerging pollutant management and providing a robust social foundation for achieving environmental sustainability.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/toxics13080616/s1, Table S1: The detailed search strategy and results for each database (From 2020 to December 2024); Table S2: Country wise concentrations (ng/L, particles/L) of selected ECs in different water matrices; Table S3: Interaction effects of representative ECs mixtures on aquatic organisms and microbial communities; Table S4: The operational cost of different treatment technologies utilized for EC removal from wastewater matrix; Table S5: Removal efficiency of ECs in different water treatment technology. References [142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543] are cited in the supplementary materials.

Author Contributions

Conceptualization, C.W.L.; Methodology, Y.L. (Yue Li), P.X. and F.Y.; Software, Y.L. (Yue Li), Y.L. (Yihui Li), S.Z. and Z.G.; Validation, Y.L. (Yihui Li) and Z.G.; Formal Analysis, Y.L. (Yue Li); Investigation, Y.L. (Yue Li); Resources, Y.L. (Yue Li); Data Curation, Y.L. (Yue Li), T.G. and P.X.; Writing—Original Draft Preparation, Y.L. (Yue Li); Writing—Review and Editing, C.W.L. and P.X.; Visualization, Z.G.; Supervision, C.W.L.; Project Administration, Y.L. (Yue Li); Funding Acquisition, C.W.L. and F.Y. All authors have read and agreed to the published version of the manuscript.

Funding

The present work was funded by the Ministry of Higher Education, Malaysia for niche area research under the Higher institution Centre of Excellence (HICoE) program (JPT(BKPI)1000/016/018/28 JId.3(2) & NANOCAT-2024D), the National Natural Science Foundation of China (42367064), and the Yunnan Thousand Youth Talent Program (YNQR-QNRC-2018-049).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data is contained within the article or Supplementary Materials.

Acknowledgments

The authors acknowledge the support of the Hunan Province Young Backbone Teacher Project for this research.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Kumar Singh, B.; Paul Nathanail, C.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef] [PubMed]
  2. Yu, Y.; Wang, S.; Yu, P.; Wang, D.; Hu, B.; Zheng, P.; Zhang, M. A bibliometric analysis of emerging contaminants (ECs) (2001–2021): Evolution of hotspots and research trends. Sci. Total Environ. 2024, 907, 168116. [Google Scholar] [CrossRef] [PubMed]
  3. Khan, S.; Naushad, M.; Govarthanan, M.; Iqbal, J.; Alfadul, S.M. Emerging contaminants of high concern for the environment: Current trends and future research. Environ. Res. 2022, 207, 112609. [Google Scholar] [CrossRef] [PubMed]
  4. Puri, M.; Gandhi, K.; Kumar, M.S. Emerging environmental contaminants: A global perspective on policies and regulations. J. Environ. Manag. 2023, 332, 117344. [Google Scholar] [CrossRef] [PubMed]
  5. Li, X.; Shen, X.; Jiang, W.; Xi, Y.; Li, S. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies. Ecotoxicol. Environ. Saf. 2024, 278, 116420. [Google Scholar] [CrossRef] [PubMed]
  6. Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
  7. Enyoh, C.E.; Verla, A.W.; Qingyue, W.; Ohiagu, F.O.; Chowdhury, A.H.; Enyoh, E.C.; Chowdhury, T.; Verla, E.N.; Chinwendu, U.P. An overview of emerging pollutants in air: Method of analysis and potential public health concern from human environmental exposure. Trends Environ. Anal. Chem. 2020, 28, e00107. [Google Scholar] [CrossRef]
  8. Wu, S.; Tong, C.; Liu, J. Obesogenic effects of six classes of emerging contaminants. J. Environ. Sci. 2025, 151, 252–272. [Google Scholar] [CrossRef] [PubMed]
  9. Al Aukidy, M.; Verlicchi, P.; Voulvoulis, N. A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Sci. Total Environ. 2014, 493, 54–64. [Google Scholar] [CrossRef] [PubMed]
  10. Corada-Fernández, C.; Candela, L.; Torres-Fuentes, N.; Pintado-Herrera, M.G.; Paniw, M.; González-Mazo, E. Effects of extreme rainfall events on the distribution of selected emerging contaminants in surface and groundwater: The Guadalete River basin (SW, Spain). Sci. Total Environ. 2017, 605, 770–783. [Google Scholar] [CrossRef] [PubMed]
  11. Barroso, P.J.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Crit. Rev. Environ. Sci. Technol. 2019, 49, 104–171. [Google Scholar] [CrossRef]
  12. Khan, N.A.; Khan, S.U.; Ahmed, S.; Farooqi, I.H.; Yousefi, M.; Mohammadi, A.A.; Changani, F. Recent trends in disposal and treatment technologies of emerging-pollutants—A critical review. TrAC Trends Anal. Chem. 2020, 122, 115744. [Google Scholar] [CrossRef]
  13. Fang, Y.; Umasankar, Y.; Ramasamy, R.P. A novel bi-enzyme electrochemical biosensor for selective and sensitive determination of methyl salicylate. Biosens. Bioelectron. 2016, 81, 39–45. [Google Scholar] [CrossRef] [PubMed]
  14. Chen, Q.; Zhu, P.; Xiong, J.; Gao, L.; Tan, K. A sensitive and selective triple-channel optical assay based on red-emissive carbon dots for the determination of PFOS. Microchem. J. 2019, 145, 388–396. [Google Scholar] [CrossRef]
  15. Li, J.; Huang, X.; Ma, J.; Wei, S.; Zhang, H. A novel electrochemical sensor based on molecularly imprinted polymer with binary functional monomers at Fe-doped porous carbon decorated Au electrode for the sensitive detection of lomefloxacin. Ionics 2020, 26, 4183–4192. [Google Scholar] [CrossRef]
  16. Mofijur, M.; Hasan, M.M.; Ahmed, S.F.; Djavanroodi, F.; Fattah, I.M.R.; Silitonga, A.S.; Kalam, M.A.; Zhou, J.L.; Khan, T.M.Y. Advances in identifying and managing emerging contaminants in aquatic ecosystems: Analytical approaches, toxicity assessment, transformation pathways, environmental fate, and remediation strategies. Environ. Pollut. 2024, 341, 122889. [Google Scholar] [CrossRef] [PubMed]
  17. Vera-Chang, M.N.; St-Jacques, A.D.; Gagné, R.; Martyniuk, C.J.; Yauk, C.L.; Moon, T.W.; Trudeau, V.L. Transgenerational hypocortisolism and behavioral disruption are induced by the antidepressant fluoxetine in male zebrafish Danio rerio. Proc. Natl. Acad. Sci. USA 2018, 115, E12435–E12442. [Google Scholar] [CrossRef] [PubMed]
  18. Morales, M.; Martínez-Paz, P.; Sánchez-Argüello, P.; Morcillo, G.; Martínez-Guitarte, J.L. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta. Ecotoxicol. Environ. Saf. 2018, 152, 132–138. [Google Scholar] [CrossRef] [PubMed]
  19. Li, X.; Wang, Y.; Qian, C.; Zheng, Z.; Shi, Y.; Cui, J.; Cai, Y. Perfluoroalkyl acids (PFAAs) in urban surface water of Shijiazhuang, China: Occurrence, distribution, sources and ecological risks. J. Environ. Sci. 2023, 125, 185–193. [Google Scholar] [CrossRef] [PubMed]
  20. Li, Y.; Chen, L.; Zhou, N.; Chen, Y.; Ling, Z.; Xiang, P. Microplastics in the human body: A comprehensive review of exposure, distribution, migration mechanisms, and toxicity. Sci. Total Environ. 2024, 946, 174215. [Google Scholar] [CrossRef] [PubMed]
  21. Das, A. The emerging role of microplastics in systemic toxicity: Involvement of reactive oxygen species (ROS). Sci. Total Environ. 2023, 895, 165076. [Google Scholar] [CrossRef] [PubMed]
  22. Niu, L.; Liu, W.; Juhasz, A.; Chen, J.; Ma, L. Emerging contaminants antibiotic resistance genes and microplastics in the environment: Introduction to 21 review articles published in CREST during 2018–2022. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4135–4146. [Google Scholar] [CrossRef]
  23. Ahmad, H.A.; Ahmad, S.; Cui, Q.; Wang, Z.; Wei, H.; Chen, X.; Ni, S.-Q.; Ismail, S.; Awad, H.M.; Tawfik, A. The environmental distribution and removal of emerging pollutants, highlighting the importance of using microbes as a potential degrader: A review. Sci. Total Environ. 2022, 809, 151926. [Google Scholar] [CrossRef] [PubMed]
  24. Morin-Crini, N.; Lichtfouse, E.; Liu, G.; Balaram, V.; Ribeiro, A.R.L.; Lu, Z.; Stock, F.; Carmona, E.; Teixeira, M.R.; Picos-Corrales, L.A.; et al. Worldwide cases of water pollution by emerging contaminants: A review. Environ. Chem. Lett. 2022, 20, 2311–2338. [Google Scholar] [CrossRef]
  25. Wu, J.; Wang, J.; Li, Z.; Guo, S.; Li, K.; Xu, P.; Ok, Y.S.; Jones, D.L.; Zou, J. Antibiotics and antibiotic resistance genes in agricultural soils: A systematic analysis. Crit. Rev. Environ. Sci. Technol. 2023, 53, 847–864. [Google Scholar] [CrossRef]
  26. Chang, X.; Fang, Y.; Wang, Y.; Wang, F.; Shang, L.; Zhong, R. Microplastic pollution in soils, plants, and animals: A review of distributions, effects and potential mechanisms. Sci. Total Environ. 2022, 850, 157857. [Google Scholar] [CrossRef] [PubMed]
  27. Lu, S.; Wang, J.; Wang, B.; Xin, M.; Lin, C.; Gu, X.; Lian, M.; Li, Y. Comprehensive profiling of the distribution, risks and priority of pharmaceuticals and personal care products: A large-scale study from rivers to coastal seas. Water Res. 2023, 230, 119591. [Google Scholar] [CrossRef] [PubMed]
  28. Ciślak, M.; Kruszelnicka, I.; Zembrzuska, J.; Ginter-Kramarczyk, D. Estrogen pollution of the European aquatic environment: A critical review. Water Res. 2023, 229, 119413. [Google Scholar] [CrossRef] [PubMed]
  29. Ehsan, M.N.; Riza, M.; Pervez, M.N.; Khyum, M.M.O.; Liang, Y.; Naddeo, V. Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Sci. Total Environ. 2023, 878, 163123. [Google Scholar] [CrossRef] [PubMed]
  30. Ogunlaja, A.; Ogunlaja, O.O.; Olukanni, O.D.; Taylor, G.O.; Olorunnisola, C.G.; Dougnon, V.T.; Mousse, W.; Fatta-Kassinos, D.; Msagati, T.A.M.; Unuabonah, E.I. Antibiotic resistomes and their chemical residues in aquatic environments in Africa. Environ. Pollut. 2022, 312, 119783. [Google Scholar] [CrossRef] [PubMed]
  31. Böger, B.; Surek, M.; Vilhena, R.d.O.; Fachi, M.M.; Junkert, A.M.; Santos, J.M.M.F.; Domingos, E.L.; Cobre, A.d.F.; Momade, D.R.; Pontarolo, R. Occurrence of antibiotics and antibiotic resistant bacteria in subtropical urban rivers in Brazil. J. Hazard. Mater. 2021, 402, 123448. [Google Scholar] [CrossRef] [PubMed]
  32. Leterme, S.C.; Tuuri, E.M.; Drummond, W.J.; Jones, R.; Gascooke, J.R. Microplastics in urban freshwater streams in Adelaide, Australia: A source of plastic pollution in the Gulf St Vincent. Sci. Total Environ. 2023, 856, 158672. [Google Scholar] [CrossRef] [PubMed]
  33. Nguyen, H.T.; Thai, P.K.; Kaserzon, S.L.; O’Brien, J.W.; Mueller, J.F. Nationwide occurrence and discharge mass load of per- and polyfluoroalkyl substances in effluent and biosolids: A snapshot from 75 wastewater treatment plants across Australia. J. Hazard. Mater. 2024, 470, 134203. [Google Scholar] [CrossRef] [PubMed]
  34. Kumar, M.; Sridharan, S.; Sawarkar, A.D.; Shakeel, A.; Anerao, P.; Mannina, G.; Sharma, P.; Pandey, A. Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Sci. Total Environ. 2023, 859, 160031. [Google Scholar] [CrossRef] [PubMed]
  35. Meyer, M.F.; Powers, S.M.; Hampton, S.E. An Evidence Synthesis of Pharmaceuticals and Personal Care Products (PPCPs) in the Environment: Imbalances among Compounds, Sewage Treatment Techniques, and Ecosystem Types. Environ. Sci. Technol. 2019, 53, 12961–12973. [Google Scholar] [CrossRef] [PubMed]
  36. Anh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al. Antibiotics in surface water of East and Southeast Asian countries: A focused review on contamination status, pollution sources, potential risks, and future perspectives. Sci. Total Environ. 2021, 764, 142865. [Google Scholar] [CrossRef] [PubMed]
  37. Kohanski, M.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
  38. Zhang, X.; Cai, T.; Zhang, S.; Hou, J.; Cheng, L.; Chen, W.; Zhang, Q. Contamination distribution and non-biological removal pathways of typical tetracycline antibiotics in the environment: A review. J. Hazard. Mater. 2024, 463, 132862. [Google Scholar] [CrossRef] [PubMed]
  39. Ghimpețeanu, O.M.; Pogurschi, E.N.; Popa, D.C.; Dragomir, N.; Drăgotoiu, T.; Mihai, O.D.; Petcu, C.D. Antibiotic Use in Livestock and Residues in Food—A Public Health Threat: A Review. Foods 2022, 11, 1430. [Google Scholar] [CrossRef] [PubMed]
  40. Chen, J.; Sun, R.; Pan, C.; Sun, Y.; Mai, B.; Li, Q.X. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef] [PubMed]
  41. Haenni, M.; Dagot, C.; Chesneau, O.; Bibbal, D.; Labanowski, J.; Vialette, M.; Bouchard, D.; Martin-Laurent, F.; Calsat, L.; Nazaret, S.; et al. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. Environ. Int. 2022, 159, 107047. [Google Scholar] [CrossRef] [PubMed]
  42. Ojoghoro, J.O.; Scrimshaw, M.D.; Sumpter, J.P. Steroid hormones in the aquatic environment. Sci. Total Environ. 2021, 792, 148306. [Google Scholar] [CrossRef] [PubMed]
  43. Vryzas, Z.; Ramwell, C.; Sans, C. Pesticide prioritization approaches and limitations in environmental monitoring studies: From Europe to Latin America and the Caribbean. Environ. Int. 2020, 143, 105917. [Google Scholar] [CrossRef] [PubMed]
  44. Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Prakash, A.; Tiwari, R. Environmental Endocrine-Disrupting Chemical Exposure: Role in Non-Communicable Diseases. Front. Public Health 2020, 8, 553850. [Google Scholar] [CrossRef] [PubMed]
  45. Bornman Maria, S.; Aneck-Hahn Natalie, H.; de Jager, C.; Wagenaar Gesina, M.; Bouwman, H.; Barnhoorn Irene, E.J.; Patrick Sean, M.; Vandenberg Laura, N.; Kortenkamp, A.; Blumberg, B.; et al. Endocrine Disruptors and Health Effects in Africa: A Call for Action. Environ. Health Perspect. 2017, 125, 085005. [Google Scholar] [CrossRef] [PubMed]
  46. Rotimi, O.A.; Olawole, T.D.; De Campos, O.C.; Adelani, I.B.; Rotimi, S.O. Bisphenol A in Africa: A review of environmental and biological levels. Sci. Total Environ. 2021, 764, 142854. [Google Scholar] [CrossRef] [PubMed]
  47. Dimitrakopoulou, M.-E.; Karvounis, M.; Marinos, G.; Theodorakopoulou, Z.; Aloizou, E.; Petsangourakis, G.; Papakonstantinou, M.; Stoitsis, G. Comprehensive analysis of PFAS presence from environment to plate. npj Sci. Food 2024, 8, 80. [Google Scholar] [CrossRef] [PubMed]
  48. Muir, D.; Bossi, R.; Carlsson, P.; Evans, M.; De Silva, A.; Halsall, C.; Rauert, C.; Herzke, D.; Hung, H.; Letcher, R.; et al. Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment—An update. Emerg. Contam. 2019, 5, 240–271. [Google Scholar] [CrossRef]
  49. Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef] [PubMed]
  50. Baluyot, J.C.; Reyes, E.M.; Velarde, M.C. Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia’s freshwater resources. Environ. Res. 2021, 197, 111122. [Google Scholar] [CrossRef] [PubMed]
  51. Singh, K.; Kumar, N.; Kumar Yadav, A.; Singh, R.; Kumar, K. Per-and polyfluoroalkyl substances (PFAS) as a health hazard: Current state of knowledge and strategies in environmental settings across Asia and future perspectives. Chem. Eng. J. 2023, 475, 145064. [Google Scholar] [CrossRef]
  52. Ssebugere, P.; Sillanpää, M.; Matovu, H.; Wang, Z.; Schramm, K.-W.; Omwoma, S.; Wanasolo, W.; Ngeno, E.C.; Odongo, S. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. Sci. Total Environ. 2020, 739, 139913. [Google Scholar] [CrossRef] [PubMed]
  53. Rauert, C.; Harner, T.; Schuster, J.K.; Eng, A.; Fillmann, G.; Castillo, L.E.; Fentanes, O.; Villa Ibarra, M.; Miglioranza, K.S.B.; Moreno Rivadeneira, I.; et al. Atmospheric Concentrations of New Persistent Organic Pollutants and Emerging Chemicals of Concern in the Group of Latin America and Caribbean (GRULAC) Region. Environ. Sci. Technol. 2018, 52, 7240–7249. [Google Scholar] [CrossRef] [PubMed]
  54. Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty years of microplastic pollution research—What have we learned? Science 2024, 386, eadl2746. [Google Scholar] [CrossRef] [PubMed]
  55. Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed]
  56. Prata, J.C.; Silva, A.L.P.; Walker, T.R.; Duarte, A.C.; Rocha-Santos, T. COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environ. Sci. Technol. 2020, 54, 7760–7765. [Google Scholar] [CrossRef] [PubMed]
  57. Ashraf, M.; Siddiqui, M.T.; Galodha, A.; Anees, S.; Lall, B.; Chakma, S.; Ahammad, S.Z. Pharmaceuticals and personal care product modelling: Unleashing artificial intelligence and machine learning capabilities and impact on one health and sustainable development goals. Sci. Total Environ. 2024, 955, 176999. [Google Scholar] [CrossRef] [PubMed]
  58. Yang, W.; Li, J.; Yao, Z.; Li, M. A review on the alternatives to antibiotics and the treatment of antibiotic pollution: Current development and future prospects. Sci. Total Environ. 2024, 926, 171757. [Google Scholar] [CrossRef] [PubMed]
  59. Sabba, F.; Kassar, C.; Zeng, T.; Mallick, S.; Downing, L.; McNamara, P. PFAS in Landfill Leachate: Practical Considerations for Treatment and Characterization. J. Hazard. Mater. 2024, 481, 136685. [Google Scholar] [CrossRef] [PubMed]
  60. Liu, L.; Liu, C.; Fu, R.; Nie, F.; Zuo, W.; Tian, Y.; Zhang, J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. Chemosphere 2024, 363, 142854. [Google Scholar] [CrossRef] [PubMed]
  61. Li, Y.; Deng, Y.; Hu, C.; Li, D.; Zhang, J.; Zhou, N. Microplastic pollution in urban rivers within China’s Danxia landforms: Spatial distribution characteristics, migration, and risk assessment. Sci. Total Environ. 2024, 910, 168610. [Google Scholar] [CrossRef] [PubMed]
  62. Souza, H.d.O.; Costa, R.d.S.; Quadra, G.R.; Fernandez, M.A.d.S. Pharmaceutical pollution and sustainable development goals: Going the right way? Sustain. Chem. Pharm. 2021, 21, 100428. [Google Scholar] [CrossRef]
  63. Liu, X.; Gu, S.; Yang, S.; Deng, J.; Xu, J. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Sci. Total Environ. 2021, 779, 146438. [Google Scholar] [CrossRef] [PubMed]
  64. Meng, L.; Gao, S.; Zhang, S.; Che, X.; Jiao, Z.; Ren, Y.; Wang, C. Identification of atmospheric emerging contaminants from industrial emissions: A case study of halogenated hydrocarbons emitted by the pharmaceutical industry. Environ. Int. 2024, 192, 109027. [Google Scholar] [CrossRef] [PubMed]
  65. Cheng, Z.; Shi, Q.; Wang, Y.; Zhao, L.; Li, X.; Sun, Z.; Lu, Y.; Liu, N.; Su, G.; Wang, L.; et al. Electronic-Waste-Driven Pollution of Liquid Crystal Monomers: Environmental Occurrence and Human Exposure in Recycling Industrial Parks. Environ. Sci. Technol. 2022, 56, 2248–2257. [Google Scholar] [CrossRef] [PubMed]
  66. Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
  67. Guo, C.; Liu, X.; He, X. A global meta-analysis of crop yield and agricultural greenhouse gas emissions under nitrogen fertilizer application. Sci. Total Environ. 2022, 831, 154982. [Google Scholar] [CrossRef] [PubMed]
  68. Bhattacharyya, S.S.; Leite, F.F.G.D.; France, C.L.; Adekoya, A.O.; Ros, G.H.; de Vries, W.; Melchor-Martínez, E.M.; Iqbal, H.M.N.; Parra-Saldívar, R. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 2022, 826, 154161. [Google Scholar] [CrossRef] [PubMed]
  69. Pan, B.; Tian, H.; Pan, B.; Zhong, T.; Xin, M.; Ding, J.; Wei, J.; Huang, H.-J.; Tang, J.-Q.; Zhang, F.; et al. Investigating the environmental dynamics of emerging pollutants in response to global climate change: Insights from bibliometrics-based visualization analysis. Sci. Total Environ. 2024, 957, 177758. [Google Scholar] [CrossRef] [PubMed]
  70. Anastopoulos, I.; Pashalidis, I.; Orfanos, A.G.; Manariotis, I.D.; Tatarchuk, T.; Sellaoui, L.; Bonilla-Petriciolet, A.; Mittal, A.; Núñez-Delgado, A. Removal of caffeine, nicotine and amoxicillin from (waste)waters by various adsorbents. A review. J. Environ. Manag. 2020, 261, 110236. [Google Scholar] [CrossRef] [PubMed]
  71. Wei, Y.; Cui, M.; Ye, Z.; Guo, Q. Environmental challenges from the increasing medical waste since SARS outbreak. J. Clean. Prod. 2021, 291, 125246. [Google Scholar] [CrossRef] [PubMed]
  72. Khan, N.A.; Vambol, V.; Vambol, S.; Bolibrukh, B.; Sillanpaa, M.; Changani, F.; Esrafili, A.; Yousefi, M. Hospital effluent guidelines and legislation scenario around the globe: A critical review. J. Environ. Chem. Eng. 2021, 9, 105874. [Google Scholar] [CrossRef]
  73. Hu, P.; Qian, Y.; Radian, A.; Xu, M.; Guo, C.; Gu, J.-D. A global metagenomics-based analysis of BPA degradation and its coupling with nitrogen, sulfur, and methane metabolism in landfill leachates. J. Hazard. Mater. 2024, 477, 135395. [Google Scholar] [CrossRef] [PubMed]
  74. Devendrapandi, G.; Liu, X.; Balu, R.; Ayyamperumal, R.; Valan Arasu, M.; Lavanya, M.; Minnam Reddy, V.R.; Kim, W.K.; Karthika, P.C. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. Environ. Res. 2024, 249, 118404. [Google Scholar] [CrossRef] [PubMed]
  75. Huang, Y.-h.; Dsikowitzky, L.; Yang, F.; Schwarzbauer, J. Emerging contaminants in municipal wastewaters and their relevance for the surface water contamination in the tropical coastal city Haikou, China. Estuar. Coast. Shelf Sci. 2020, 235, 106611. [Google Scholar] [CrossRef]
  76. Propp, V.R.; De Silva, A.O.; Spencer, C.; Brown, S.J.; Catingan, S.D.; Smith, J.E.; Roy, J.W. Organic contaminants of emerging concern in leachate of historic municipal landfills. Environ. Pollut. 2021, 276, 116474. [Google Scholar] [CrossRef] [PubMed]
  77. Fida, M.; Li, P.; Alam, S.M.K.; Wang, Y.; Nsabimana, A.; Shrestha, P.S. Review of Groundwater Nitrate Pollution from Municipal Landfill Leachates: Implications for Environmental and Human Health and Leachate Treatment Technologies. Expo. Health 2024, 16, 1225–1249. [Google Scholar] [CrossRef]
  78. Tong, X.; Mohapatra, S.; Zhang, J.; Tran, N.H.; You, L.; He, Y.; Gin, K.Y.-H. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res. 2022, 217, 118418. [Google Scholar] [CrossRef] [PubMed]
  79. Yashir, N.; Sun, Q.; Zhang, X.; Ma, M.; Wang, D.; Feng, Y.; Song, X. Co-occurrence of microplastics, PFASs, antibiotics, and antibiotic resistance genes in groundwater and their composite impacts on indigenous microbial communities: A field study. Sci. Total Environ. 2025, 961, 178373. [Google Scholar] [CrossRef] [PubMed]
  80. Alimi, O.S.; Farner Budarz, J.; Hernandez, L.M.; Tufenkji, N. Microplastics and Nanoplastics in Aquatic Environments: Aggregation, Deposition, and Enhanced Contaminant Transport. Environ. Sci. Technol. 2018, 52, 1704–1724. [Google Scholar] [CrossRef] [PubMed]
  81. Barhoumi, B.; Sander, S.G.; Tolosa, I. A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. Environ. Res. 2022, 206, 112595. [Google Scholar] [CrossRef] [PubMed]
  82. Rathi, B.S.; Kumar, P.S.; Show, P.-L. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J. Hazard. Mater. 2021, 409, 124413. [Google Scholar] [CrossRef] [PubMed]
  83. Saidulu, D.; Gupta, B.; Gupta, A.K.; Ghosal, P.S. A review on occurrences, eco-toxic effects, and remediation of emerging contaminants from wastewater: Special emphasis on biological treatment based hybrid systems. J. Environ. Chem. Eng. 2021, 9, 105282. [Google Scholar] [CrossRef]
  84. Su, C.; Cui, Y.; Liu, D.; Zhang, H.; Baninla, Y. Endocrine disrupting compounds, pharmaceuticals and personal care products in the aquatic environment of China: Which chemicals are the prioritized ones? Sci. Total Environ. 2020, 720, 137652. [Google Scholar] [CrossRef] [PubMed]
  85. Yu, F.; Wu, J.; Wang, H.; Bao, Y.; Xing, H.; Ye, W.; Li, X.; Huang, M. Interaction of microplastics with perfluoroalkyl and polyfluoroalkyl substances in water: A review of the fate, mechanisms and toxicity. Sci. Total Environ. 2024, 948, 175000. [Google Scholar] [CrossRef] [PubMed]
  86. Zhang, Y.; Li, X.; Liang, J.; Luo, Y.; Tang, N.; Ye, S.; Zhu, Z.; Xing, W.; Guo, J.; Zhang, H. Microcystis aeruginosa’s exposure to an antagonism of nanoplastics and MWCNTs: The disorders in cellular and metabolic processes. Chemosphere 2022, 288, 132516. [Google Scholar] [CrossRef] [PubMed]
  87. Liu, S.-S.; You, W.-D.; Chen, C.-E.; Wang, X.-Y.; Yang, B.; Ying, G.-G. Occurrence, fate and ecological risks of 90 typical emerging contaminants in full-scale textile wastewater treatment plants from a large industrial park in Guangxi, Southwest China. J. Hazard. Mater. 2023, 449, 131048. [Google Scholar] [CrossRef] [PubMed]
  88. Álvarez-Ruiz, R.; Picó, Y.; Campo, J. Bioaccumulation of emerging contaminants in mussel (Mytilus galloprovincialis): Influence of microplastics. Sci. Total Environ. 2021, 796, 149006. [Google Scholar] [CrossRef] [PubMed]
  89. Rathi, B.S.; Kumar, P.S.; Vo, D.-V.N. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. Sci. Total Environ. 2021, 797, 149134. [Google Scholar] [CrossRef] [PubMed]
  90. Zhu, L.; Hajeb, P.; Fauser, P.; Vorkamp, K. Endocrine disrupting chemicals in indoor dust: A review of temporal and spatial trends, and human exposure. Sci. Total Environ. 2023, 874, 162374. [Google Scholar] [CrossRef] [PubMed]
  91. Nafea, T.H.; Chan, F.K.S.; Xu, Y.; Wang, C.; Wang, X.; Zhao, W.; Ji, D.; Xiao, H.; He, J. Microplastics Aloft: A comprehensive exploration of sources, transport, variations, interactions and their implications on human health in the atmospheric realm. Earth-Sci. Rev. 2024, 255, 104864. [Google Scholar] [CrossRef]
  92. Wang, Y.; Good, K.D. Microplastics and PFAS air-water interaction and deposition. Sci. Total Environ. 2024, 954, 176247. [Google Scholar] [CrossRef] [PubMed]
  93. Yamini, V.; Shanmugam, V.; Rameshpathy, M.; Venkatraman, G.; Ramanathan, G.; Al Garalleh, H.; Hashmi, A.; Brindhadevi, K.; Devi Rajeswari, V. Environmental effects and interaction of nanoparticles on beneficial soil and aquatic microorganisms. Environ. Res. 2023, 236, 116776. [Google Scholar] [CrossRef] [PubMed]
  94. Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef] [PubMed]
  95. Li, M.; Yang, L.; Yen, H.; Zhao, F.; Wang, X.; Zhou, T.; Feng, Q.; Chen, L. Occurrence, spatial distribution and ecological risks of antibiotics in soil in urban agglomeration. J. Environ. Sci. 2023, 125, 678–690. [Google Scholar] [CrossRef] [PubMed]
  96. Liu, A.; Wang, W.; Chen, X.; Zheng, X.; Fu, W.; Wang, G.; Ji, J.; Guan, C. Rice-associated with Bacillus sp. DRL1 enhanced remediation of DEHP-contaminated soil and reduced the risk of secondary pollution through promotion of plant growth, degradation of DEHP in soil and modulation of rhizosphere bacterial community. J. Hazard. Mater. 2022, 440, 129822. [Google Scholar] [CrossRef]
  97. Guo, J.-J.; Huang, X.-P.; Xiang, L.; Wang, Y.-Z.; Li, Y.-W.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef] [PubMed]
  98. Adhikari, T.; Dharmarajan, R. Nanocontaminants in soil: Emerging concerns and risks. Int. J. Environ. Sci. Technol. 2022, 19, 9129–9148. [Google Scholar] [CrossRef]
  99. Deng, Q.; He, B.; Shen, M.; Ge, J.; Du, B.; Zeng, L. First Evidence of Hindered Amine Light Stabilizers As Abundant, Ubiquitous, Emerging Pollutants in Dust and Air Particles: A New Concern for Human Health. Environ. Sci. Technol. 2024, 58, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
  100. Shi, X.; Xia, Y.; Wei, W.; Ni, B.-J. Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: Roles and mechanisms. Water Res. 2022, 224, 119060. [Google Scholar] [CrossRef] [PubMed]
  101. Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Wei, Q.; Wei, D. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. J. Hazard. Mater. 2020, 387, 121682. [Google Scholar] [CrossRef] [PubMed]
  102. Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; Maslukah, L.; Safinatunnajah, N.; Kusumastuti, W. Endocrine disrupting chemicals (EDCs) in environmental matrices: Occurrence, fate, health impact, physio-chemical and bioremediation technology. Environ. Pollut. 2022, 302, 119061. [Google Scholar] [CrossRef] [PubMed]
  103. Ojo, A.F.; Peng, C.; Ng, J.C. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. J. Hazard. Mater. 2021, 407, 124863. [Google Scholar] [CrossRef] [PubMed]
  104. Sigurnjak Bureš, M.; Cvetnić, M.; Miloloža, M.; Kučić Grgić, D.; Markić, M.; Kušić, H.; Bolanča, T.; Rogošić, M.; Ukić, Š. Modeling the toxicity of pollutants mixtures for risk assessment: A review. Environ. Chem. Lett. 2021, 19, 1629–1655. [Google Scholar] [CrossRef]
  105. Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment technologies for emerging contaminants in wastewater treatment plants: A review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef] [PubMed]
  106. Rathi, B.S.; Kumar, P.S. Application of adsorption process for effective removal of emerging contaminants from water and wastewater. Environ. Pollut. 2021, 280, 116995. [Google Scholar] [CrossRef] [PubMed]
  107. Long, Z.; Pan, Z.; Wang, W.; Ren, J.; Yu, X.; Lin, L.; Lin, H.; Chen, H.; Jin, X. Microplastic abundance, characteristics, and removal in wastewater treatment plants in a coastal city of China. Water Res. 2019, 155, 255–265. [Google Scholar] [CrossRef] [PubMed]
  108. Monsalvo, V.M.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of trace organics by anaerobic membrane bioreactors. Water Res. 2014, 49, 103–112. [Google Scholar] [CrossRef] [PubMed]
  109. Singer, H.; Jaus, S.; Hanke, I.; Lück, A.; Hollender, J.; Alder, A.C. Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water. Environ. Pollut. 2010, 158, 3054–3064. [Google Scholar] [CrossRef] [PubMed]
  110. Patel, A.K.; Singhania, R.R.; Albarico, F.P.J.B.; Pandey, A.; Chen, C.-W.; Dong, C.-D. Organic wastes bioremediation and its changing prospects. Sci. Total Environ. 2022, 824, 153889. [Google Scholar] [CrossRef] [PubMed]
  111. Do Minh, T.; Song, J.; Deb, A.; Cha, L.; Srivastava, V.; Sillanpää, M. Biochar based catalysts for the abatement of emerging pollutants: A review. Chem. Eng. J. 2020, 394, 124856. [Google Scholar] [CrossRef]
  112. Awad, A.M.; Jalab, R.; Benamor, A.; Nasser, M.S.; Ba-Abbad, M.M.; El-Naas, M.; Mohammad, A.W. Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview. J. Mol. Liq. 2020, 301, 112335. [Google Scholar] [CrossRef]
  113. Godage, N.H.; Gionfriddo, E. Use of natural sorbents as alternative and green extractive materials: A critical review. Anal. Chim. Acta 2020, 1125, 187–200. [Google Scholar] [CrossRef] [PubMed]
  114. Thiebault, T. Raw and modified clays and clay minerals for the removal of pharmaceutical products from aqueous solutions: State of the art and future perspectives. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1451–1514. [Google Scholar] [CrossRef]
  115. Thiebault, T.; Guégan, R.; Boussafir, M. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products. J. Colloid Interface Sci. 2015, 453, 1–8. [Google Scholar] [CrossRef] [PubMed]
  116. Huang, W.; Hu, Y.; Li, Y.; Zhou, Y.; Niu, D.; Lei, Z.; Zhang, Z. Citric acid-crosslinked β-cyclodextrin for simultaneous removal of bisphenol A, methylene blue and copper: The roles of cavity and surface functional groups. J. Taiwan Inst. Chem. Eng. 2018, 82, 189–197. [Google Scholar] [CrossRef]
  117. Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I. The utilization of leaf-based adsorbents for dyes removal: A review. J. Mol. Liq. 2019, 276, 728–747. [Google Scholar] [CrossRef]
  118. Shanmugavel, S.P.; Kumar, G. Recent progress in mineralization of emerging contaminants by advanced oxidation process: A review. Environ. Pollut. 2024, 341, 122842. [Google Scholar]
  119. Niu, J.; Yuan, R.; Chen, H.; Zhou, B.; Luo, S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. Environ. Res. 2024, 262, 119889. [Google Scholar] [CrossRef] [PubMed]
  120. Zhang, L.; Li, Y.; Guo, J.; Kan, Z.; Jia, Y. Catalytic ozonation mechanisms of Norfloxacin using Cu–CuFe2O4. Environ. Res. 2023, 216, 114521. [Google Scholar] [CrossRef] [PubMed]
  121. Chen, Y.; Yang, J.; Zeng, L.; Zhu, M. Recent progress on the removal of antibiotic pollutants using photocatalytic oxidation process. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1401–1448. [Google Scholar] [CrossRef]
  122. Song, K.; Liu, Y.; Umar, A.; Ma, H.; Wang, H. Ultrasonic cavitation: Tackling organic pollutants in wastewater. Chemosphere 2024, 350, 141024. [Google Scholar] [CrossRef] [PubMed]
  123. Zhang, H.; Zhang, Y.; Qiao, T.; Hu, S.; Liu, J.; Zhu, R.; Yang, K.; Li, S.; Zhang, L. Study on ultrasonic enhanced ozone oxidation of cyanide-containing wastewater. Sep. Purif. Technol. 2022, 303, 122258. [Google Scholar] [CrossRef]
  124. Shah, A.; Shah, M. Characterisation and bioremediation of wastewater: A review exploring bioremediation as a sustainable technique for pharmaceutical wastewater. Groundw. Sustain. Dev. 2020, 11, 100383. [Google Scholar] [CrossRef]
  125. Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef] [PubMed]
  126. Akcal Comoglu, B.; Filik Iscen, C.; Ilhan, S. The anaerobic treatment of pharmaceutical industry wastewater in an anaerobic batch and upflow packed-bed reactor. Desalination Water Treat. 2016, 57, 6278–6289. [Google Scholar] [CrossRef]
  127. Shi, X.; Lefebvre, O.; Ng, K.K.; Ng, H.Y. Sequential anaerobic–aerobic treatment of pharmaceutical wastewater with high salinity. Bioresour. Technol. 2014, 153, 79–86. [Google Scholar] [CrossRef] [PubMed]
  128. Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging contaminants of high concern and their enzyme-assisted biodegradation—A review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef] [PubMed]
  129. Song, Y.; Ding, Y.; Wang, F.; Chen, Y.; Jiang, Y. Construction of nano-composites by enzyme entrapped in mesoporous dendritic silica particles for efficient biocatalytic degradation of antibiotics in wastewater. Chem. Eng. J. 2019, 375, 121968. [Google Scholar] [CrossRef]
  130. Das, A.; Singh, J. Laccase immobilized magnetic iron nanoparticles: Fabrication and its performance evaluation in chlorpyrifos degradation. Int. Biodeterior. Biodegrad. 2017, 117, 183–189. [Google Scholar] [CrossRef]
  131. Fathali, Z.; Rezaei, S.; Faramarzi, M.A.; Habibi-Rezaei, M. Catalytic phenol removal using entrapped cross-linked laccase aggregates. Int. J. Biol. Macromol. 2019, 122, 359–366. [Google Scholar] [CrossRef] [PubMed]
  132. Choi, S.; Yoom, H.; Son, H.; Seo, C.; Kim, K.; Lee, Y.; Kim, Y.M. Removal efficiency of organic micropollutants in successive wastewater treatment steps in a full-scale wastewater treatment plant: Bench-scale application of tertiary treatment processes to improve removal of organic micropollutants persisting after secondary treatment. Chemosphere 2022, 288, 132629. [Google Scholar] [PubMed]
  133. Sudhakar, P.; Mall, I.D.; Srivastava, V.C. Adsorptive removal of bisphenol-A by rice husk ash and granular activated carbon—A comparative study. Desalination Water Treat. 2016, 57, 12375–12384. [Google Scholar] [CrossRef]
  134. Wu, J.; Zhang, Y.; Tang, Y. Fragmentation of microplastics in the drinking water treatment process–A case study in Yangtze River region, China. Sci. Total Environ. 2022, 806, 150545. [Google Scholar] [CrossRef] [PubMed]
  135. Ilyas, H.; Masih, I.; van Hullebusch, E.J.W.S. The anaerobic biodegradation of emerging organic contaminants by horizontal subsurface flow constructed wetlands. Water Sci. Technol. 2021, 83, 2809–2828. [Google Scholar] [CrossRef] [PubMed]
  136. Venditti, S.; Brunhoferova, H.; Hansen, J. Behaviour of 27 selected emerging contaminants in vertical flow constructed wetlands as post-treatment for municipal wastewater. Sci. Total Environ. 2022, 819, 153234. [Google Scholar] [CrossRef] [PubMed]
  137. Vymazal, J.; Dvořáková Březinová, T.; Koželuh, M.; Kule, L. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic—The first year of monitoring. Ecol. Eng. 2017, 98, 354–364. [Google Scholar] [CrossRef]
  138. Lu, N.; Liu, F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. Adv. Mater. 2024, 36, 2311419. [Google Scholar] [CrossRef] [PubMed]
  139. van Gijn, K.; Zhao, Y.; Balasubramaniam, A.; de Wilt, H.A.; Carlucci, L.; Langenhoff, A.A.M.; Rijnaarts, H.H.M. The effect of organic matter fractions on micropollutant ozonation in wastewater effluents. Water Res. 2022, 222, 118933. [Google Scholar] [CrossRef] [PubMed]
  140. Sharma, S.; Basu, S.; Shetti, N.P.; Nadagouda, M.N.; Aminabhavi, T.M. Microplastics in the environment: Occurrence, perils, and eradication. Chem. Eng. J. 2021, 408, 127317. [Google Scholar] [CrossRef] [PubMed]
  141. Gerbersdorf, S.U.; Cimatoribus, C.; Class, H.; Engesser, K.-H.; Helbich, S.; Hollert, H.; Lange, C.; Kranert, M.; Metzger, J.; Nowak, W.; et al. Anthropogenic Trace Compounds (ATCs) in aquatic habitats—Research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. Environ. Int. 2015, 79, 85–105. [Google Scholar] [CrossRef] [PubMed]
  142. Abdel Ghani, S.A.; El-Sayed, A.A.M.; Ibrahim, M.I.A.; Ghobashy, M.M.; Shreadah, M.A.; Shabaka, S. Characterization and distribution of plastic particles along Alexandria beaches, Mediterranean Coast of Egypt, using microscopy and thermal analysis techniques. Sci. Total Environ. 2022, 834, 155363. [Google Scholar] [CrossRef] [PubMed]
  143. Abril, C.; Santos, J.L.; Martín, J.; Aparicio, I.; Alonso, E. Occurrence, fate and environmental risk of anionic surfactants, bisphenol A, perfluorinated compounds and personal care products in sludge stabilization treatments. Sci. Total Environ. 2020, 711, 135048. [Google Scholar] [CrossRef] [PubMed]
  144. Ademollo, N.; Spataro, F.; Rauseo, J.; Pescatore, T.; Fattorini, N.; Valsecchi, S.; Polesello, S.; Patrolecco, L. Occurrence, distribution and pollution pattern of legacy and emerging organic pollutants in surface water of the Kongsfjorden (Svalbard, Norway): Environmental contamination, seasonal trend and climate change. Mar. Pollut. Bull. 2021, 163, 111900. [Google Scholar] [CrossRef] [PubMed]
  145. Adeyinka, G.C.; Afolabi, F.; Bakare, B.F. Evaluating the fate and potential health risks of organochlorine pesticides and triclosan in soil, sediment, and water from Asa Dam River, Ilorin Kwara State, Nigeria. Environ. Monit. Assess. 2022, 195, 189. [Google Scholar] [CrossRef] [PubMed]
  146. Adomat, Y.; Grischek, T. Occurrence, fate and potential risks of pharmaceuticals and personal care products (PPCPs) in Elbe river water during water treatment in Dresden, Germany. Environ. Chall. 2024, 15. [Google Scholar] [CrossRef]
  147. Aemig, Q.; Hélias, A.; Patureau, D. Impact assessment of a large panel of organic and inorganic micropollutants released by wastewater treatment plants at the scale of France. Water Res. 2021, 188, 116524. [Google Scholar] [CrossRef] [PubMed]
  148. Ahmed, F.; Tscharke, B.; O’bRien, J.W.; Hall, W.D.; Cabot, P.J.; Sowa, P.M.; Samanipour, S.; Thomas, K.V. National Wastewater Reconnaissance of Analgesic Consumption in Australia. Environ. Sci. Technol. 2023, 57, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
  149. Akdemir, T.; Gedik, K. Microplastic emission trends in Turkish primary and secondary municipal wastewater treatment plant effluents discharged into the Sea of Marmara and Black Sea. Environ. Res. 2023, 231, 116188. [Google Scholar] [CrossRef] [PubMed]
  150. Akdogan, Z.; Guven, B.; Kideys, A.E. Microplastic distribution in the surface water and sediment of the Ergene River. Environ. Res. 2023, 234, 116500. [Google Scholar] [CrossRef] [PubMed]
  151. Al-Mansoori, M.; Stephenson, M.; Harrad, S.; Abdallah, M.A.-E. Synthetic Microplastics in UK tap and bottled water; Implications for human exposure. Emerg. Contam. 2025, 11, 100417. [Google Scholar] [CrossRef]
  152. Al Nahian, S.; Rakib, M.R.J.; Haider, S.M.B.; Kumar, R.; Mohsen, M.; Sharma, P.; Khandaker, M.U. Occurrence, spatial distribution, and risk assessment of microplastics in surface water and sediments of Saint Martin Island in the Bay of Bengal. Mar. Pollut. Bull. 2022, 179, 113720. [Google Scholar] [CrossRef] [PubMed]
  153. Al Nahian, S.; Rakib, M.R.J.; Kumar, R.; Haider, S.M.B.; Sharma, P.; Idris, A.M. Distribution, characteristics, and risk assessments analysis of microplastics in shore sediments and surface water of Moheshkhali channel of Bay of Bengal, Bangladesh. Sci. Total Environ. 2022, 855, 158892. [Google Scholar] [CrossRef] [PubMed]
  154. Alam, M.J.; Shammi, M.; Tareq, S.M. Distribution of microplastics in shoreline water and sediment of the Ganges River Basin to Meghna Estuary in Bangladesh. Ecotoxicol. Environ. Saf. 2023, 266, 115537. [Google Scholar] [CrossRef] [PubMed]
  155. Petroody, S.S.A.; Hashemi, S.H.; van Gestel, C.A.M. Factors affecting microplastic retention and emission by a wastewater treatment plant on the southern coast of Caspian Sea. Chemosphere 2020, 261, 128179. [Google Scholar] [CrossRef] [PubMed]
  156. Alexa, E.T.; Bernal-Romero del Hombre Bueno, M.D.; González, R.; Sánchez, A.V.; García, H.; Prats, D. Occurrence and removal of priority substances and contaminants of emerging concern at the WWTP of Benidorm (Spain). Water 2022, 14, 4129. [Google Scholar] [CrossRef]
  157. Ali, A.M.; Higgins, C.P.; Alarif, W.M.; Al-Lihaibi, S.S.; Ghandourah, M.; Kallenborn, R. Per- and polyfluoroalkyl substances (PFASs) in contaminated coastal marine waters of the Saudi Arabian Red Sea: A baseline study. Environ. Sci. Pollut. Res. 2020, 28, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
  158. Almaiman, L.; Aljomah, A.; Bineid, M.; Aljeldah, F.M.; Aldawsari, F.; Liebmann, B.; Lomako, I.; Sexlinger, K.; Alarfaj, R. The occurrence and dietary intake related to the presence of microplastics in drinking water in Saudi Arabia. Environ. Monit. Assess. 2021, 193, 390. [Google Scholar] [CrossRef] [PubMed]
  159. An, L.; Cui, T.; Zhang, Y.; Liu, H. A case study on small-size microplastics in water and snails in an urban river. Sci. Total Environ. 2022, 847, 157461. [Google Scholar] [CrossRef] [PubMed]
  160. Anagnostopoulpou, K.; Nannou, C.; Aschonitis, V.G.; Lambropoulou, D.A. Screening of pesticides and emerging contaminants in eighteen Greek lakes by using target and non-target HRMS approaches: Occurrence and ecological risk assessment. Sci. Total Environ. 2022, 849, 157887. [Google Scholar] [CrossRef] [PubMed]
  161. Andrews, D.Q.; Naidenko, O.V. Population-wide exposure to per- and polyfluoroalkyl substances from drinking water in the United States. Environ. Sci. Technol. Lett. 2020, 7, 931–936. [Google Scholar] [CrossRef]
  162. Angeles, L.F.; Islam, S.; Aldstadt, J.; Saqeeb, K.N.; Alam, M.; Khan, A.; Johura, F.-T.; Ahmed, S.I.; Aga, D.S. Retrospective suspect screening reveals previously ignored antibiotics, antifungal compounds, and metabolites in Bangladesh surface waters. Sci. Total Environ. 2020, 712, 136285. [Google Scholar] [CrossRef] [PubMed]
  163. Anim, A.K.; Thompson, K.; Duodu, G.O.; Tscharke, B.; Birch, G.; Goonetilleke, A.; Ayoko, G.A.; Mueller, J.F. Pharmaceuticals, personal care products, food additive and pesticides in surface waters from three Australian east coast estuaries (Sydney, Yarra and Brisbane). Mar. Pollut. Bull. 2020, 153, 111014. [Google Scholar] [CrossRef] [PubMed]
  164. Arregocés-Garcés, R.; Garcés-Ordóñez, O.; Vivas-Aguas, L.-J.; Canals, M. Microplastics transfer from a malfunctioning municipal wastewater oxidation pond into a marine protected area in the Colombian Caribbean. Reg. Stud. Mar. Sci. 2024, 69, 103361. [Google Scholar] [CrossRef]
  165. Arsand, J.B.; Hoff, R.B.; Jank, L.; Bussamara, R.; Dallegrave, A.; Bento, F.M.; Kmetzsch, L.; Falção, D.A.; Peralba, M.D.C.R.; Gomes, A.d.A.; et al. Presence of antibiotic resistance genes and its association with antibiotic occurrence in Dilúvio River in southern Brazil. Sci. Total Environ. 2020, 738, 139781. [Google Scholar] [CrossRef] [PubMed]
  166. Ashfaq, M.; Li, Y.; Wang, Y.; Chen, W.; Wang, H.; Chen, X.; Wu, W.; Huang, Z.; Yu, C.-P.; Sun, Q. Occurrence, fate, and mass balance of different classes of pharmaceuticals and personal care products in an anaerobic-anoxic-oxic wastewater treatment plant in Xiamen, China. Water Res. 2017, 123, 655–667. [Google Scholar] [CrossRef] [PubMed]
  167. Ashfaq, M.; Li, Y.; Zubair, M.; Rehman, M.S.U.; Sumrra, S.H.; Nazar, M.F.; Mustafa, G.; Fazal, M.T.; Ashraf, H.; Sun, Q. Occurrence and risk evaluation of endocrine-disrupting chemicals in wastewater and surface water of Lahore, Pakistan. Environ. Geochem. Health. 2023, 45, 4837–4851. [Google Scholar] [CrossRef] [PubMed]
  168. Astuti, M.P.; Notodarmojo, S.; Priadi, C.R.; Padhye, L.P. Contaminants of emerging concerns (CECs) in a municipal wastewater treatment plant in Indonesia. Environ. Sci. Pollut. Res. 2023, 30, 21512–21532. [Google Scholar] [CrossRef] [PubMed]
  169. Aydin, S.; Ulvi, A.; Aydin, M.E. Occurrence, characteristics, and risk assessment of microplastics and polycyclic aromatic hydrocarbons associated with microplastics in surface water and sediments of the Konya Closed Basin, Turkey. Environ. Sci. Pollut. Res. 2024, 31, 57989–58009. [Google Scholar] [CrossRef] [PubMed]
  170. Äystö, L.; Vieno, N.; Fjäder, P.; Mehtonen, J.; Nystén, T. Hospitals and households as primary emission sources for risk-posing pharmaceuticals in municipal wastewater. Ecotoxicol. Environ. Saf. 2023, 262, 115149. [Google Scholar] [CrossRef] [PubMed]
  171. Azzi, M.; Ravier, S.; Elkak, A.; Coulomb, B.; Boudenne, J.-L. Fast UHPLC-MS/MS for the simultaneous determination of azithromycin, erythromycin, fluoxetine and sotalol in surface water samples. Appl. Sci. 2021, 11, 8316. [Google Scholar] [CrossRef]
  172. Babayev, M.; Capozzi, S.L.; Miller, P.; McLaughlin, K.R.; Medina, S.S.; Byrne, S.; Zheng, G.; Salamova, A. PFAS in drinking water and serum of the people of a southeast Alaska community: A pilot study. Environ. Pollut. 2022, 305, 119246. [Google Scholar] [CrossRef] [PubMed]
  173. Bai, X.; Son, Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Sci. Total Environ. 2021, 751, 141622. [Google Scholar] [CrossRef] [PubMed]
  174. Bai, X.; Zhu, X.; Jiang, H.; Wang, Z.; He, C.; Sheng, L.; Zhuang, J. Purification effect of sequential constructed wetland for the polluted water in urban river. Water 2020, 12, 1054. [Google Scholar] [CrossRef]
  175. Bakare, B.F.; Adeyinka, G.C. Occurrence and fate of triclosan and triclocarban in selected Wastewater Systems across Durban Metropolis, KwaZulu-Natal, South Africa. Int. J. Environ. Res. Public Health 2022, 19, 6769. [Google Scholar] [CrossRef] [PubMed]
  176. Bandara, R.M.L.S.; Perera, M.D.D.; Gomes, P.I.A.; Yan, X.-F. Profiling microplastic pollution in surface water bodies in the most urbanized city of Sri Lanka and its suburbs to understand the underlying factors. Water Air Soil Pollut. 2023, 234, 157. [Google Scholar] [CrossRef]
  177. Bayati, M.; Ho, T.L.; Vu, D.C.; Wang, F.; Rogers, E.; Cuvellier, C.; Huebotter, S.; Inniss, E.C.; Udawatta, R.; Jose, S.; et al. Assessing the efficiency of constructed wetlands in removing PPCPs from treated wastewater and mitigating the ecotoxicological impacts. Int. J. Hyg. Environ. Health 2021, 231, 113664. [Google Scholar] [CrossRef] [PubMed]
  178. Ben, Y.; Hu, M.; Zhang, X.; Wu, S.; Wong, M.H.; Wang, M.; Andrews, C.B.; Zheng, C. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water. Water Res. 2020, 175, 115699. [Google Scholar] [CrossRef] [PubMed]
  179. Bentaallah, M.E.A.; Baghdadi, D.; Gündoğdu, S.; Megharbi, A.; Taibi, N.-E.; Büyükdeveci, F. Assessment of microplastic abundance and impact on recreational beaches along the western Algerian coastline. Mar. Pollut. Bull. 2024, 199, 116007. [Google Scholar] [CrossRef] [PubMed]
  180. Berov, D.; Klayn, S. Microplastics and floating litter pollution in Bulgarian Black Sea coastal waters. Mar. Pollut. Bull. 2020, 156, 111225. [Google Scholar] [CrossRef] [PubMed]
  181. Blankson, E.R.; Tetteh, P.N.; Oppong, P.; Gbogbo, F.; Zhu, X. Microplastics prevalence in water, sediment and two economically important species of fish in an urban riverine system in Ghana. PLoS ONE 2022, 17, e0263196. [Google Scholar] [CrossRef] [PubMed]
  182. Brožová, K.; Halfar, J.; Čabanová, K.; Motyka, O.; Drabinová, S.; Hanus, P.; Heviánková, S. The first evidence of microplastic occurrence in mine water: The largest black coal mining area in the Czech Republic. Water Res. 2023, 244, 120538. [Google Scholar] [CrossRef] [PubMed]
  183. Bujaczek, T.; Kolter, S.; Locky, D.; Ross, M.S.; Salomon, A. Characterization of microplastics and anthropogenic fibers in surface waters of the North Saskatchewan River, Alberta, Canada. Facets 2021, 6, 26–43. [Google Scholar] [CrossRef]
  184. Campanale, C.; Stock, F.; Massarelli, C.; Kochleus, C.; Bagnuolo, G.; Reifferscheid, G.; Uricchio, V.F. Microplastics and their possible sources: The example of Ofanto river in southeast Italy. Environ. Pollut. 2020, 258, 113284. [Google Scholar] [CrossRef] [PubMed]
  185. Cantoni, B.; Bergna, G.; Baldini, E.; Malpei, F.; Antonelli, M. PFAS in textile wastewater: An integrated scenario analysis for interventions prioritization to reduce environmental risk. Process. Saf. Environ. Prot. 2024, 183, 437–445. [Google Scholar] [CrossRef]
  186. Cao, M.H.; Wang, B.B.; Yu, H.S.; Wang, L.L.; Yuan, S.H.; Chen, J. Photochemical decomposition of perfluorooctanoic acid in aqueous periodate with VUV and UV light irradiation. J. Hazard. Mater. 2010, 179, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
  187. Capparelli, M.V.; Molinero, J.; Moulatlet, G.M.; Barrado, M.; Prado-Alcívar, S.; Cabrera, M.; Gimiliani, G.; Ñacato, C.; Pinos-Velez, V.; Cipriani-Avila, I. Microplastics in rivers and coastal waters of the province of Esmeraldas, Ecuador. Mar. Pollut. Bull. 2021, 173, 113067. [Google Scholar] [CrossRef] [PubMed]
  188. Castaño-Trias, M.; Rodríguez-Mozaz, S.; Verlicchi, P.; Buttiglieri, G. Selection of pharmaceuticals of concern in reclaimed water for crop irrigation in the Mediterranean area. J. Hazard. Mater. 2024, 466, 133538. [Google Scholar] [CrossRef] [PubMed]
  189. Castro, R.O.; da Silva, M.L.; Marques, M.R.; de Araújo, F.V. Spatio-temporal evaluation of macro, meso and microplastics in surface waters, bottom and beach sediments of two embayments in Niterói, RJ, Brazil. Mar. Pollut. Bull. 2020, 160, 111537. [Google Scholar] [CrossRef] [PubMed]
  190. Cerón-Vivas, A.; Mesa, G.A.P. Environmental risk assessment of pharmaceutical pollutants in the Oro River Sub-basin (Colombia). Environ. Res. 2024, 252, 118951. [Google Scholar] [CrossRef] [PubMed]
  191. Chakraborty, P.; Shappell, N.W.; Mukhopadhyay, M.; Onanong, S.; Rex, K.R.; Snow, D. Surveillance of plasticizers, bisphenol A, steroids and caffeine in surface water of River Ganga and Sundarban wetland along the Bay of Bengal: Occurrence, sources, estrogenicity screening and ecotoxicological risk assessment. Water Res. 2021, 190, 116668. [Google Scholar] [CrossRef] [PubMed]
  192. Chandrajith, R.; Zwiener, C.; Daniel, C.; Amann, K.; Nanayakkara, N.; Barth, J.A.C. Screening of micro-organic compounds in groundwater from areas with chronic kidney disease of unclear aetiology (CKDu) in the dry zone of Sri Lanka. Expo. Health 2025, 17, 167–176. [Google Scholar] [CrossRef]
  193. Chaves, M.d.J.S.; Barbosa, S.C.; Malinowski, M.d.M.; Volpato, D.; Castro, Í.B.; Franco, T.C.R.d.S.; Primel, E.G. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Sci. Total Environ. 2020, 734, 139374. [Google Scholar] [CrossRef] [PubMed]
  194. Chaves, M.d.J.S.; Barbosa, S.C.; Primel, E.G. Emerging contaminants in Brazilian aquatic environment: Identifying targets of potential concern based on occurrence and ecological risk. Environ. Sci. Pollut. Res. 2021, 28, 67528–67543. [Google Scholar] [CrossRef] [PubMed]
  195. Chen, J.; Tong, T.; Jiang, X.; Xie, S. Biodegradation of sulfonamides in both oxic and anoxic zones of vertical flow constructed wetland and the potential degraders. Environ. Pollut. 2020, 265, 115040. [Google Scholar] [CrossRef] [PubMed]
  196. Chen, P.; Zhong, Y.; Chen, K.; Guo, C.; Gong, J.; Wang, D.; Yang, Y.; Ma, S.; Yu, Y. The impact of discharge reduction activities on the occurrence of contaminants of emerging concern in surface water from the Pearl River. Environ. Sci. Pollut. Res. 2020, 27, 30378–30389. [Google Scholar] [CrossRef] [PubMed]
  197. Chen, Y.; Zhang, H.; Liu, Y.; Bowden, J.A.; Tolaymat, T.M.; Townsend, T.G.; Solo-Gabriele, H.M. Evaluation of per- and polyfluoroalkyl substances (PFAS) in leachate, gas condensate, stormwater and groundwater at landfills. Chemosphere 2023, 318, 137903. [Google Scholar] [CrossRef] [PubMed]
  198. Cheng, Y.L.; Kim, J.-G.; Kim, H.-B.; Choi, J.H.; Tsang, Y.F.; Baek, K. Occurrence and removal of microplastics in wastewater treatment plants and drinking water purification facilities: A review. Chem. Eng. J. 2021, 410, 128381. [Google Scholar] [CrossRef]
  199. Chepchirchir, R.; Mwalimu, R.; Tanui, I.; Kiprop, A.; Krauss, M.; Brack, W.; Kandie, F. Occurrence, removal and risk assessment of chemicals of emerging concern in selected rivers and wastewater treatment plants in western Kenya. Sci. Total Environ. 2024, 948, 174982. [Google Scholar] [CrossRef] [PubMed]
  200. Chernova, E.; Zhakovskaya, Z.; Berezina, N. Occurrence of pharmaceuticals in the Eastern Gulf of Finland (Russia). Environ. Sci. Pollut. Res. 2021, 28, 68871–68884. [Google Scholar] [CrossRef] [PubMed]
  201. Cipriani-Avila, I.; Molinero, J.; Cabrera, M.; Medina-Villamizar, E.J.; Capparelli, M.V.; Jara-Negrete, E.; Pinos-Velez, V.; Acosta, S.; Andrade, D.L.; Barrado, M.; et al. Occurrence of emerging contaminants in surface water bodies of a coastal province in Ecuador and possible influence of tourism decline caused by COVID-19 lockdown. Sci. Total Environ. 2023, 866, 161340. [Google Scholar] [CrossRef] [PubMed]
  202. Close, M.E.; Humphries, B.; Northcott, G. Outcomes of the first combined national survey of pesticides and emerging organic contaminants (EOCs) in groundwater in New Zealand 2018. Sci. Total Environ. 2021, 754, 142005. [Google Scholar] [CrossRef] [PubMed]
  203. Cooney, J.; Lenczewski, M.; Leal-Bautista, R.M.; Tucker, K.; Davis, M.; Rodriguez, J. Analysis of sunscreens and antibiotics in groundwater during the Covid-19 pandemic in the Riviera Maya, Mexico. Sci. Total Environ. 2023, 894, 164820. [Google Scholar] [CrossRef] [PubMed]
  204. Cruz-López, A.; Dávila-Pórcel, R.A.; de León-Gómez, H.; Rodríguez-Martínez, J.M.; Suárez-Vázquez, S.I.; Cardona-Benavides, A.; Castro-Larragoitia, G.J.; Boreselli, L.; Villalba, M.d.L.; Pinales-Munguía, A.; et al. Exploratory study on the presence of bisphenol A and bis(2-ethylhexyl) phthalate in the Santa Catarina River in Monterrey, N.L., Mexico. Environ. Monit. Assess. 2020, 192, 488. [Google Scholar] [CrossRef] [PubMed]
  205. Cui, T.; Zhang, Y.; Han, W.; Li, J.; Sun, X.; Shen, J.; Wang, L. Advanced treatment of triazole fungicides discharged water in pilot scale by integrated system: Enhanced electrochemical oxidation, upflow biological aerated filter and electrodialysis. Chem. Eng. J. 2017, 315, 335–344. [Google Scholar] [CrossRef]
  206. Cunsolo, S.; Williams, J.; Hale, M.; Read, D.S.; Couceiro, F. Optimising sample preparation for FTIR-based microplastic analysis in wastewater and sludge samples: Multiple digestions. Anal. Bioanal. Chem. 2021, 413, 3789–3799. [Google Scholar] [CrossRef] [PubMed]
  207. Currell, M.; Northby, N.; Netherway, P. Examining changes in groundwater PFAS contamination from legacy landfills over a three-year period at Australia’s largest urban renewal site. Chemosphere 2024, 352, 141345. [Google Scholar] [CrossRef] [PubMed]
  208. da Silva, B.F.; Aristizabal-Henao, J.J.; Aufmuth, J.; Awkerman, J.; Bowden, J.A. Survey of per- and polyfluoroalkyl substances (PFAS) in surface water collected in Pensacola, FL. Heliyon 2022, 8, e10239. [Google Scholar] [CrossRef] [PubMed]
  209. Datel, J.V.; Hrabankova, A. Pharmaceuticals load in the Svihov Water Reservoir (Czech Republic) and impacts on quality of treated drinking water. Water 2020, 12, 1387. [Google Scholar] [CrossRef]
  210. de Carvalho, A.R.; Garcia, F.; Riem-Galliano, L.; Tudesque, L.; Albignac, M.; ter Halle, A.; Cucherousset, J. Urbanization and hydrological conditions drive the spatial and temporal variability of microplastic pollution in the Garonne River. Sci. Total Environ. 2021, 769, 144479. [Google Scholar] [CrossRef] [PubMed]
  211. de Moraes, N.G.; Olivatto, G.P.; Lourenço, F.M.d.O.; Lourenço, A.L.A.; Garcia, G.M.; Pimpinato, R.F.; Tornisielo, V.L. Contamination by microplastics and sorbed organic pollutants in the surface waters of the Tietê River, São Paulo-SP, Brazil. Heliyon 2024, 10, e36047. [Google Scholar] [CrossRef] [PubMed]
  212. de Oliveira Santos, A.D.; do Nascimento, M.T.L.; Sanson, A.L.; dos Santos, R.F.; Felix, L.C.; da Silva de Freitas, A.; Hauser-Davis, R.A.; da Fonseca, E.M.; Neto, J.A.B.; Bila, D.M. Pharmaceuticals, natural and synthetic hormones and phenols in sediments from an eutrophic estuary, Jurujuba Sound, Guanabara Bay, Brazil. Mar. Pollut. Bull. 2022, 184, 114176. [Google Scholar] [CrossRef] [PubMed]
  213. de Rezende, A.T.; Mounteer, A.H. Ecological risk assessment of pharmaceuticals and endocrine disrupting compounds in Brazilian surface waters. Environ. Pollut. 2023, 338, 122628. [Google Scholar] [CrossRef] [PubMed]
  214. Dehm, J.; Singh, S.; Ferreira, M.; Piovano, S.; Fick, J. Screening of pharmaceuticals in coastal waters of the southern coast of Viti Levu in Fiji, South Pacific. Chemosphere 2021, 276, 130161. [Google Scholar] [CrossRef] [PubMed]
  215. Diaz-Sosa, V.R.; Tapia-Salazar, M.; Wanner, J.; Cardenas-Chavez, D.L. Monitoring and ecotoxicity assessment of emerging contaminants in wastewater discharge in the City of Prague (Czech Republic). Water 2020, 12, 1079. [Google Scholar] [CrossRef]
  216. Díaz-Cubilla, M.; Letón, P.; Luna-Vázquez, C.; Marrón-Romera, M.; Boltes, K. Effect of carbamazepine, ibuprofen, triclosan and sulfamethoxazole on anaerobic bioreactor performance: Combining cell damage, ecotoxicity and chemical information. Toxics 2022, 10, 42. [Google Scholar] [CrossRef] [PubMed]
  217. Ding, G.; Zhang, J.; Chen, Y.; Wang, L.; Wang, M.; Xiong, D.; Sun, Y. Combined effects of PFOS and PFOA on zebrafish (Danio rerio) embryos. Arch. Environ. Contam. Toxicol. 2013, 64, 668–675. [Google Scholar] [CrossRef] [PubMed]
  218. Dilshad, A.; Taneez, M.; Younas, F.; Jabeen, A.; Rafiq, M.T.; Fatimah, H. Microplastic pollution in the surface water and sediments from Kallar Kahar wetland, Pakistan: Occurrence, distribution, and characterization by ATR-FTIR. Environ. Monit. Assess. 2022, 194, 511. [Google Scholar] [CrossRef] [PubMed]
  219. do Nascimento, R.F.; de Carvalho Filho, J.A.A.; Napoleão, D.C.; Ribeiro, B.G.; da Silva Pereira Cabral, J.J.; de Paiva, A.L.R. Presence of non-steroidal anti-inflammatories in Brazilian semiarid waters. Water Air Soil Pollut. Water Air Soil Pollut. 2023, 234, 1–14. [Google Scholar] [CrossRef] [PubMed]
  220. Domínguez-Jaimes, L.P.; Cedillo-González, E.I.; Luévano-Hipólito, E.; Acuña-Bedoya, J.D.; Hernández-López, J.M. Degradation of primary nanoplastics by photocatalysis using different anodized TiO2 structures. J. Hazard. Mater. 2021, 413, 125452. [Google Scholar] [CrossRef] [PubMed]
  221. Du, L.; Zhao, Y.; Wang, C.; Zhang, H.; Chen, Q.; Zhang, X.; Zhang, L.; Wu, J.; Wu, Z.; Zhou, Q. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate. Sci. Total Environ. 2020, 721, 137765. [Google Scholar] [CrossRef] [PubMed]
  222. Durcik, M.; Grobin, A.; Roškar, R.; Trontelj, J.; Mašič, L.P. Estrogenic potency of endocrine disrupting chemicals and their mixtures detected in environmental waters and wastewaters. Chemosphere 2023, 330, 138712. [Google Scholar] [CrossRef] [PubMed]
  223. Duru, C.I.; Kang, D.H.; Sherchan, S.P. The trends of per-and polyfluoroalkyl substances (PFAS) in drinking water systems in Maryland, United States. Sci. Total Environ. 2024, 957, 177152. [Google Scholar] [CrossRef] [PubMed]
  224. Dvorakova, D.; Jurikova, M.; Svobodova, V.; Parizek, O.; Kozisek, F.; Kotal, F.; Jeligova, H.; Mayerova, L.; Pulkrabova, J. Complex monitoring of perfluoroalkyl substances (PFAS) from tap drinking water in the Czech Republic. Water Res. 2023, 247, 120764. [Google Scholar] [CrossRef] [PubMed]
  225. Ebele, A.J.; Oluseyi, T.; Drage, D.S.; Harrad, S.; Abou-Elwafa Abdallah, M. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerg. Contam. 2020, 6, 124–132. [Google Scholar] [CrossRef]
  226. El Meragawi, S.; Akbari, A.; Hernandez, S.; Mirshekarloo, M.S.; Bhattacharyya, D.; Tanksale, A.; Majumder, M. Enhanced permselective separation of per-fluorooctanoic acid in graphene oxide membranes by a simple PEI modification. J. Mater. Chem. A 2020, 8, 24800–24811. [Google Scholar] [CrossRef]
  227. Elles-Pérez, C.; Guzman-Tordecilla, M.; Ramos, Y.; Castillo-Ramírez, M.; Moreno-Ríos, A.; Garzón-Rodríguez, C.; Rojas-Solano, J. Assessment of water quality and emerging pollutants in two fish species from the Mallorquín Swamp in the Colombian Caribbean. Heliyon 2024, 10, e39005. [Google Scholar] [CrossRef] [PubMed]
  228. Emam, T.E.; Souaya, E.R.; Ibrahim, M.B.M.; Mahmoud, S.A. Advanced removal of pesticides, herbicides, and pharmaceutical residues from surface water. Environ. Technol. 2023, 44, 3466–3478. [Google Scholar] [CrossRef] [PubMed]
  229. Emnet, P.; Mahaliyana, A.S.; Northcott, G.; Gaw, S. Organic micropollutants in wastewater effluents and the receiving coastal waters, sediments, and biota of Lyttelton Harbour (Te Whakaraupō), New Zealand. Arch. Environ. Contam. Toxicol. 2020, 79, 461–477. [Google Scholar] [CrossRef] [PubMed]
  230. Erdem, I.Ç.; Yurtsever, M.; Şahin, F. Determination of microplastics in drinking water treatment plants and tap water in Kocaeli, Turkey. Urban Water J. 2024, 21, 941–952. [Google Scholar] [CrossRef]
  231. Fabregat-Safont, D.; Botero-Coy, A.M.; Nieto-Juárez, J.I.; Torres-Palma, R.A.; Hernández, F. Searching for pharmaceutically active products and metabolites in environmental waters of Peru by HRMS-based screening: Proposal for future monitoring and environmental risk assessment. Chemosphere 2023, 337, 139375. [Google Scholar] [CrossRef] [PubMed]
  232. Falahudin, D.; Cordova, M.R.; Sun, X.; Yogaswara, D.; Wulandari, I.; Hindarti, D.; Arifin, Z. The first occurrence, spatial distribution and characteristics of microplastic particles in sediments from Banten Bay, Indonesia. Sci. Total Environ. 2020, 705, 135304. [Google Scholar] [CrossRef] [PubMed]
  233. Fan, D.; Yin, W.; Gu, W.; Liu, M.; Liu, J.; Wang, Z.; Shi, L. Occurrence, spatial distribution and risk assessment of high concern endocrine-disrupting chemicals in Jiangsu Province, China. Chemosphere 2021, 285, 131396. [Google Scholar] [CrossRef] [PubMed]
  234. Fan, J.; Zou, L.; Zhao, G. Microplastic abundance, distribution, and composition in the surface water and sediments of the Yangtze River along Chongqing City, China. J. Soils Sediments 2021, 21, 1840–1851. [Google Scholar] [CrossRef]
  235. Fan, L.; Mohseni, A.; Schmidt, J.; Evans, B.; Murdoch, B.; Gao, L. Efficiency of lagoon-based municipal wastewater treatment in removing microplastics. Sci. Total Environ. 2023, 876, 162714. [Google Scholar] [CrossRef] [PubMed]
  236. Fan, Y.; Zheng, J.; Deng, L.; Rao, W.; Zhang, Q.; Liu, T.; Qian, X. Spatiotemporal dynamics of microplastics in an urban river network area. Water Res. 2022, 212, 118116. [Google Scholar] [CrossRef] [PubMed]
  237. Fardullah, M.; Hossain, M.T.; Islam, M.S.; Islam, M.R.; Rahman, R.; Akther, K.; Uddin, A.; Morshed, S.; Sultana, N.; Alam, A.; et al. Occurrence and spatial distribution of microplastics in water and sediments of Hatiya Island, Bangladesh and their risk assessment. J. Environ. Manag. 2024, 370, 122697. [Google Scholar] [CrossRef] [PubMed]
  238. Fernandes, M.J.; Paíga, P.; Silva, A.; Llaguno, C.P.; Carvalho, M.; Vázquez, F.M.; Delerue-Matos, C. Antibiotics and antidepressants occurrence in surface waters and sediments collected in the north of Portugal. Chemosphere 2020, 239, 124729. [Google Scholar] [CrossRef] [PubMed]
  239. Ferraz, M.; Bauer, A.L.; Valiati, V.H.; Schulz, U.H. Microplastic concentrations in raw and drinking water in the Sinos River, Southern Brazil. Water 2020, 12, 3115. [Google Scholar] [CrossRef]
  240. Fiedler, H.; Vega-Bustillos, L.; Arias-Pastrano, J.; Pérez-Aldás, L.V.; Castro-Díaz, J. Snapshot survey of the presence of perfluoroalkyl substances in products, articles, and the environment in Ecuador. Engineering 2024, 37, 49–61. [Google Scholar] [CrossRef]
  241. Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 2020, 144, 106004. [Google Scholar] [CrossRef] [PubMed]
  242. Franco, A.A.; Arellano, J.M.; Albendín, G.; Rodríguez-Barroso, R.; Quiroga, J.M.; Coello, M.D. Microplastic pollution in wastewater treatment plants in the city of Cádiz: Abundance, removal efficiency and presence in receiving water body. Sci. Total Environ. 2021, 776, 145795. [Google Scholar] [CrossRef]
  243. Frank, Y.; Ershova, A.; Batasheva, S.; Vorobiev, E.; Rakhmatullina, S.; Vorobiev, D.; Fakhrullin, R. Microplastics in freshwater: A focus on the Russian inland waters. Water 2022, 14, 3909. [Google Scholar] [CrossRef]
  244. Frank, Y.A.; Vorobiev, E.D.; Vorobiev, D.S.; Trifonov, A.A.; Antsiferov, D.V.; Hunter, T.S.; Wilson, S.P.; Strezov, V. Preliminary screening for microplastic concentrations in the surface water of the Ob and Tom Rivers in Siberia, Russia. Sustainability 2020, 13, 80. [Google Scholar] [CrossRef]
  245. Fredriksson, F.; Eriksson, U.; Kärrman, A.; Yeung, L.W.Y. Per- and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden—First findings of novel fluorinated copolymers in Europe including temporal analysis. Sci. Total Environ. 2022, 846, 157406. [Google Scholar] [CrossRef] [PubMed]
  246. Gallego-Ríos, S.E.; Peñuela, G.A. Evaluation of ibuprofen and diclofenac in the main rivers of Colombia and striped catfish Pseudoplatystoma magdaleniatum. Environ. Monit. Assess. 2021, 193, 210. [Google Scholar] [CrossRef] [PubMed]
  247. Gao, Y.; Chen, Y.; Song, T.; Su, R.; Luo, J. Activated peroxymonosulfate with ferric chloride-modified biochar to degrade bisphenol A: Characteristics, influencing factors, reaction mechanism and reuse performance. Sep. Purif. Technol. 2022, 300, 121857. [Google Scholar] [CrossRef]
  248. Garcés-Ordóñez, O.; Saldarriaga-Vélez, J.F.; Espinosa-Díaz, L.F.; Patiño, A.D.; Cusba, J.; Canals, M.; Mejía-Esquivia, K.; Fragozo-Velásquez, L.; Sáenz-Arias, S.; Córdoba-Meza, T.; et al. Microplastic pollution in water, sediments and commercial fish species from Ciénaga Grande de Santa Marta lagoon complex, Colombian Caribbean. Sci. Total Environ. 2022, 829, 154643. [Google Scholar] [CrossRef] [PubMed]
  249. Gebbink, W.A.; van Leeuwen, S.P.J. Environmental contamination and human exposure to PFASs near a fluorochemical production plant: Review of historic and current PFOA and GenX contamination in the Netherlands. Environ. Int. 2020, 137, 105583. [Google Scholar] [CrossRef] [PubMed]
  250. Gerrity, D.; Gamage, S.; Holady, J.C.; Mawhinney, D.B.; Quiñones, O.; Trenholm, R.A.; Snyder, S.A. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res. 2011, 45, 2155–2165. [Google Scholar] [CrossRef] [PubMed]
  251. Gevao, B.; Uddin, S.; Krishnan, D.; Rajagopalan, S.; Habibi, N. Antibiotics in wastewater: Baseline of the influent and effluent streams in Kuwait. Toxics 2022, 10, 174. [Google Scholar] [CrossRef] [PubMed]
  252. Gewurtz, S.B.; Auyeung, A.S.; De Silva, A.O.; Teslic, S.; Smyth, S.A. Per- and polyfluoroalkyl substances (PFAS) in Canadian municipal wastewater and biosolids: Recent patterns and time trends 2009 to 2021. Sci. Total Environ. 2024, 912, 168638. [Google Scholar] [CrossRef] [PubMed]
  253. Gobelius, L.; Glimstedt, L.; Olsson, J.; Wiberg, K.; Ahrens, L. Mass flow of per- and polyfluoroalkyl substances (PFAS) in a Swedish municipal wastewater network and wastewater treatment plant. Chemosphere 2023, 336, 139182. [Google Scholar] [CrossRef] [PubMed]
  254. Göckener, B.; Fliedner, A.; Weinfurtner, K.; Rüdel, H.; Badry, A.; Koschorreck, J. Tracking down unknown PFAS pollution—The direct TOP assay in spatial monitoring of surface waters in Germany. Sci. Total Environ. 2023, 898, 165425. [Google Scholar] [CrossRef] [PubMed]
  255. Grbić, J.; Helm, P.; Athey, S.; Rochman, C.M. Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Res. 2020, 174, 115623. [Google Scholar] [CrossRef] [PubMed]
  256. Grini, H.; Metallaoui, S.; Rangel-Buitrago, N.; Hadef, A.; González-Fernández, D.; Bensouilah, M. Persistence and potential increasing accumulation of microplastic pollution on the Skikda coast (northeastern Algeria). Mar. Pollut. Bull. 2024, 209, 117314. [Google Scholar] [CrossRef] [PubMed]
  257. Grobin, A.; Roškar, R.; Trontelj, J. The environmental occurrence, fate, and risks of 25 endocrine disruptors in Slovenian waters. Sci. Total Environ. 2024, 906, 167245. [Google Scholar] [CrossRef] [PubMed]
  258. Grung, M.; Hjermann, D.Ø.; Rundberget, T.; Bæk, K.; Thomsen, C.; Knutsen, H.K.; Haug, L.S. Low levels of per- and polyfluoroalkyl substances (PFAS) detected in drinking water in Norway, but elevated concentrations found near known sources. Sci. Total Environ. 2024, 947, 174550. [Google Scholar] [CrossRef] [PubMed]
  259. Guillossou, R.; Le Roux, J.; Mailler, R.; Pereira-Derome, C.S.; Varrault, G.; Bressy, A.; Vulliet, E.; Morlay, C.; Nauleau, F.; Rocher, V.; et al. Influence of dissolved organic matter on the removal of 12 organic micropollutants from wastewater effluent by powdered activated carbon adsorption. Water Res. 2020, 172, 115487. [Google Scholar] [CrossRef] [PubMed]
  260. Guo, W.; Li, J.; Luo, M.; Mao, Y.; Yu, X.; Elskens, M.; Baeyens, W.; Gao, Y. Estrogenic activity and ecological risk of steroids, bisphenol A and phthalates after secondary and tertiary sewage treatment processes. Water Res. 2022, 214, 118189. [Google Scholar] [CrossRef] [PubMed]
  261. Gupta, S.; Gomaa, H.; Ray, M.B. Performance characterization of a hybrid adsorptive-photocatalytic (APC) oscillatory membrane reactor for micropollutant removal. Sep. Purif. Technol. 2021, 279, 119706. [Google Scholar] [CrossRef]
  262. Hain, E.; He, K.; Batista-Andrade, J.A.; Feerick, A.; Tarnowski, M.; Timm, A.; Blaney, L. Geospatial and co-occurrence analysis of antibiotics, hormones, and UV filters in the Chesapeake Bay (USA) to confirm inputs from wastewater treatment plants, septic systems, and animal feeding operations. J. Hazard. Mater. 2023, 460, 132405. [Google Scholar] [CrossRef] [PubMed]
  263. Hajiouni, S.; Mohammadi, A.; Ramavandi, B.; Arfaeinia, H.; De-La-Torre, G.E.; Tekle-Röttering, A.; Dobaradaran, S. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. Sci. Total Environ. 2022, 806, 150559. [Google Scholar] [CrossRef] [PubMed]
  264. Halfar, J.; Brožová, K.; Placová, K.; Kyncl, M. Determining the presence of micro-particles in drinking water in the Czech Republic—An exploratory study focusing on microplastics and additives. Eng. Proc. 2023, 57, 16. [Google Scholar] [CrossRef]
  265. Halfar, J.; Heviánková, S.; Brožová, K.; Čabanová, K.; Valigůrová, A.; Motyka, O. Microplastic contamination in Czech drinking water: Insights from comprehensive monitoring. Environ. Sci. Eur. 2024, 36, 213. [Google Scholar] [CrossRef]
  266. Haque, A.; Holsen, T.M.; Baki, A.B.M. Distribution and risk assessment of microplastic pollution in a rural river system near a wastewater treatment plant, hydro-dam, and river confluence. Sci. Rep. 2024, 14, 6066. [Google Scholar] [CrossRef] [PubMed]
  267. Haque, M.R.; Ali, M.M.; Ahmed, W.; Siddique, M.A.B.; Akbor, M.A.; Islam, M.S.; Rahman, M. Assessment of microplastics pollution in aquatic species (fish, crab, and snail), water, and sediment from the Buriganga River, Bangladesh: An ecological risk appraisal. Sci. Total Environ. 2022, 857, 159344. [Google Scholar] [CrossRef] [PubMed]
  268. Harley-Nyang, D.; Memon, F.A.; Jones, N.; Galloway, T. Investigation and analysis of microplastics in sewage sludge and biosolids: A case study from one wastewater treatment works in the UK. Sci. Total Environ. 2022, 823, 153735. [Google Scholar] [CrossRef] [PubMed]
  269. Harrad, S.; Drage, D.S.; Sharkey, M.; Berresheim, H. Perfluoroalkyl substances and brominated flame retardants in landfill-related air, soil, and groundwater from Ireland. Sci. Total Environ. 2020, 705, 135834. [Google Scholar] [CrossRef] [PubMed]
  270. Heo, J.; Yoon, Y.; Lee, G.; Kim, Y.; Han, J.; Park, C.M. Enhanced adsorption of bisphenol A and sulfamethoxazole by a novel magnetic CuZnFe2O4–biochar composite. Bioresour. Technol. 2019, 281, 179–187. [Google Scholar] [CrossRef] [PubMed]
  271. Hernández-Fernández, J.; Cano-Cuadro, H.; Puello-Polo, E. Emission of bisphenol A and four new analogs from industrial wastewater treatment plants in the production processes of polypropylene and polyethylene terephthalate in South America. Sustainability 2022, 14, 10919. [Google Scholar] [CrossRef]
  272. Hernandez, E.T.; Koo, B.; Sofen, L.E.; Amin, R.; Togashi, R.K.; Lall, A.I.; Gisch, D.J.; Kern, B.J.; Rickard, M.A.; Francis, M.B. Proteins as adsorbents for PFAS removal from water. Environ. Sci. Water Res. Technol. 2022, 8, 1188–1194. [Google Scholar] [CrossRef]
  273. Hernández, F.; Ibáñez, M.; Portoles, T.; Hidalgo-Troya, A.; Ramírez, J.D.; Paredes, M.A.; Hidalgo, A.F.; García, A.M.; Galeano, L.A. High resolution mass spectrometry-based screening for the comprehensive investigation of organic micropollutants in surface water and wastewater from Pasto city, Colombian Andean highlands. Sci. Total Environ. 2024, 922, 171293. [Google Scholar] [CrossRef] [PubMed]
  274. Herzke, D.; Ghaffari, P.; Sundet, J.H.; Tranang, C.A.; Halsband, C. Microplastic fiber emissions from wastewater effluents: Abundance, transport behavior and exposure risk for biota in an Arctic fjord. Front. Environ. Sci. 2021, 9, 662168. [Google Scholar] [CrossRef]
  275. Higgins, C.; Turner, A. Microplastics in surface coastal waters around Plymouth, UK, and the contribution of boating and shipping activities. Sci. Total Environ. 2023, 893, 164695. [Google Scholar] [CrossRef] [PubMed]
  276. Ho, K.T.; Konovets, I.M.; Terletskaya, A.V.; Milyukin, M.V.; Lyashenko, A.V.; Shitikova, L.I.; Shevchuk, L.I.; Afanasyev, S.A.; Krot, Y.G.; Zorina-Sakharova, K.Y.; et al. Contaminants, mutagenicity and toxicity in the surface waters of Kyiv, Ukraine. Mar. Pollut. Bull. 2020, 155, 111153. [Google Scholar] [CrossRef] [PubMed]
  277. Hossain, M.B.; Yu, J.; Banik, P.; Noman, A.; Nur, A.-A.U.; Haque, R.; Rahman, M.; Albeshr, M.F.; Arai, T. First evidence of microplastics and their characterization in bottled drinking water from a developing country. Front. Environ. Sci. 2023, 11, 1232931. [Google Scholar] [CrossRef]
  278. Hossain, J.; AftabUddin, S.; Akhter, F.; Nusrat, N.; Rahaman, A.; Sikder, M.N.A.; Monwar, M.; Chowdhury, M.S.N.; Jiang, S.; Shi, H.; et al. Surface water, sediment, and biota: The first multi-compartment analysis of microplastics in the Karnafully river, Bangladesh. Mar. Pollut. Bull. 2022, 180, 113820. [Google Scholar] [CrossRef] [PubMed]
  279. Hosseini, R.; Sayadi, M.H.; Aazami, J.; Savabieasfehani, M. Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Mar. Pollut. Bull. 2020, 160, 111682. [Google Scholar] [CrossRef] [PubMed]
  280. Hrkal, Z.; Adomat, Y.; Rozman, D.; Grischek, T. Efficiency of micropollutant removal through artificial recharge and riverbank filtration: Case studies of Káraný, Czech Republic and Dresden-Hosterwitz, Germany. Environ. Earth Sci. 2023, 82, 155. [Google Scholar] [CrossRef]
  281. Hron, L.M.C.; Wöckner, M.; Fuchs, V.; Fembacher, L.; Aschenbrenner, B.; Herr, C.; Schober, W.; Heinze, S.; Völkel, W. Monitoring of per- and polyfluoroalkyl substances (PFAS) in human blood samples collected in three regions with known PFAS releases in the environment and three control regions in South Germany. Arch. Toxicol. 2024, 98, 3727–3738. [Google Scholar] [CrossRef] [PubMed]
  282. Hu, K.; Zhou, P.; Yang, Y.; Hall, T.; Nie, G.; Yao, Y.; Duan, X.; Wang, S. Degradation of microplastics by a thermal Fenton reaction. ACS ES&T Eng. 2021, 2, 110–120. [Google Scholar] [CrossRef]
  283. Huang, D.; Li, X.; Ouyang, Z.; Zhao, X.; Wu, R.; Zhang, C.; Lin, C.; Li, Y.; Guo, X. The occurrence and abundance of microplastics in surface water and sediment of the West River downstream, in the south of China. Sci. Total Environ. 2021, 756, 143857. [Google Scholar] [CrossRef] [PubMed]
  284. Huang, J.; Wang, X.; Pan, Z.; Li, X.; Ling, Y.; Li, L. Efficient degradation of perfluorooctanoic acid (PFOA) by photocatalytic ozonation. Chem. Eng. J. 2016, 296, 329–334. [Google Scholar] [CrossRef]
  285. Huang, Y.; Yu, L.; Ma, L.; Zhang, D.; Xu, J.; Zhang, S.; Li, L. FeS combined ozonation to remove p-aminobenzenesulfonamide from water: Density functional theory insights into the mechanism. Chemosphere 2022, 311, 137158. [Google Scholar] [CrossRef] [PubMed]
  286. Hunter, R.G.; Day, J.W.; Wiegman, A.R.; Lane, R.R. Municipal wastewater treatment costs with an emphasis on assimilation wetlands in the Louisiana coastal zone. Ecol. Eng. 2019, 137, 21–25. [Google Scholar] [CrossRef]
  287. Islam, A.R.M.T.; Hasan, M.; Sadia, M.R.; Mubin, A.-N.; Ali, M.M.; Senapathi, V.; Idris, A.M.; Malafaia, G. Unveiling microplastics pollution in a subtropical rural recreational lake: A novel insight. Environ. Res. 2024, 250, 118543. [Google Scholar] [CrossRef] [PubMed]
  288. Islam, M.S.; Islam, Z.; Hasan, M.R. Pervasiveness and characteristics of microplastics in surface water and sediment of the Buriganga River, Bangladesh. Chemosphere 2022, 307, 135945. [Google Scholar] [CrossRef] [PubMed]
  289. Islam, M.S.; Islam, Z.; Jamal, A.H.M.S.I.M.; Momtaz, N.; Beauty, S.A. Removal efficiencies of microplastics of the three largest drinking water treatment plants in Bangladesh. Sci. Total Environ. 2023, 895, 165155. [Google Scholar] [CrossRef] [PubMed]
  290. Ismanto, A.; Hadibarata, T.; Kristanti, R.A.; Maslukah, L.; Safinatunnajah, N.; Sathishkumar, P. The abundance of endocrine-disrupting chemicals (EDCs) in downstream of the Bengawan Solo and Brantas rivers located in Indonesia. Chemosphere 2022, 297, 134151. [Google Scholar] [CrossRef] [PubMed]
  291. Jahan, I.; Chowdhury, G.; Baquero, A.O.; Couetard, N.; Hossain, M.A.; Mian, S.; Iqbal, M.M. Microplastics pollution in the Surma River, Bangladesh: A rising hazard to upstream water quality and aquatic life. J. Environ. Manag. 2024, 360, 121117. [Google Scholar] [CrossRef] [PubMed]
  292. Jara-Negrete, E.; Cipriani-Avila, I.; Molinero, J.; Pinos-Vélez, V.; Acosta-López, S.; Cabrera, M.; Medina-Villamizar, E.J.; Leiva-Andrade, D.; Pozo, A.; Martínez, O.; et al. Pharmaceutical compounds in urban drinking waters of Ecuador. Front. Environ. Sci. 2023, 11, 1232405. [Google Scholar] [CrossRef]
  293. Jiang, R.; Liu, J.; Huang, B.; Wang, X.; Luan, T.; Yuan, K. Assessment of the potential ecological risk of residual endocrine-disrupting chemicals from wastewater treatment plants. Sci. Total Environ. 2020, 714, 136689. [Google Scholar] [CrossRef] [PubMed]
  294. Jian, M.; Chen, X.; Liu, S.; Liu, Y.; Liu, Y.; Wang, Q.; Tu, W. Combined exposure with microplastics increases the toxic effects of PFOS and its alternative F53B in adult zebrafish. Sci. Total Environ. 2024, 920, 170948. [Google Scholar] [CrossRef] [PubMed]
  295. Jin, Y.; Yuan, T.; Li, J.; Shen, Z.; Tian, Y. Occurrence, health risk assessment and water quality criteria derivation of six personal care products (PCPs) in Huangpu River, China. Environ. Monit. Assess. 2022, 194, 577. [Google Scholar] [CrossRef] [PubMed]
  296. Johnson, G.R. PFAS in soil and groundwater following historical land application of biosolids. Water Res. 2022, 211, 118035. [Google Scholar] [CrossRef] [PubMed]
  297. Jurikova, M.; Dvorakova, D.; Pulkrabova, J. The occurrence of perfluoroalkyl substances (PFAS) in drinking water in the Czech Republic: A pilot study. Environ. Sci. Pollut. Res. 2022, 29, 60341–60353. [Google Scholar] [CrossRef] [PubMed]
  298. K’OReje, K.; Okoth, M.; Van Langenhove, H.; Demeestere, K. Occurrence and point-of-use treatment of contaminants of emerging concern in groundwater of the Nzoia River basin, Kenya. Environ. Pollut. 2022, 297, 118725. [Google Scholar] [CrossRef] [PubMed]
  299. Natesan, U.; Vaikunth, R.; Kumar, P.; Ruthra, R.; Srinivasalu, S. Spatial distribution of microplastic concentration around landfill sites and its potential risk on groundwater. Chemosphere 2021, 277, 130263. [Google Scholar] [CrossRef] [PubMed]
  300. Kandie, F.J.; Krauss, M.; Beckers, L.-M.; Massei, R.; Fillinger, U.; Becker, J.; Liess, M.; Torto, B.; Brack, W. Occurrence and risk assessment of organic micropollutants in freshwater systems within the Lake Victoria South Basin, Kenya. Sci. Total Environ. 2020, 714, 136748. [Google Scholar] [CrossRef] [PubMed]
  301. Karimi, K.J.; Ngumba, E.; Ahmad, A.; Duse, A.G.; Olago, D.; Ndwigah, S.N.; Mwanthi, M.A.; Ayah, R.; Dulo, S.; Amarasiri, M. Contamination of groundwater with sulfamethoxazole and antibiotic resistant Escherichia coli in informal settlements in Kisumu, Kenya. PLoS Water 2023, 2, e0000076. [Google Scholar] [CrossRef]
  302. Kasula, M.; Pala, J.; Esfahani, M.R. Designing super fine activated carbon-functionalized thin-film nanocomposite membranes for adsorptive removal of per- and poly-fluoroalkyl substances. ACS Appl. Eng. Mater. 2024, 2, 143–155. [Google Scholar] [CrossRef]
  303. Khan, H.K.; Rehman, M.Y.A.; Junaid, M.; Lv, M.; Yue, L.; Haq, I.-U.; Xu, N.; Malik, R.N. Occurrence, source apportionment and potential risks of selected PPCPs in groundwater used as a source of drinking water from key urban-rural settings of Pakistan. Sci. Total Environ. 2022, 807, 151010. [Google Scholar] [CrossRef] [PubMed]
  304. Khan, S.; Ali, S.A.; Ali, A.S. Biodegradation of low density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’ isolated from soils of plastic waste dump yard, Bhopal, India. Environ. Technol. 2023, 44, 2300–2314. [Google Scholar] [CrossRef] [PubMed]
  305. Khavar, A.H.C.; Khedri, N.; Rizo, R.; Martínez, J.M.F.; Mahjoub, A.R.; Doolabi, M.; Aghayani, E. A novel Ga(III) coordination complex as an efficient sensitizer for enhancing photocatalytic activity of TiO2/rGO nanocomposite. J. Rare Earths 2023, 41, 1004–1013. [Google Scholar] [CrossRef]
  306. Chanez, L.; Rania, D.; Fouzia, T.; Faouzi, S.; Kheireddine, O. Evaluation of sediment contamination by macro and microplastics in coastal waters of Southern Mediterranean: A case study of Annaba, Algeria, before and after the COVID-19 pandemic. Arch. Environ. Prot. 2024, 50, 21–31. [Google Scholar] [CrossRef]
  307. Khezami, F.; Gómez-Navarro, O.; Barbieri, M.V.; Khiari, N.; Chkirbene, A.; Chiron, S.; Khadhar, S.; Pérez, S. Occurrence of contaminants of emerging concern and pesticides and relative risk assessment in Tunisian groundwater. Sci. Total Environ. 2024, 906, 167319. [Google Scholar] [CrossRef] [PubMed]
  308. Khan, F.R.; Patsiou, D.; Catarino, A.I. Pollutants bioavailability and toxicological risk from microplastics. In Handbook of Microplastics in the Environment; RochaSantos, T., Costa, M., Mouneyrac, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 697–736. [Google Scholar] [CrossRef]
  309. Kiendrebeogo, M.; Estahbanati, M.K.; Mostafazadeh, A.K.; Drogui, P.; Tyagi, R. Treatment of microplastics in water by anodic oxidation: A case study for polystyrene. Environ. Pollut. 2021, 269, 116168. [Google Scholar] [CrossRef] [PubMed]
  310. Kılıç, E.; Yücel, N.; Bengil, F.; Bengil, E.G.T.; Şahutoğlu, S.M. Microplastic pollution levels in the surface water and sediment of Orontes basin: Urgent risk for endangered species. Mar. Pollut. Bull. 2024, 208, 116945. [Google Scholar] [CrossRef] [PubMed]
  311. Kleywegt, S.; Raby, M.; McGill, S.; Helm, P. The impact of risk management measures on the concentrations of per- and polyfluoroalkyl substances in source and treated drinking waters in Ontario, Canada. Sci. Total Environ. 2020, 748, 141195. [Google Scholar] [CrossRef] [PubMed]
  312. Kodom, K.; Attiogbe, F.; Kuranchie, F.A. Assessment of removal efficiency of pharmaceutical products from wastewater in sewage treatment plants: A case of the Sewerage Systems Ghana Limited, Accra. Heliyon 2021, 7, e08385. [Google Scholar] [CrossRef] [PubMed]
  313. Kortesmäki, E.; Östman, J.R.; Meierjohann, A.; Brozinski, J.-M.; Eklund, P.; Kronberg, L. Occurrence of antibiotics in influent and effluent from three major wastewater-treatment plants in Finland. Environ. Environ. Toxicol. Chem. 2020, 39, 1774–1789. [Google Scholar] [CrossRef] [PubMed]
  314. Kovalova, L.; Siegrist, H.; von Gunten, U.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; Moser, R.; McArdell, C.S. Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ. Sci. Technol. 2013, 47, 7899–7908. [Google Scholar] [CrossRef] [PubMed]
  315. Kozisek, F.; Dvorakova, D.; Kotal, F.; Jeligova, H.; Mayerova, L.; Svobodova, V.; Jurikova, M.; Gomersall, V.; Pulkrabova, J. Assessing PFAS in drinking water: Insights from the Czech Republic’s risk-based monitoring approach. Chemosphere 2025, 370, 143969. [Google Scholar] [CrossRef] [PubMed]
  316. Lalonde, B.; Garron, C. Spatial and temporal distribution of BPA in the Canadian freshwater environment. Environ. Contam. Toxicol. 2020, 78, 568–578. [Google Scholar] [CrossRef] [PubMed]
  317. Valdivia, A.E.L.; Larico, J.R.; Huillca, C.V.; Arias, A.H. First evidence of microplastics in the Quilca-Vítor-Chili river basin, Arequipa region, Peru. J. Contam. Hydrol. 2025, 269, 104484. [Google Scholar] [CrossRef] [PubMed]
  318. Lath, S.; Navarro, D.A.; Losic, D.; Kumar, A.; McLaughlin, M.J. Sorptive remediation of perfluorooctanoic acid (PFOA) using mixed mineral and graphene/carbon-based materials. Environ. Chem. 2018, 15, 472–480. [Google Scholar] [CrossRef]
  319. Lechthaler, S.; Waldschläger, K.; Sandhani, C.G.; Sannasiraj, S.A.; Sundar, V.; Schwarzbauer, J.; Schüttrumpf, H. Baseline study on microplastics in Indian rivers under different anthropogenic influences. Water 2021, 13, 1648. [Google Scholar] [CrossRef]
  320. Lee, Y.-M.; Lee, J.-Y.; Kim, M.-K.; Yang, H.; Lee, J.-E.; Son, Y.; Kho, Y.; Choi, K.; Zoh, K.-D. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. J. Hazard. Mater. 2020, 381, 120909. [Google Scholar] [CrossRef] [PubMed]
  321. Lefebvre, C.; Le Bihanic, F.; Jalón-Rojas, I.; Dusacre, E.; Chassaigne--Viscaïno, L.; Bichon, J.; Clérandeau, C.; Morin, B.; Lecomte, S.; Cachot, J. Spatial distribution of anthropogenic particles and microplastics in a meso-tidal lagoon (Arcachon Bay, France): A multi-compartment approach. Sci. Total Environ. 2023, 898, 165460. [Google Scholar] [CrossRef] [PubMed]
  322. Lei, K.; Lin, C.-Y.; Zhu, Y.; Chen, W.; Pan, H.-Y.; Sun, Z.; Sweetman, A.; Zhang, Q.; He, M.-C. Estrogens in municipal wastewater and receiving waters in the Beijing-Tianjin-Hebei region, China: Occurrence and risk assessment of mixtures. J. Hazard. Mater. 2020, 389, 121891. [Google Scholar] [CrossRef] [PubMed]
  323. Lestari, P.; Trihadiningrum, Y.; Wijaya, B.A.; Yunus, K.A.; Firdaus, M. Distribution of microplastics in Surabaya River, Indonesia. Sci. Total Environ. 2020, 726, 138560. [Google Scholar] [CrossRef] [PubMed]
  324. Li, G.; Huang, Z.; Li, H.; Zhang, Z.; Cui, L. Synergistic removal of sulfamethoxazole and dimethyl phthalate by five constructed wetland substrates. Chemosphere 2023, 318, 137936. [Google Scholar] [CrossRef] [PubMed]
  325. Li, J.; Ouyang, Z.; Liu, P.; Zhao, X.; Wu, R.; Zhang, C.; Lin, C.; Li, Y.; Guo, X. Distribution and characteristics of microplastics in the basin of Chishui River in Renhuai, China. Sci. Total Environ. 2021, 773, 145591. [Google Scholar] [CrossRef] [PubMed]
  326. Li, Y.; Li, J.; Ding, J.; Song, Z.; Yang, B.; Zhang, C.; Guan, B. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes. Chem. Eng. J. 2022, 427, 131690. [Google Scholar] [CrossRef]
  327. Li, Y.; Liu, S.; Wang, C.; Ying, Z.; Huo, M.; Yang, W. Effective column adsorption of triclosan from pure water and wastewater treatment plant effluent by using magnetic porous reduced graphene oxide. J. Hazard. Mater. 2020, 386, 121942. [Google Scholar] [CrossRef] [PubMed]
  328. Li, Y.; Thompson, J.; Wang, Z.; Bräunig, J.; Zheng, Q.; Thai, P.K.; Mueller, J.F.; Yuan, Z. Transformation and fate of pharmaceuticals, personal care products, and per- and polyfluoroalkyl substances during aerobic digestion of anaerobically digested sludge. Water Res. 2022, 219, 118568. [Google Scholar] [CrossRef] [PubMed]
  329. Liang, Y.; Song, H.; Wu, Y.; Gao, S.; Zeng, X.; Yu, Z. Occurrence and distribution of triclosan and its transformation products in Taihu Lake, China. Environ. Sci. Pollut. Res. 2022, 29, 84787–84797. [Google Scholar] [CrossRef] [PubMed]
  330. Liddie, J.M.; Bind, M.-A.; Karra, M.; Sunderland, E.M. County-level associations between drinking water PFAS contamination and COVID-19 mortality in the United States. J. Expo. Sci. Environ. Epidemiol. 2024, 35, 478–485. [Google Scholar] [CrossRef] [PubMed]
  331. Lin, D.; Cen, Z.; Zhang, C.; Lin, X.; Liang, T.; Xu, Y.; Zheng, L.; Qiao, Q.; Huang, L.; Xiong, K. Triclosanloaded aged microplastics exacerbate oxidative stress and neurotoxicity in Xenopus tropicalis tadpoles via increased bioaccumulation. Sci. Total Environ. 2024, 935, 173457. [Google Scholar] [CrossRef] [PubMed]
  332. Lin, X.; Xu, J.; Keller, A.A.; He, L.; Gu, Y.; Zheng, W.; Sun, D.; Lu, Z.; Huang, J.; Huang, X.; et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020, 744, 140977. [Google Scholar] [CrossRef] [PubMed]
  333. Liu, J.; Zhao, Z.; Li, J.; Hua, X.; Zhang, B.; Tang, C.; An, X.; Lin, T. Emerging and legacy perfluoroalkyl and polyfluoroalkyl substances (PFAS) in surface water around three international airports in China. Chemosphere 2023, 344, 140360. [Google Scholar] [CrossRef] [PubMed]
  334. Liu, M.; Munoz, G.; Duy, S.V.; Sauvé, S.; Liu, J. Per- and polyfluoroalkyl substances in contaminated soil and groundwater at airports: A Canadian case study. Environ. Sci. Technol. 2022, 56, 885–895. [Google Scholar] [CrossRef] [PubMed]
  335. Liu, S.; Wang, C.; Wang, P.; Chen, J.; Wang, X.; Yuan, Q. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China. Environ. Res. 2021, 198, 110449. [Google Scholar] [CrossRef] [PubMed]
  336. Liu, Y.; Feng, M.; Wang, B.; Zhao, X.; Guo, R.; Bu, Y.; Zhang, S.; Chen, J. Distribution and potential risk assessment of antibiotic pollution in the main drinking water sources of Nanjing, China. Environ. Sci. Pollut. Res. 2020, 27, 21429–21441. [Google Scholar] [CrossRef] [PubMed]
  337. Llamas-Dios, M.; Vadillo, I.; Jiménez-Gavilán, P.; Candela, L.; Corada-Fernández, C. Assessment of a wide array of contaminants of emerging concern in a Mediterranean water basin (Guadalhorce river, Spain): Motivations for an improvement of water management and pollutants surveillance. Sci. Total Environ. 2021, 788, 147822. [Google Scholar] [CrossRef] [PubMed]
  338. Lopez-Herguedas, N.; Irazola, M.; Alvarez-Mora, I.; Orive, G.; Lertxundi, U.; Olivares, M.; Zuloaga, O.; Prieto, A. Comprehensive micropollutant characterization of wastewater during COVID-19 crisis in 2020: Suspect screening and environmental risk prioritization strategy. Sci. Total Environ. 2023, 873, 162281. [Google Scholar] [CrossRef] [PubMed]
  339. López-Velázquez, K.; Guzmán-Mar, J.L.; Saldarriaga-Noreña, H.A.; Murillo-Tovar, M.A.; Hinojosa-Reyes, L.; Villanueva-Rodríguez, M. Occurrence and seasonal distribution of five selected endocrine-disrupting compounds in wastewater treatment plants of the Metropolitan Area of Monterrey, Mexico: The role of water quality parameters. Environ. Pollut. 2021, 269, 116223. [Google Scholar] [CrossRef] [PubMed]
  340. López, C.; Soto, L.M.; Acosta, V.; Santana-Piñeros, A.M.; Cruz-Quintana, Y.; Gomes-Barbosa, L.; Stamou, G.; Karpowicz, M.; Michaloudi, E.; Domínguez-Granda, L.; et al. A first step to assess suspended microplastics in a freshwater wetland from the coastal region of Ecuador. Front. Environ. Sci. 2023, 11, 1028970. [Google Scholar] [CrossRef]
  341. Lopez, F.; Pitarch, E.; Botero-Coy, A.; Fabregat-Safont, D.; Ibáñez, M.; Marin, J.M.; Peruga, A.; Ontañón, N.; Martínez-Morcillo, S.; Olalla, A.; et al. Removal efficiency for emerging contaminants in a WWTP from Madrid (Spain) after secondary and tertiary treatment and environmental impact on the Manzanares River. Sci. Total Environ. 2022, 812, 152567. [Google Scholar] [CrossRef] [PubMed]
  342. Lugo-Bueno, S.F.; García-Morales, R.; Coronel, R.; Aguilar-Hernandez, I.; Becerril-Bravo, J.E.; Barrios-Perez, J.A.; Mahlknecht, J.; Cano-Quiroz, A.; Ornelas-Soto, N. Biocatalysis assisted by electrochemical processes for the removal of bisphenol A and triclosan in wastewater. Environ. Technol. Innov. 2022, 28, 102921. [Google Scholar] [CrossRef]
  343. Luo, Y.; Xie, H.; Xu, H.; Zhou, C.; Wang, P.; Liu, Z.; Yang, Y.; Huang, J.; Wang, C.; Zhao, X. Wastewater treatment plant serves as a potentially controllable source of microplastic: Association of microplastic removal and operational parameters and water quality data. J. Hazard. Mater. 2023, 441, 129974. [Google Scholar] [CrossRef]
  344. Luo, Z.; Liu, M.; Tang, D.; Xu, Y.; Ran, H.; He, J.; Chen, K.; Sun, J. High H2O2 selectivity and enhanced Fe2+ regeneration toward an effective electro-Fenton process based on a self-doped porous biochar cathode. Appl. Catal. B Environ. 2022, 315, 121523. [Google Scholar] [CrossRef]
  345. Madeira, C.L.; Acayaba, R.D.; Santos, V.S.; Villa, J.E.; Jacinto-Hernández, C.; Azevedo, J.A.T.; Elias, V.O.; Montagner, C.C. Uncovering the impact of agricultural activities and urbanization on rivers from the Piracicaba, Capivari, and Jundiaí basin in São Paulo, Brazil: A survey of pesticides, hormones, pharmaceuticals, industrial chemicals, and PFAS. Chemosphere 2023, 341, 139954. [Google Scholar] [CrossRef] [PubMed]
  346. Mahamuni, N.N.; Adewuyi, Y.G. Advanced oxidation processes (AOPs) involving ultrasound for wastewater treatment: A review with emphasis on cost estimation. Ultrason. Sonochem. 2010, 17, 990–1003. [Google Scholar] [CrossRef] [PubMed]
  347. Mainardis, M.; Buttazzoni, M.; De Bortoli, N.; Mion, M.; Goi, D. Evaluation of ozonation applicability to pulp and paper streams for a sustainable wastewater treatment. J. Clean. Prod. 2020, 258, 120781. [Google Scholar] [CrossRef]
  348. Martínez-Alcalá, I.; Guillén-Navarro, J.M.; Lahora, A. Occurrence and fate of pharmaceuticals in a wastewater treatment plant from southeast of Spain and risk assessment. J. Environ. Manag. 2021, 279, 111565. [Google Scholar] [CrossRef] [PubMed]
  349. Maryam, B.; Buscio, V.; Odabasi, S.U.; Buyukgungor, H. A study on behavior, interaction and rejection of Paracetamol, Diclofenac and Ibuprofen (PhACs) from wastewater by nanofiltration membranes. Environ. Technol. Innov. 2020, 18, 100641. [Google Scholar] [CrossRef]
  350. McKenzie, T.; Holloway, C.; Dulai, H.; Tucker, J.P.; Sugimoto, R.; Nakajima, T.; Harada, K.; Santos, I.R. Submarine groundwater discharge: A previously undocumented source of contaminants of emerging concern to the coastal ocean (Sydney, Australia). Mar. Pollut. Bull. 2020, 160, 111519. [Google Scholar] [CrossRef] [PubMed]
  351. McMahon, P.B.; Tokranov, A.K.; Bexfield, L.M.; Lindsey, B.D.; Johnson, T.D.; Lombard, M.A.; Watson, E. Perfluoroalkyl and polyfluoroalkyl substances in groundwater used as a source of drinking water in the eastern United States. Environ. Sci. Technol. 2022, 56, 2279–2288. [Google Scholar] [CrossRef] [PubMed]
  352. Mercy, F.T.; Alam, A.R.; Akbor, A. Abundance and characteristics of microplastics in major urban lakes of Dhaka, Bangladesh. Heliyon 2023, 9, e14587. [Google Scholar] [CrossRef] [PubMed]
  353. Mhlongo, S.A.; Sibali, L.L.; Ndibewu, P.P. Occurrence, quantification and removal of triclosan in wastewater of Umbogintwini Industrial Complex in KwaMakhutha, South Africa. S. Afr. J. Sci. 2023, 119. [Google Scholar] [CrossRef] [PubMed]
  354. Mhuka, V.; Dube, S.; Nindi, M.M. Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-Orbitrap™ MS. Emerg. Contam. 2020, 6, 250–258. [Google Scholar] [CrossRef]
  355. Miao, F.; Liu, Y.; Gao, M.; Yu, X.; Xiao, P.; Wang, M.; Wang, S.; Wang, X. Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. J. Hazard. Mater. 2020, 399, 123023. [Google Scholar] [CrossRef] [PubMed]
  356. Mo, L.; Fu, H.; Lu, Q.; Chen, S.; Liu, R.; Xiang, J.; Xing, Q.; Wang, L.; Sun, K.; Li, B.; et al. Characteristics and ecological risks of microplastic pollution in a tropical drinking water source reservoir in Hainan province, China. Environ. Sci. Process. Impacts 2024, 26, 451–460. [Google Scholar] [CrossRef] [PubMed]
  357. Moazeni, M.; Ebrahimpour, K.; Mohammadi, F.; Heidari, Z.; Ebrahimi, A. Human health risk assessment of triclosan in water: Spatial analysis of a drinking water system. Environ. Monit. Assess. 2023, 195, 1117. [Google Scholar] [CrossRef] [PubMed]
  358. Moid AlAmmari, A.; Rizwan Khan, M.; Aqel, A. Trace identification of endocrine-disrupting bisphenol A in drinking water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. J. King Saud Univ. Sci. 2020, 32, 1634–1640. [Google Scholar] [CrossRef]
  359. Montes, R.; Méndez, S.; Cobas, J.; Carro, N.; Neuparth, T.; Alves, N.; Santos, M.M.; Quintana, J.B.; Rodil, R. Occurrence of persistent and mobile chemicals and other contaminants of emerging concern in Spanish and Portuguese wastewater treatment plants, transnational river basins and coastal water. Sci. Total Environ. 2023, 885, 163737. [Google Scholar] [CrossRef] [PubMed]
  360. Moral Pajares, E.; Gallego Valero, L.; Román Sánchez, I.M. Cost of urban wastewater treatment and ecotaxes: Evidence from municipalities in southern. Water 2019, 11, 423. [Google Scholar] [CrossRef]
  361. Morales-Arredondo, J.I.; Armienta-Hernández, M.A.; Lugo-Dorantes, A.E.; Barrera-Arrazola, A.P.; Flores-Ocampo, I.Z.; Flores-Vargas, R. Fluoride presence in drinking water along the southeastern part of El Bajío Guanajuatense, Guanajuato, Mexico: Sources and health effects. Environ. Geochem. Health 2023, 4, 3715–3742. [Google Scholar] [CrossRef] [PubMed]
  362. Morales-McDevitt, M.E.; Dunn, M.; Habib, A.; Vojta, S.; Becanova, J.; Lohmann, R. Poly-and perfluorinated alkyl substances in air and water from Dhaka, Bangladesh. Environ. Toxicol. Chem. 2022, 41, 334–342. [Google Scholar] [CrossRef] [PubMed]
  363. Moreira, V.R.; Lebron, Y.A.R.; Santos, L.V.d.S.; Amaral, M.C.S. Dead-end ultrafiltration as a cost-effective strategy for improving arsenic removal from high turbidity waters in conventional drinking water facilities. Chem. Eng. J. 2021, 417, 128132. [Google Scholar] [CrossRef]
  364. Mostafa, A.; Shaaban, H.; Alqarni, A.; Al-Ansari, R.; Alrashidi, A.; Al-Sultan, F.; Alsulaiman, M.; Alsaif, F.; Aga, O. Multi-class determination of pharmaceuticals as emerging contaminants in wastewater from Eastern Province, Saudi Arabia using eco-friendly SPE-UHPLC-MS/MS: Occurrence, removal and environmental risk assessment. Microchem. J. 2023, 187, 108453. [Google Scholar] [CrossRef]
  365. Mu, H.; Wang, Y.; Zhang, H.; Guo, F.; Li, A.; Zhang, S.; Liu, S.; Liu, T. High abundance of microplastics in groundwater in Jiaodong Peninsula, China. Sci. Total Environ. 2022, 839, 156318. [Google Scholar] [CrossRef] [PubMed]
  366. Mukhopadhyay, M.; Sampath, S.; Muñoz-Arnanz, J.; Jiménez, B.; Chakraborty, P. Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: Occurrences, sources and risk assessment. Environ. Geochem. Health 2020, 42, 2789–2802. [Google Scholar] [CrossRef] [PubMed]
  367. Müller, V.; Kindness, A.; Feldmann, J. Fluorine mass balance analysis of PFAS in communal waters at a wastewater plant from Austria. Water Res. 2023, 244, 120501. [Google Scholar] [CrossRef] [PubMed]
  368. Munoz, G.; Liu, M.; Duy, S.V.; Liu, J.; Sauvé, S. Target and nontarget screening of PFAS in drinking water for a large-scale survey of urban and rural communities in Québec, Canada. Water Res. 2023, 233, 119750. [Google Scholar] [CrossRef] [PubMed]
  369. Mussabek, D.; Söderman, A.; Imura, T.; Persson, K.M.; Nakagawa, K.; Ahrens, L.; Berndtsson, R. PFAS in the drinking water source: Analysis of the contamination levels, origin and emission rates. Water 2023, 15, 137. [Google Scholar] [CrossRef]
  370. Naji, A.; Azadkhah, S.; Farahani, H.; Uddin, S.; Khan, F.R. Microplastics in wastewater outlets of Bandar Abbas city (Iran): A potential point source of microplastics into the Persian Gulf. Chemosphere 2021, 262, 128039. [Google Scholar] [CrossRef] [PubMed]
  371. Nan, B.; Su, L.; Kellar, C.; Craig, N.J.; Keough, M.J.; Pettigrove, V. Identification of microplastics in surface water and Australian freshwater shrimp Paratya australiensis in Victoria, Australia. Environ. Pollut. 2020, 259, 113865. [Google Scholar] [CrossRef] [PubMed]
  372. Napper, I.E.; Baroth, A.; Barrett, A.C.; Bhola, S.; Chowdhury, G.W.; Davies, B.F.; Duncan, E.M.; Kumar, S.; Nelms, S.E.; Niloy, N.H.; et al. The abundance and characteristics of microplastics in surface water in the transboundary Ganges River. Environ. Pollut. 2021, 274, 116348. [Google Scholar] [CrossRef] [PubMed]
  373. Nasri, E.; de la Vega, A.C.S.; Martí, C.B.; Ben Mansour, H.; Diaz-Cruz, M.S. Pharmaceuticals and personal care products in Tunisian hospital wastewater: Occurrence and environmental risk. Environ. Sci. Pollut. Res. 2024, 31, 2716–2731. [Google Scholar] [CrossRef] [PubMed]
  374. Kumar, R.; Sinha, R.; Rakib, M.R.J.; Padha, S.; Ivy, N.; Bhattacharya, S.; Dhar, A.; Sharma, P. Microplastics pollution load in Sundarban delta of Bay of Bengal. J. Hazard. Mater. Adv. 2022, 7, 100099. [Google Scholar] [CrossRef]
  375. Nayak, V.; Cuhorka, J.; Mikulášek, P. Separation of drugs by commercial nanofiltration membranes and their modelling. Membranes 2022, 12, 528. [Google Scholar] [CrossRef] [PubMed]
  376. Nazifa, T.H.; Kristanti, R.A.; Ike, M.; Kuroda, M.; Hadibarata, T. Occurrence and distribution of estrogenic chemicals in river waters of Malaysia. Toxicol. Environ. Health. Sci. 2020, 12, 65–74. [Google Scholar] [CrossRef]
  377. Ngigi, A.N.; Magu, M.M.; Muendo, B.M. Occurrence of antibiotics residues in hospital wastewater, wastewater treatment plant, and in surface water in Nairobi County, Kenya. Environ. Monit. Assess. 2019, 192, 18. [Google Scholar] [CrossRef] [PubMed]
  378. Ngumba, E.; Gachanja, A.; Nyirenda, J.; Maldonado, J.; Tuhkanen, T. Occurrence of antibiotics and antiretroviral drugs in source-separated urine, groundwater, surface water and wastewater in the peri-urban area of Chunga in Lusaka, Zambia. Water SA 2020, 46, 278–284. [Google Scholar] [CrossRef]
  379. Nguyen, H.T.; McLachlan, M.S.; Tscharke, B.; Thai, P.; Braeunig, J.; Kaserzon, S.; O’BRien, J.W.; Mueller, J.F. Background release and potential point sources of per- and polyfluoroalkyl substances to municipal wastewater treatment plants across Australia. Chemosphere 2022, 293, 133657. [Google Scholar] [CrossRef] [PubMed]
  380. Nickel, J.P.; Sacher, F.; Fuchs, S. Up-to-date monitoring data of wastewater and stormwater quality in Germany. Water Res. 2021, 202, 117452. [Google Scholar] [CrossRef] [PubMed]
  381. Nieto-Juárez, J.I.; Torres-Palma, R.A.; Botero-Coy, A.; Hernández, F. Pharmaceuticals and environmental risk assessment in municipal wastewater treatment plants and rivers from Peru. Environ. Int. 2021, 155, 106674. [Google Scholar] [CrossRef] [PubMed]
  382. Nikolopoulou, V.; Alygizakis, N.A.; Nika, M.-C.; Oswaldova, M.; Oswald, P.; Kostakis, M.; Koupa, A.; Thomaidis, N.S.; Slobodnik, J. Screening of legacy and emerging substances in surface water, sediment, biota and groundwater samples collected in the Siverskyi Donets River Basin employing wide-scope target and suspect screening. Sci. Total Environ. 2022, 805, 150253. [Google Scholar] [CrossRef] [PubMed]
  383. Nousheen, R.; Hashmi, I.; Rittschof, D.; Capper, A. Comprehensive analysis of spatial distribution of microplastics in Rawal Lake, Pakistan using trawl net and sieve sampling methods. Chemosphere 2022, 308, 136111. [Google Scholar] [CrossRef] [PubMed]
  384. Odora, A.T.; Aysha, S.; Sultan, M.B.; Bhuiyan, A.R. Evaluating the sources of microplastic contamination and quantifying its abundance in the Balu River, Dhaka, Bangladesh. Environ. Monit. Assess. 2024, 196, 867. [Google Scholar] [CrossRef] [PubMed]
  385. Ofrydopoulou, A.; Nannou, C.; Evgenidou, E.; Christodoulou, A.; Lambropoulou, D. Assessment of a wide array of organic micropollutants of emerging concern in wastewater treatment plants in Greece: Occurrence, removals, mass loading and potential risks. Sci. Total Environ. 2022, 802, 149860. [Google Scholar] [CrossRef] [PubMed]
  386. Oharisi, O.-O.L.; Ncube, S.; Nyoni, H.; Madikizela, M.L.; Olowoyo, O.J.; Maseko, B.R. Occurrence and prevalence of antibiotics in wastewater treatment plants and effluent receiving rivers in South Africa using UHPLC-MS determination. J. Environ. Manag. 2023, 345, 118621. [Google Scholar] [CrossRef] [PubMed]
  387. Oke, S.A. Contaminant of emerging concerns in Modder River Catchment of Free State: Implication for environmental risk and water sources protection. Water 2024, 16, 2494. [Google Scholar] [CrossRef]
  388. Oliveira, T.M.A.; Mansano, A.S.; Holanda, C.A.; Pinto, T.S.; Reis, J.B.; Azevedo, E.B.; Verbinnen, R.T.; Viana, J.L.; Franco, T.C.R.S.; Vieira, E.M. Occurrence and environmental risk assessment of contaminants of emerging concern in Brazilian surface waters. Environ. Toxicol. Chem. 2024, 43, 2199–2210. [Google Scholar] [CrossRef] [PubMed]
  389. Oni, B.A.; Sanni, S.E. Occurrence of microplastics in borehole drinking water and sediments in Lagos, Nigeria. Environ. Toxicol. Chem. 2022, 41, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
  390. Onipe, T.; Edokpayi, J.N.; Odiyo, J.O. Geochemical characterization and assessment of fluoride sources in groundwater of Siloam area, Limpopo Province, South Africa. Sci. Rep. 2021, 11, 14000. [Google Scholar] [CrossRef] [PubMed]
  391. Ormaniec, P. Occurrence and analysis of microplastics in municipal wastewater, Poland. Environ. Sci. Pollut. Res. 2024, 31, 49646–49655. [Google Scholar] [CrossRef] [PubMed]
  392. Paige, T.; De Silva, T.; Buddhadasa, S.; Prasad, S.; Nugegoda, D.; Pettigrove, V. Background concentrations and spatial distribution of PFAS in surface waters and sediments of the greater Melbourne area, Australia. Chemosphere 2024, 349, 140791. [Google Scholar] [CrossRef] [PubMed]
  393. Paray, B.A.; Yu, J.; Sultana, S.; Banik, P.; Nur, A.-A.U.; Haque, R.; Rahman, M.; Arai, T.; Yan, L.; Hossain, M.B. Contamination, morphological and chemical characterization, and hazard risk analyses of microplastics in drinking water sourced from groundwater in a developing nation. Front. Environ. Sci. 2024, 12, 1379311. [Google Scholar] [CrossRef]
  394. Park, H.-J.; Oh, M.-J.; Kim, P.-G.; Kim, G.; Jeong, D.-H.; Ju, B.-K.; Lee, W.-S.; Chung, H.-M.; Kang, H.-J.; Kwon, J.-H. National reconnaissance survey of microplastics in municipal wastewater treatment plants in Korea. Environ. Sci. Technol. 2020, 54, 1503–1512. [Google Scholar] [CrossRef] [PubMed]
  395. Parto, M.; Aazami, J.; Shamsi, Z.; Zamani, A.; Savabieasfahani, M. Determination of bisphenol-A in plastic bottled water in markets of Zanjan, Iran. Int. J. Environ. Sci. Technol. 2022, 19, 3337–3344. [Google Scholar] [CrossRef]
  396. Parvin, F.; Hassan, A.; Tareq, S.M. Risk assessment of microplastic pollution in urban lakes and peripheral Rivers of Dhaka, Bangladesh. J. Hazard. Mater. Adv. 2022, 8, 100187. [Google Scholar] [CrossRef]
  397. Pei, S.; Li, B.; Wang, B.; Liu, J.; Song, X. Distribution and ecological risk assessment of pharmaceuticals and personal care products in sediments of North Canal, China. Water 2022, 14, 1999. [Google Scholar] [CrossRef]
  398. Pemberthy, D.; Padilla, Y.; Echeverri, A.; Peñuela, G.A. Monitoring pharmaceuticals and personal care products in water and fish from the Gulf of Urabá, Colombia. Heliyon 2020, 6, e04215. [Google Scholar] [CrossRef] [PubMed]
  399. Perraki, M.; Skliros, V.; Mecaj, P.; Vasileiou, E.; Salmas, C.; Papanikolaou, I.; Stamatis, G. Identification of microplastics using µ-Raman spectroscopy in surface and groundwater bodies of SE Attica, Greece. Water 2024, 16, 843. [Google Scholar] [CrossRef]
  400. Pétré, M.-A.; Genereux, D.P.; Koropeckyj-Cox, L.; Knappe, D.R.; Duboscq, S.; Gilmore, T.E.; Hopkins, Z.R. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in North Carolina, USA. Environ. Sci. Technol. 2021, 55, 5848–5856. [Google Scholar] [CrossRef] [PubMed]
  401. Picó, Y.; Alvarez-Ruiz, R.; Alfarhan, A.H.; El-Sheikh, M.A.; Alshahrani, H.O.; Barceló, D. Pharmaceuticals, pesticides, personal care products and microplastics contamination assessment of Al-Hassa irrigation network (Saudi Arabia) and its shallow lakes. Sci. Total Environ. 2020, 701, 135021. [Google Scholar] [CrossRef] [PubMed]
  402. Picó, Y.; Soursou, V.; Alfarhan, A.H.; El-Sheikh, M.A.; Barceló, D. First evidence of microplastics occurrence in mixed surface and treated wastewater from two major Saudi Arabian cities and assessment of their ecological risk. J. Hazard. Mater. 2021, 416, 125747. [Google Scholar] [CrossRef] [PubMed]
  403. Pompei, C.M.E.; Campos, L.C.; da Silva, B.F.; Fogo, J.C.; Vieira, E.M. Occurrence of PPCPs in a Brazilian water reservoir and their removal efficiency by ecological filtration. Chemosphere 2019, 226, 210–219. [Google Scholar] [CrossRef] [PubMed]
  404. Porras-Rojas, M.A.; Charry-Vargas, C.; Muñoz-Yustres, J.L.; Martínez-Silva, P.; Gómez-Méndez, L.D. Characterization of microplastics and mesoplastics and presence of biofilms, collected in the Gualí Wetland Cundinamarca, Colombia. Microplastics 2023, 2, 255–267. [Google Scholar] [CrossRef]
  405. Prajapati, S.; Beal, M.; Maley, J.; Brinkmann, M. Qualitative and quantitative analysis of microplastics and microfiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environ. Sci. Pollut. Res. 2021, 28, 32545–32553. [Google Scholar] [CrossRef] [PubMed]
  406. Praveena, S.M.; Ariffin, N.I.S.; Nafisyah, A.L. Microplastics in Malaysian bottled water brands: Occurrence and potential human exposure. Environ. Pollut. 2022, 315, 120494. [Google Scholar] [CrossRef] [PubMed]
  407. Pugazhenthiran, N.; Murugesan, S.; Valdés, H.; Selvaraj, M.; Sathishkumar, P.; Smirniotis, P.; Anandan, S.; Mangalaraja, R. Photocatalytic oxidation of ceftiofur sodium under UV–visible irradiation using plasmonic porous Ag-TiO2 nanospheres. J. Ind. Eng. Chem. 2022, 105, 384–392. [Google Scholar] [CrossRef]
  408. Qiao, B.; Chen, H.; Song, D.; Yu, H.; Baqar, M.; Li, X.; Zhao, L.; Yao, Y.; Sun, H. Multimedia distribution and release characteristics of emerging PFAS in wastewater treatment plants in Tianjin, China. J. Hazard. Mater. 2024, 475, 134879. [Google Scholar] [CrossRef] [PubMed]
  409. Qiao, X.; Li, X.; Qi, T.; Liu, Y. Identification of priority pollutants in groundwater: A case study in Xiong’an New Region, China. Water 2023, 15, 1565. [Google Scholar] [CrossRef]
  410. Qin, L.-T.; Pang, X.-R.; Zeng, H.-H.; Liang, Y.-P.; Mo, L.-Y.; Wang, D.-Q.; Dai, J.-F. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China. Sci. Total Environ. 2020, 708, 134552. [Google Scholar] [CrossRef] [PubMed]
  411. Quyen, D.T.T.; Masahiro, O.; Otaki, Y.; Chaminda, T. Sewage markers as determinants to differentiate origins of emerging organic pollutants in an urban Sri Lankan water drainage network. Water 2021, 13, 2898. [Google Scholar] [CrossRef]
  412. Radwan, E.K.; Ibrahim, M.B.; Adel, A.; Farouk, M. The occurrence and risk assessment of phenolic endocrine-disrupting chemicals in Egypt’s drinking and source water. Environ. Sci. Pollut. Res. 2020, 27, 1776–1788. [Google Scholar] [CrossRef] [PubMed]
  413. Rapp-Wright, H.; Regan, F.; White, B.; Barron, L.P. A year-long study of the occurrence and risk of over 140 contaminants of emerging concern in wastewater influent, effluent and receiving waters in the Republic of Ireland. Sci. Total Environ. 2023, 860, 160379. [Google Scholar] [CrossRef] [PubMed]
  414. Rapp-Wright, H.; Rodríguez-Mozaz, S.; Álvarez-Muñoz, D.; Barceló, D.; Regan, F.; Barron, L.P.; White, B. International comparison, risk assessment, and prioritisation of 26 endocrine disrupting compounds in three European river catchments in the UK, Ireland, and Spain. Molecules 2023, 28, 5994. [Google Scholar] [CrossRef] [PubMed]
  415. Rauert, C.; Vardy, S.; Daniell, B.; Charlton, N.; Thomas, K.V. Tyre additive chemicals, tyre road wear particles and high production polymers in surface water at 5 urban centres in Queensland, Australia. Sci. Total Environ. 2022, 852, 158468. [Google Scholar] [CrossRef] [PubMed]
  416. Reichert, G.; Mizukawa, A.; Antonelli, J.; Goulart, F.d.A.B.; Filippe, T.C.; de Azevedo, J.C.R. Determination of parabens, triclosan, and lipid regulators in a subtropical urban river: Effects of urban occupation. Water Air Soil Pollut. 2020, 231, 133. [Google Scholar] [CrossRef]
  417. Reinikainen, J.; Perkola, N.; Äystö, L.; Sorvari, J. The occurrence, distribution, and risks of PFAS at AFFF-impacted sites in Finland. Sci. Total Environ. 2022, 829, 154237. [Google Scholar] [CrossRef] [PubMed]
  418. Riaz, R.; Junaid, M.; Rehman, M.Y.A.; Iqbal, T.; Khan, J.A.; Dong, Y.; Yue, L.; Chen, Y.; Xu, N.; Malik, R.N. Spatial distribution, compositional profile, sources, ecological and human health risks of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in freshwater reservoirs of Punjab, Pakistan. Sci. Total Environ. 2023, 856, 159144. [Google Scholar] [CrossRef] [PubMed]
  419. Ridall, A.; Farrar, E.; Dansby, M.; Ingels, J. Influence of wastewater treatment plants and water input sources on size, shape, and polymer distributions of microplastics in St. Andrew Bay, Florida, USA. Mar. Pollut. Bull. 2023, 187, 114552. [Google Scholar] [CrossRef] [PubMed]
  420. Riya, K.K.; Anisuzzaman, M.; Samad Azad, M.A.; Ujjaman Nur, A.-A.; Banik, P.; Paray, B.A.; Arai, T.; Yu, J.; Hossain, M.B. Characteristics, contamination levels, and ecosystem risk assessment of microplastics in surface water of a highly urbanized river from a developing country. ACS Omega 2024, 9, 50922–50932. [Google Scholar] [CrossRef] [PubMed]
  421. Rodrigues, J.A.; Silva, S.; Cardoso, V.V.; Benoliel, M.J.; Cardoso, E.; Coelho, M.R.; Martins, A.; Almeida, C.M.M. Screening and seasonal behavior of analgesics, non-steroidal anti-inflammatory drugs, and antibiotics in two urban wastewater treatment plants. Environ. Manag. 2021, 68, 411–425. [Google Scholar] [CrossRef] [PubMed]
  422. Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Della Giustina, S.V.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef] [PubMed]
  423. Rodríguez-Rodríguez, C.E.; Ramírez-Morales, D.; Masis-Mora, M.; Montiel-Mora, J.R.; Soto-Garita, C.; Araya-Valverde, E.; Cambronero-Heinrichs, J.C.; Sànchez-Melsió, A.; Briceño-Guevara, S.; Mendez-Rivera, M.; et al. Occurrence and risk assessment of pharmaceuticals in hospital wastewater in Costa Rica. Chemosphere 2023, 339, 139746. [Google Scholar] [CrossRef] [PubMed]
  424. Rodríguez-Varela, M.; Durán-Álvarez, J.C.; Jiménez-Cisneros, B.; Zamora, O.; Prado, B. Occurrence of perfluorinated carboxylic acids in Mexico City’s wastewater: A monitoring study in the sewerage and a mega wastewater treatment plant. Sci. Total Environ. 2021, 774, 145060. [Google Scholar] [CrossRef] [PubMed]
  425. Rojas-Luna, R.A.; Oquendo-Ruiz, L.; García-Alzate, C.A.; Arana, V.A.; García-Alzate, R.; Trilleras, J. Identification, abundance, and distribution of microplastics in surface water collected from Luruaco Lake, low basin Magdalena River, Colombia. Water 2023, 15, 344. [Google Scholar] [CrossRef]
  426. Romero-Murillo, P.; Gallego, J.L.; Leignel, V. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. Toxics 2023, 11, 631. [Google Scholar] [CrossRef] [PubMed]
  427. Royano, S.; de la Torre, A.; Navarro, I.; Martínez, M.Á. Pharmaceutically active compounds (PhACs) in surface water: Occurrence, trends and risk assessment in the Tagus River Basin (Spain). Sci. Total Environ. 2023, 905, 167422. [Google Scholar] [CrossRef] [PubMed]
  428. Rusiniak, P.; Kmiecik, E.; Wątor, K.; Duda, R.; Bugno, R. Pharmaceuticals and personal care products in the urban groundwater –preliminary monitoring (case study: Kraków, Southern Poland). Urban Water J. 2021, 18, 364–374. [Google Scholar] [CrossRef]
  429. Rusinque-Quintero, L.L.; Montoya-Rojas, G.A.; Moyano-Molano, A.L. Environmental risks due to the presence of microplastics in coastal and marine environments of the Colombian Caribbean. Mar. Pollut. Bull. 2022, 185, 114357. [Google Scholar] [CrossRef] [PubMed]
  430. Sá, B.; Pais, J.; Antunes, J.; Pequeno, J.; Pires, A.; Sobral, P. Seasonal abundance and distribution patterns of microplastics in the Lis River, Portugal. Sustainability 2022, 14, 2255. [Google Scholar] [CrossRef]
  431. Saad, D.; Ramaremisa, G.; Ndlovu, M.; Chauke, P.; Nikiema, J.; Chimuka, L. Microplastic abundance and sources in surface water samples of the Vaal River, South Africa. Bull. Environ. Contam. Toxicol. 2024, 112, 23. [Google Scholar] [CrossRef] [PubMed]
  432. Sabino, J.A.; Salomão, A.L.d.S.; Cunha, P.M.d.O.M.; Coutinho, R.; Marques, M. Occurrence of organic micropollutants in an urbanized sub-basin and ecological risk assessment. Ecotoxicology 2021, 30, 130–141. [Google Scholar] [CrossRef] [PubMed]
  433. Sabri, N.A.; Schmitt, H.; Van Der Zaan, B.; Gerritsen, H.W.; Zuidema, T.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent-receiving river in the Netherlands. J. Environ. Chem. Eng. 2020, 8, 102245. [Google Scholar] [CrossRef]
  434. Sadia, M.; Nollen, I.; Helmus, R.; ter Laak, T.L.; Béen, F.; Praetorius, A.; van Wezel, A.P. Occurrence, fate, and related health risks of PFAS in raw and produced drinking water. Environ. Sci. Technol. 2023, 57, 3062–3074. [Google Scholar] [CrossRef] [PubMed]
  435. Sahar, E.; David, I.; Gelman, Y.; Chikurel, H.; Aharoni, A.; Messalem, R.; Brenner, A. The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater. Desalination 2011, 273, 142–147. [Google Scholar] [CrossRef]
  436. Salma, U.; Nishimura, Y.; Tokumura, M.; Hossain, A.; Watanabe, K.; Noro, K.; Raknuzzaman, M.; Amagai, T.; Makino, M. Occurrence, seasonal variation, and environmental risk of multiclass antibiotics in the urban surface water of the Buriganga River, Bangladesh. Chemosphere 2025, 370, 143956. [Google Scholar] [CrossRef] [PubMed]
  437. Samandra, S.; Johnston, J.M.; Jaeger, J.E.; Symons, B.; Xie, S.; Currell, M.; Ellis, A.V.; Clarke, B.O. Microplastic contamination of an unconfined groundwater aquifer in Victoria, Australia. Sci. Total Environ. 2022, 802, 149727. [Google Scholar] [CrossRef] [PubMed]
  438. Samandra, S.; Mescall, O.J.; Plaisted, K.; Symons, B.; Xie, S.; Ellis, A.V.; Clarke, B.O. Assessing exposure of the Australian population to microplastics through bottled water consumption. Sci. Total Environ. 2022, 837, 155329. [Google Scholar] [CrossRef] [PubMed]
  439. Hossain, S.; Saifullah, A.; Uddin, M.J.; Rahaman, H. Assessment of microplastics in coastal ecosystem of Bangladesh. Ecotoxicol. Environ. Saf. 2024, 281, 116622. [Google Scholar] [CrossRef] [PubMed]
  440. Sánchez-Campos, M.; Ponce-Vélez, G.; Sanvicente-Añorve, L.; Alatorre-Mendieta, M. Microplastic contamination in three environmental compartments of a coastal lagoon in the southern Gulf of Mexico. Environ. Monit. Assess. 2024, 196, 101. [Google Scholar] [CrossRef] [PubMed]
  441. Santos, A.V.; Couto, C.F.; Lebron, Y.A.R.; Moreira, V.R.; Foureaux, A.F.S.; Reis, E.O.; Santos, L.V.d.S.; de Andrade, L.H.; Amaral, M.C.S.; Lange, L.C. Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. Sci. Total Environ. 2020, 746, 141011. [Google Scholar] [CrossRef] [PubMed]
  442. Santos, V.S.; Anjos, J.S.X.; de Medeiros, J.F.; Montagner, C.C. Impact of agricultural runoff and domestic sewage discharge on the spatial–temporal occurrence of emerging contaminants in an urban stream in São Paulo, Brazil. Environ. Monit. Assess. 2022, 194, 637. [Google Scholar] [CrossRef] [PubMed]
  443. Šauer, P.; Švecová, H.; Grabicová, K.; Aydın, F.G.; Mackuľak, T.; Kodeš, V.; Blytt, L.D.; Henninge, L.B.; Grabic, R.; Kroupová, H.K. Bisphenols emerging in Norwegian and Czech aquatic environments show transthyretin binding potency and other less-studied endocrine-disrupting activities. Sci. Total Environ. 2021, 751, 141801. [Google Scholar] [CrossRef] [PubMed]
  444. Säve-Söderbergh, M.; Gyllenhammar, I.; Schillemans, T.; Lindfeldt, E.; Vogs, C.; Donat-Vargas, C.; Ankarberg, E.H.; Glynn, A.; Ahrens, L.; Helte, E.; et al. Per- and polyfluoroalkyl substances (PFAS) and fetal growth: A nation-wide register-based study on PFAS in drinking water. Environ. Int. 2024, 187, 108727. [Google Scholar] [CrossRef] [PubMed]
  445. Saxena, P.; Hiwrale, I.; Das, S.; Shukla, V.; Tyagi, L.; Pal, S.; Dafale, N.; Dhodapkar, R. Profiling of emerging contaminants and antibiotic resistance in sewage treatment plants: An Indian perspective. J. Hazard. Mater. 2021, 408, 124877. [Google Scholar] [CrossRef] [PubMed]
  446. Sayed, A.E.-D.H.; Hamed, M.; Badrey, A.E.; Ismail, R.F.; Osman, Y.A.; Osman, A.G.; Soliman, H.A. Microplastic distribution, abundance, and composition in the sediments, water, and fishes of the Red and Mediterranean seas, Egypt. Mar. Pollut. Bull. 2021, 173, 112966. [Google Scholar] [CrossRef] [PubMed]
  447. Costello, M.C.S.; Asad, N.; Haris, M.; Yousefi, P.; Khan, B.; Lee, L.S. Reconnaissance survey of organic contaminants of emerging concern in the Kabul and Swat Rivers of Pakistan. Environ. Toxicol. Chem. 2023, 42, 2599–2613. [Google Scholar] [CrossRef] [PubMed]
  448. Schwartz, H.; Marushka, L.; Chan, H.M.; Batal, M.; Sadik, T.; Ing, A.; Fediuk, K.; Tikhonov, C. Pharmaceuticals in source waters of 95 First Nations in Canada. Can. J. Public Health. 2021, 112, 133–153. [Google Scholar] [CrossRef] [PubMed]
  449. Schwichtenberg, T.; Bogdan, D.; Carignan, C.C.; Reardon, P.; Rewerts, J.; Wanzek, T.; Field, J.A. PFAS and dissolved organic carbon enrichment in surface water foams on a northern U.S. freshwater lake. Environ. Sci. Technol. 2020, 54, 14455–14464. [Google Scholar] [CrossRef] [PubMed]
  450. Segura, Y.; del Álamo, A.C.; Munoz, M.; Álvarez-Torrellas, S.; García, J.; Casas, J.A.; De Pedro, Z.M.; Martínez, F. A comparative study among catalytic wet air oxidation, Fenton, and Photo-Fenton technologies for the on-site treatment of hospital wastewater. J. Environ. Manag. 2021, 290, 112624. [Google Scholar] [CrossRef] [PubMed]
  451. Sekudewicz, I.; Dąbrowska, A.M.; Syczewski, M.D. Microplastic pollution in surface water and sediments in the urban section of the Vistula River (Poland). Sci. Total Environ. 2021, 762, 143111. [Google Scholar] [CrossRef] [PubMed]
  452. Selvam, S.; Jesuraja, K.; Venkatramanan, S.; Roy, P.D.; Kumari, V.J. Hazardous microplastic characteristics and its role as a vector of heavy metal in groundwater and surface water of coastal south India. J. Hazard. Mater. 2021, 402, 123786. [Google Scholar] [CrossRef] [PubMed]
  453. Semerjian, L.; Aissaoui, S.; Shanableh, A.; Okoh, A.; Elhadi, R.; Mousa, M.; Alhameed, R.A.; Hassan, J.A.J.; Akhtar, I.; Semreen, M.H. Occurrence, spatial and seasonal variations of emerging contaminants in the aquatic environment of Sharjah, United Arab Emirates. Chemosphere 2023, 345, 140426. [Google Scholar] [CrossRef] [PubMed]
  454. Serna-Galvis, E.A.; Botero-Coy, A.M.; Rosero-Moreano, M.; Lee, J.; Hernández, F.; Torres-Palma, R.A. An initial approach to the presence of pharmaceuticals in wastewater from hospitals in Colombia and their environmental risk. Water 2022, 14, 950. [Google Scholar] [CrossRef]
  455. Setiti, S.; Hamdi, B.; Chernai, S.; Bachari, F.H.; Bachouche, S.; Ghezali, Y.; Suaria, G. Seasonal variation of microplastics density in Algerian surface waters (South-Western Mediterranean Sea). Mediterr. Mar. Sci. 2021, 22, 317–326. [Google Scholar] [CrossRef]
  456. Shafi, M.; Jan, R.; Gani, K.M. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka. Chemosphere 2023, 341, 139976. [Google Scholar] [CrossRef] [PubMed]
  457. Sharma, A.; Jorvekar, S.B.; Bhowmik, S.; Mohapatra, P.; Borkar, R.M. Comprehensive assessment of per and polyfluoroalkyl substances (PFAS) contamination in groundwater of Kamrup, Assam, India: Occurrence, health risks, and metabolomic insights. Environ. Sci. Process. Impacts 2024, 26, 1601–1617. [Google Scholar] [CrossRef] [PubMed]
  458. Sharma, L.; Siedlewicz, G.; Pazdro, K. The toxic effects of antibiotics on freshwater and marine photosynthetic microorganisms: State of the art. Plants 2021, 10, 591. [Google Scholar] [CrossRef] [PubMed]
  459. Shehab, Z.N.; Jamil, N.R.; Aris, A.Z. Occurrence, environmental implications and risk assessment of Bisphenol A in association with colloidal particles in an urban tropical river in Malaysia. Sci. Rep. 2020, 10, 20360. [Google Scholar] [CrossRef] [PubMed]
  460. Shrestha, P.; Ni, J.; Wong, T.-Y. Synergistic and antagonistic interactions of triclosan with various antibiotics in bacteria. J. Environ. Sci. Health Part C 2020, 38, 187–203. [Google Scholar] [CrossRef] [PubMed]
  461. Shi, J.; Dong, Y.; Shi, Y.; Yin, T.; He, W.; An, T.; Tang, Y.; Hou, X.; Chong, S.; Chen, D.; et al. Groundwater antibiotics and microplastics in a drinking-water source area, northern China: Occurrence, spatial distribution, risk assessment, and correlation. Environ. Res. 2022, 210, 112855. [Google Scholar] [CrossRef] [PubMed]
  462. Shu, X.; Xu, L.; Yang, M.; Qin, Z.; Zhang, Q.; Zhang, L. Spatial distribution characteristics and migration of microplastics in surface water, groundwater and sediment in karst areas: The case of Yulong River in Guilin, Southwest China. Sci. Total Environ. 2023, 868, 161578. [Google Scholar] [CrossRef] [PubMed]
  463. Silva, S.; Cardoso, V.V.; Duarte, L.; Carneiro, R.N.; Almeida, C.M.M. Characterization of five Portuguese wastewater treatment plants: Removal efficiency of pharmaceutical active compounds through conventional treatment processes and environmental risk. Appl. Sci. 2021, 11, 7388. [Google Scholar] [CrossRef]
  464. Silver, M.; Phelps, W.; Masarik, K.; Burke, K.; Zhang, C.; Schwartz, A.; Wang, M.; Nitka, A.L.; Schutz, J.; Trainor, T.; et al. Prevalence and source tracing of PFAS in shallow groundwater used for drinking water in Wisconsin, USA. Environ. Sci. Technol. 2023, 57, 17415–17426. [Google Scholar] [CrossRef] [PubMed]
  465. Sinkway, T.D.; Mehdi, Q.; Griffin, E.K.; Correia, K.; Camacho, C.G.; Aufmuth, J.; Ilvento, C.; Bowden, J.A. Crowdsourcing citizens for statewide mapping of per- and polyfluoroalkyl substances (PFAS) in Florida drinking water. Sci. Total Environ. 2024, 926, 171932. [Google Scholar] [CrossRef] [PubMed]
  466. Ślósarczyk, K.; Witkowski, A.J. Screening of pharmaceuticals and personal care products in the water environment of a region diversified in land use and urban development (Silesian Province, southern Poland). J. Hydrol. 2024, 635, 131191. [Google Scholar] [CrossRef]
  467. Snigirova, A.; Mihas, R.; Khutornoi, S.; Vinogradov, A.; Gazyetov, Y.; Gascooke, J.; Snigirov, S.; Leterme, S. Microplastic and ichthyoplankton in the Ukrainian waters of the Black Sea. Reg. Stud. Mar. Sci. 2024, 80, 103884. [Google Scholar] [CrossRef]
  468. Sol, D.; Menéndez-Manjón, A.; Arias-García, P.; Laca, A.; Laca, A.; Rancaño, A.; Díaz, M. Occurrence of selected emerging contaminants in Southern Europe WWTPs: Comparison of simulations and real data. Processes 2022, 10, 2491. [Google Scholar] [CrossRef]
  469. Solaun, O.; Rodríguez, J.G.; Borja, Á.; López-García, E.; Zonja, B.; Postigo, C.; Barceló, D.; de Alda, M.L.; Larreta, J. Antibiotics in the Basque coast (N Spain): Occurrence in waste and receiving waters, and risk assessment (2017–2020). Sci. Total Environ. 2022, 847, 157563. [Google Scholar] [CrossRef] [PubMed]
  470. Sönmez, V.Z.; Akarsu, C.; Sivri, N. Impact of coastal wastewater treatment plants on microplastic pollution in surface seawater and ecological risk assessment. Environ. Pollut. 2023, 318, 120922. [Google Scholar] [CrossRef] [PubMed]
  471. Sörengård, M.; Bergström, S.; McCleaf, P.; Wiberg, K.; Ahrens, L. Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. Environ. Pollut. 2022, 311, 119981. [Google Scholar] [CrossRef] [PubMed]
  472. Sousa, J.C.; Barbosa, M.O.; Ribeiro, A.R.; Ratola, N.; Pereira, M.F.; Silva, A.M. Distribution of micropollutants in estuarine and sea water along the Portuguese coast. Mar. Pollut. Bull. 2020, 154, 111120. [Google Scholar] [CrossRef] [PubMed]
  473. Stovall, J.K.; Bratton, S.P. Microplastic pollution in surface waters of urban watersheds in Central Texas, United States: A comparison of sites with and without Treated wastewater effluent. Front. Anal. Sci. 2022, 2. [Google Scholar] [CrossRef]
  474. Stroski, K.M.; Luong, K.H.; Challis, J.K.; Chaves-Barquero, L.G.; Hanson, M.L.; Wong, C.S. Wastewater sources of per- and polyfluorinated alkyl substances (PFAS) and pharmaceuticals in four Canadian Arctic communities. Sci. Total Environ. 2020, 708, 134494. [Google Scholar] [CrossRef] [PubMed]
  475. Styszko, K.; Proctor, K.; Castrignanò, E.; Kasprzyk-Hordern, B. Occurrence of pharmaceutical residues, personal care products, lifestyle chemicals, illicit drugs and metabolites in wastewater and receiving surface waters of Krakow agglomeration in South Poland. Sci. Total Environ. 2021, 768, 144360. [Google Scholar] [CrossRef] [PubMed]
  476. Sui, Q.; Huang, J.; Deng, S.; Yu, G.; Fan, Q. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 2010, 44, 417–426. [Google Scholar] [CrossRef] [PubMed]
  477. Sulistyowati, L.; Nurhasanah; Riani, E.; Cordova, M.R. The occurrence and abundance of microplastics in surface water of the midstream and downstream of the Cisadane River, Indonesia. Chemosphere 2022, 291, 133071. [Google Scholar] [CrossRef] [PubMed]
  478. Sun, M.; Zhou, H.; Xu, B.; Bao, J. Distribution of perfluorinated compounds in drinking water treatment plant and reductive degradation by UV/SO3 2− process. Environ. Sci. Pollut. Res. 2018, 25, 7443–7453. [Google Scholar] [CrossRef] [PubMed]
  479. Suteja, Y.; Atmadipoera, A.S.; Riani, E.; Nurjaya, I.W.; Nugroho, D.; Cordova, M.R. Spatial and temporal distribution of microplastic in surface water of tropical estuary: Case study in Benoa Bay, Bali, Indonesia. Mar. Pollut. Bull. 2021, 163, 111979. [Google Scholar] [CrossRef] [PubMed]
  480. Szabo, D.; Marchiandi, J.; Samandra, S.; Johnston, J.M.; Mulder, R.A.; Green, M.P.; Clarke, B.O. High-resolution temporal wastewater treatment plant investigation to understand influent mass flux of per- and polyfluoroalkyl substances (PFAS). J. Hazard. Mater. 2023, 447, 130854. [Google Scholar] [CrossRef] [PubMed]
  481. Tang, S.; He, C.; Thai, P.K.; Heffernan, A.; Vijayasarathy, S.; Toms, L.; Thompson, K.; Hobson, P.; Tscharke, B.J.; O’bRien, J.W.; et al. Urinary concentrations of bisphenols in the Australian population and their association with the per capita mass loads in wastewater. Environ. Sci. Technol. 2020, 54, 10141–10148. [Google Scholar] [CrossRef] [PubMed]
  482. Tanui, I.C.; Kandie, F.; Krauss, M.; Piotrowska, A.; Finckh, S.; Kiprop, A.; Hollert, H.; Shahid, N.; Liess, M.; Brack, W. Occurrence and potential risk of steroid hormones in selected surface water and wastewater treatment plants in western Kenya. Environ. Pollut. 2025, 367, 125623. [Google Scholar] [CrossRef] [PubMed]
  483. Tappert, L.; Bunge, M.; Hoehne, D.; Dlugi, I.; Fetters, K.; Fischer, B.; Mueller, G.; Bock, M.; Gestermann, S. Bisphenol A in surface waters in Germany: Part I. Reassessment of sources and emissions pathways for FlowEQ modeling. Integr. Environ. Assess. Manag. 2024, 20, 211–225. [Google Scholar] [CrossRef] [PubMed]
  484. Tata, T.; Belabed, B.E.; Bououdina, M.; Bellucci, S. Occurrence and characterization of surface sediment microplastics and litter from North African coasts of the Mediterranean Sea: Preliminary research and first evidence. Sci. Total Environ. 2020, 713, 136664. [Google Scholar] [CrossRef] [PubMed]
  485. Teixeira, L.C.G.M.; das Chaves, J.R.; Mendonça, N.; Sanson, A.L.; Alves, M.C.P.; Afonso, R.J.C.F.; Aquino, S.F. Occurrence and removal of drugs and endocrine disruptors in the Bolonha Water Treatment Plant in Belém/PA (Brazil). Environ. Monit. Assess. 2021, 193, 246. [Google Scholar] [CrossRef] [PubMed]
  486. Terzi, Y.; Gedik, K.; Eryaşar, A.R.; Öztürk, R.Ç.; Şahin, A.; Yılmaz, F. Microplastic contamination and characteristics spatially vary in the southern Black Sea beach sediment and sea surface water. Mar. Pollut. Bull. 2022, 174, 113228. [Google Scholar] [CrossRef] [PubMed]
  487. Thalla, A.K.; Vannarath, A.S. Occurrence and environmental risks of nonsteroidal anti-inflammatory drugs in urban wastewater in the southwest monsoon region of India. Environ. Monit. Assess. 2020, 192, 193. [Google Scholar] [CrossRef] [PubMed]
  488. Trindade, L.d.S.; Gloaguen, T.V.; Benevides, T.d.S.F.; Valentim, A.C.S.; Bomfim, M.R.; Santos, J.A.G. Microplastics in surface waters of tropical estuaries around a densely populated Brazilian bay. Environ. Pollut. 2023, 323, 121224. [Google Scholar] [CrossRef] [PubMed]
  489. Uddin, S.; Behbehani, M.; Habibi, N.; Karra, M.; Sunderland, E.M. Microplastics in Kuwait’s wastewater streams. Sustainability 2022, 14, 15817. [Google Scholar] [CrossRef]
  490. Ugboka, U.G.; Ihedioha, J.N.; Ekere, N.R.; Okechukwu, F.O. Human health risk assessment of bisphenol A released from polycarbonate drinking water bottles and carbonated drinks exposed to sunlight in Nigeria. Int. J. Environ. Anal. Chem. 2020, 102, 2830–2840. [Google Scholar] [CrossRef]
  491. Üstün-Odabaşı, S.; Maryam, B.; Özdemir, N.; Büyükgüngör, H. Occurrence and seasonal variations of pharmaceuticals and personal care products in drinking water and wastewater treatment plants in Samsun, Turkey. Environ. Earth Sci. 2020, 79, 311. [Google Scholar] [CrossRef]
  492. Üstün, G.E.; Bozdaş, K.; Can, T. Abundance and characteristics of microplastics in an urban wastewater treatment plant in Turkey. Environ. Pollut. 2022, 310, 119890. [Google Scholar] [CrossRef] [PubMed]
  493. Uurasjärvi, E.; Hartikainen, S.; Setälä, O.; Lehtiniemi, M.; Koistinen, A. Microplastic concentrations, size distribution, and polymer types in the surface waters of a northern European lake. Water Environ. Res. 2020, 92, 149–156. [Google Scholar] [CrossRef] [PubMed]
  494. Valentić, L.; Kozel, P.; Pipan, T. Microplastic pollution in vulnerable karst environments: Case study from the Slovenian classical karst region. Acta Carsologica 2022, 51, 79–92. [Google Scholar] [CrossRef]
  495. Vane, C.H.; Kim, A.W.; dos Santos, R.A.L.; Moss-Hayes, V. Contrasting sewage, emerging and persistent organic pollutants in sediment cores from the River Thames estuary, London, England, UK. Mar. Pollut. Bull. 2022, 175, 113340. [Google Scholar] [CrossRef] [PubMed]
  496. Vanukon, M.S.; Dehm, J.; Pickering, T.; Yabakiva, M.; Rico, C.; Hewavitharane, C. First assessment of microplastic concentrations in oysters, water and sediment in Laucala Bay, Fiji Islands. Int. J. Environ. Sci. Technol. 2025, 22, 1327–1342. [Google Scholar] [CrossRef]
  497. Vassalle, L.; García-Galán, M.J.; Aquino, S.F.; Afonso, R.J.d.C.F.; Ferrer, I.; Passos, F.; Mota, C.R. Can high rate algal ponds be used as post-treatment of UASB reactors to remove micropollutants? Chemosphere 2020, 248, 125969. [Google Scholar] [CrossRef] [PubMed]
  498. Vaudreuil, M.-A.; Duy, S.V.; Munoz, G.; Sauvé, S. Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. Sci. Total Environ. 2022, 846, 157353. [Google Scholar] [CrossRef] [PubMed]
  499. Verlicchi, P.; Grillini, V. Surface Water and Groundwater Quality in South Africa and Mozambique—Analysis of the Most Critical Pollutants for Drinking Purposes and Challenges in Water Treatment Selection. Water 2020, 12, 305. [Google Scholar] [CrossRef]
  500. Von Behren, J.; Reynolds, P.; Bradley, P.M.; Gray, J.L.; Kolpin, D.W.; Romanok, K.M.; Smalling, K.L.; Carpenter, C.; Avila, W.; Ventura, A.; et al. Per- and polyfluoroalkyl substances (PFAS) in drinking water in Southeast Los Angeles: Industrial legacy and environmental justice. Sci. Total Environ. 2024, 953, 176067. [Google Scholar] [CrossRef] [PubMed]
  501. Wang, C.; Huang, P.; Qiu, C.; Li, J.; Hu, S.; Sun, L.; Bai, Y.; Gao, F.; Li, C.; Liu, N.; et al. Occurrence, migration and health risk of phthalates in tap water, barreled water and bottled water in Tianjin, China. J. Hazard. Mater. 2021, 408, 124891. [Google Scholar] [CrossRef] [PubMed]
  502. Wang, C.; Ye, D.; Li, X.; Jia, Y.; Zhao, L.; Liu, S.; Xu, J.; Du, J.; Tian, L.; Li, J.; et al. Occurrence of pharmaceuticals and personal care products in bottled water and assessment of the associated risks. Environ. Int. 2021, 155, 106651. [Google Scholar] [CrossRef] [PubMed]
  503. Wang, G.; Lu, J.; Li, W.; Ning, J.; Zhou, L.; Tong, Y.; Liu, Z.; Zhou, H.; Xiayihazi, N. Seasonal variation and risk assessment of microplastics in surface water of the Manas River Basin, China. Ecotoxicol. Environ. Saf. 2021, 208, 111477. [Google Scholar] [CrossRef] [PubMed]
  504. Wang, H.; Zhang, C.; Zhang, X.; Wang, S.; Xia, Z.; Zeng, G.; Ding, J.; Ren, N. Construction of Fe3O4@β-CD/g-C3N4 nanocomposite catalyst for degradation of PCBs in wastewater through photodegradation and heterogeneous Fenton oxidation. Chem. Eng. J. 2022, 429, 132445. [Google Scholar] [CrossRef]
  505. Wang, K.; Zhuang, T.; Su, Z.; Chi, M.; Wang, H. Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts. Sci. Total Environ. 2021, 788, 147811. [Google Scholar] [CrossRef] [PubMed]
  506. Wang, Y.-Q.; Hu, L.-X.; Liu, T.; Zhao, J.-H.; Yang, Y.-Y.; Liu, Y.-S.; Ying, G.-G. Per- and polyfluoralkyl substances (PFAS) in drinking water system: Target and non-target screening and removal assessment. Environ. Int. 2022, 163, 107219. [Google Scholar] [CrossRef] [PubMed]
  507. Wang, Y.; Cun, D.; Zhang, Z.; Pu, D.; Li, X.; Liang, W.; Fang, T. Occurrence and risk assessment of triclosan in freshwater lakes in the middle Yangtze River basin (Wuhan, Central China). Water Biol. Secur. 2022, 1, 100063. [Google Scholar] [CrossRef]
  508. Wei, Z.; Wei, T.; Chen, Y.; Zhou, R.; Zhang, L.; Zhong, S. Seasonal dynamics and typology of microplastic pollution in Huixian karst wetland groundwater: Implications for ecosystem health. J. Environ. Manag. 2024, 358, 120882. [Google Scholar] [CrossRef] [PubMed]
  509. Wicaksono, E.A.; Werorilangi, S.; Galloway, T.S.; Tahir, A. Distribution and Seasonal Variation of Microplastics in Tallo River, Makassar, Eastern Indonesia. Toxics 2021, 9, 129. [Google Scholar] [CrossRef] [PubMed]
  510. Wu, B.; Li, L.-W.; Zu, Y.-X.; Nan, J.; Chen, X.-Q.; Sun, K.; Li, Z.-L. Microplastics contamination in groundwater of a drinking-water source area, northern China. Environ. Res. 2022, 214, 114048. [Google Scholar] [CrossRef] [PubMed]
  511. Wu, P.-H.; Yeh, H.-Y.; Chou, P.-H.; Hsiao, W.-W.; Yu, C.-P. Algal extracellular organic matter mediated photocatalytic degradation of estrogens. Ecotoxicol. Environ. Saf. 2021, 209, 111818. [Google Scholar] [CrossRef] [PubMed]
  512. Wu, P.; Tang, Y.; Dang, M.; Wang, S.; Jin, H.; Liu, Y.; Jing, H.; Zheng, C.; Yi, S.; Cai, Z. Spatial-temporal distribution of microplastics in surface water and sediments of Maozhou River within Guangdong-Hong Kong-Macao Greater Bay Area. Sci. Total Environ. 2020, 717, 135187. [Google Scholar] [CrossRef] [PubMed]
  513. Xiong, X.; Tappenbeck, T.H.; Wu, C.; Elser, J.J. Microplastics in Flathead Lake, a large oligotrophic mountain lake in the USA. Environ. Pollut. 2022, 306, 119445. [Google Scholar] [CrossRef] [PubMed]
  514. Xu, N.; Jiang, L.; Zhang, Y.; Shen, Y.; Wang, Y.; Wang, S.; Yuan, Q. Microplastic pollution in the offshore sea, rivers and wastewater treatment plants in Jiangsu coastal area in China. Mar. Environ. Res. 2023, 188, 105992. [Google Scholar] [CrossRef] [PubMed]
  515. Xu, X.; Xu, Y.; Xu, N.; Pan, B.; Ni, J. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam. Chemosphere 2022, 301, 134721. [Google Scholar] [CrossRef] [PubMed]
  516. Yadav, H.; Sethulekshmi, S.; Shriwastav, A. Estimation of microplastic exposure via the composite sampling of drinking water, respirable air, and cooked food from Mumbai, India. Environ. Res. 2022, 214, 113735. [Google Scholar] [CrossRef] [PubMed]
  517. Yang, L.; Wang, T.; Zhou, Y.; Shi, B.; Bi, R.; Meng, J. Contamination, source and potential risks of pharmaceuticals and personal products (PPCPs) in Baiyangdian Basin, an intensive human intervention area, China. Sci. Total Environ. 2021, 760, 144080. [Google Scholar] [CrossRef] [PubMed]
  518. Yang, L.; Zhou, Y.; Shi, B.; Meng, J.; He, B.; Yang, H.; Yoon, S.J.; Kim, T.; Kwon, B.-O.; Khim, J.S.; et al. Anthropogenic impacts on the contamination of pharmaceuticals and personal care products (PPCPs) in the coastal environments of the Yellow and Bohai seas. Environ. Int. 2020, 135, 105306. [Google Scholar] [CrossRef] [PubMed]
  519. Yang, Y.; Hu, M.; Lu, W.; Xue, L.; Lin, X.; Liu, E. Occurrence, distribution, and risk assessment of PPCPs in water and sediments of Longgang River in Shenzhen City, south China. Desalination Water Treat. 2020, 189, 196–206. [Google Scholar] [CrossRef]
  520. Yang, Y.; Ji, Y.; Gao, Y.; Lin, Z.; Lin, Y.; Lu, Y.; Zhang, L. Antibiotics and antimycotics in wastewater treatment plants: Concentrations, removal efficiency, spatial and temporal variations, prediction, and ecological risk assessment. Environ. Res. 2022, 215, 114135. [Google Scholar] [CrossRef] [PubMed]
  521. Yi, J.; Huang, X.; Hou, J.; Xiong, J.; Qian, Z.; Liu, S.; Zhang, J.; Yin, D.; Li, J.; Su, Q.; et al. Occurrence and distribution of PPCPs in water from two largest urban lakes of China: First perspective from DGT in-situ measurement. Sci. Total Environ. 2023, 904, 166656. [Google Scholar] [CrossRef] [PubMed]
  522. Yu, X.; Wang, Y.; Watson, P.; Yang, X.; Liu, H. Application of passive sampling device for exploring the occurrence, distribution, and risk of pharmaceuticals and pesticides in surface water. Sci. Total Environ. 2024, 908, 168393. [Google Scholar] [CrossRef] [PubMed]
  523. Yu, X.; Yu, F.; Li, Z.; Zhan, J. Occurrence, distribution, and ecological risk assessment of pharmaceuticals and personal care products in the surface water of the middle and lower reaches of the Yellow River (Henan section). J. Hazard. Mater. 2023, 443, 130369. [Google Scholar] [CrossRef] [PubMed]
  524. Yuan, D.; Corvianawatie, C.; Cordova, M.R.; Surinati, D.; Li, Y.; Wang, Z.; Li, X.; Li, R.; Wang, J.; He, L.; et al. Microplastics in the tropical Northwestern Pacific Ocean and the Indonesian seas. J. Sea Res. 2023, 194. [Google Scholar] [CrossRef]
  525. Yuan, X.; Hu, J.; Li, S.; Yu, M. Occurrence, fate, and mass balance of selected pharmaceutical and personal care products (PPCPs) in an urbanized river. Environ. Pollut. 2020, 266, 115340. [Google Scholar] [CrossRef] [PubMed]
  526. Yüksel, S.; Kabay, N.; Yüksel, M. Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes. J. Hazard. Mater. 2013, 263, 307–310. [Google Scholar] [CrossRef] [PubMed]
  527. Zafar, R.; Bashir, S.; Nabi, D.; Arshad, M. Occurrence and quantification of prevalent antibiotics in wastewater samples from Rawalpindi and Islamabad, Pakistan. Sci. Total Environ. 2021, 764, 142596. [Google Scholar] [CrossRef] [PubMed]
  528. Zainab, S.M.; Junaid, M.; Rehman, M.Y.A.; Lv, M.; Yue, L.; Xu, N.; Malik, R.N. First insight into the occurrence, spatial distribution, sources, and risks assessment of antibiotics in groundwater from major urban-rural settings of Pakistan. Sci. Total Environ. 2021, 791, 148298. [Google Scholar] [CrossRef] [PubMed]
  529. Zeri, C.; Adamopoulou, A.; Koi, A.; Koutsikos, N.; Lytras, E.; Dimitriou, E. Rivers and Wastewater-Treatment Plants as Microplastic Pathways to Eastern Mediterranean Waters: First Records for the Aegean Sea, Greece. Sustainability 2021, 13, 5328. [Google Scholar] [CrossRef]
  530. Zhai, Y.; Dai, Y.; Guo, J.; Zhou, L.; Chen, M.; Yang, H.; Peng, L. Novel biochar@CoFe2O4/Ag3PO4 photocatalysts for highly efficient degradation of bisphenol a under visible-light irradiation. J. Colloid Interface Sci. 2020, 560, 111–121. [Google Scholar] [CrossRef] [PubMed]
  531. Zhan, S.; Huang, H.; He, C.; Xiong, Y.; Li, P.; Tian, S. Controllable synthesis of substitutional and interstitial nitrogen-doped ceria: The effects of doping sites on enhanced catalytic ozonation of organic pollutants. Appl. Catal. B Environ. 2023, 321, 122040. [Google Scholar] [CrossRef]
  532. Zhang, L.; Liu, J.; Xie, Y.; Zhong, S.; Yang, B.; Lu, D.; Zhong, Q. Distribution of microplastics in surface water and sediments of Qin river in Beibu Gulf, China. Sci. Total Environ. 2020, 708, 135176. [Google Scholar] [CrossRef] [PubMed]
  533. Zhang, P.; Liu, S.; Tan, X.; Liu, Y.; Zeng, G.; Yin, Z.; Ye, S.; Zeng, Z. Microwave-assisted chemical modification method for surface regulation of biochar and its application for estrogen removal. Process. Saf. Environ. Prot. 2019, 128, 329–341. [Google Scholar] [CrossRef]
  534. Zhang, W.; Zhang, S.; Zhao, Q.; Qu, L.; Ma, D.; Wang, J. Spatio-temporal distribution of plastic and microplastic debris in the surface water of the Bohai Sea, China. Mar. Pollut. Bull. 2020, 158, 111343. [Google Scholar] [CrossRef] [PubMed]
  535. Zhang, Y.; Dong, R.; Ge, F.; Hong, M.; Chen, Z.; Zhou, Y.; Wei, J.; Gu, C.; Kong, D. Removal of 48 per- and polyfluoroalkyl substances (PFAS) throughout processes in domestic and general industrial wastewater treatment plants: Implications for emerging alternatives risk control. J. Hazard. Mater. 2024, 480, 136130. [Google Scholar] [CrossRef] [PubMed]
  536. Zheng, G.; Yu, B.; Wang, Y.; Ma, C.; Chen, T. Removal of triclosan during wastewater treatment process and sewage sludge composting—A case study in the middle reaches of the Yellow River. Environ. Int. 2020, 134, 105300. [Google Scholar] [CrossRef] [PubMed]
  537. Zheng, X.; Zhou, C.; Wu, F.; Xu, H.; Zhao, Z.; Han, Z.; Zhang, H.; Yang, S. Enhanced removal of organic, nutrients, and PFCs in the iron-carbon micro-electrolysis constructed wetlands: Mechanism and iron cycle. Chem. Eng. J. 2023, 457, 141174. [Google Scholar] [CrossRef]
  538. Zhong, S.-F.; Yang, B.; Lei, H.-J.; Xiong, Q.; Zhang, Q.-Q.; Liu, F.; Ying, G.-G. Transformation products of tetracyclines in three typical municipal wastewater treatment plants. Sci. Total Environ. 2022, 830, 154647. [Google Scholar] [CrossRef] [PubMed]
  539. Zhou, P.; Li, Z.; El-Dakhakhni, W.; Smyth, S.A. Prediction of bisphenol A contamination in Canadian municipal wastewater. J. Water Process. Eng. 2022, 50, 103304. [Google Scholar] [CrossRef]
  540. Zhou, X.-J.; Wang, J.; Li, H.-Y.; Zhang, H.-M.; Jiang, H.; Zhang, D.L. Microplastic pollution of bottled water in China. J. Water Process. Eng. 2021, 40, 101884. [Google Scholar] [CrossRef]
  541. Zhu, N.; Li, C.; Bu, L.; Tang, C.; Wang, S.; Duan, P.; Yao, L.; Tang, J.; Dionysiou, D.D.; Wu, Y. Bismuth impregnated biochar for efficient estrone degradation: The synergistic effect between biochar and Bi/Bi2O3 for a high photocatalytic performance. J. Hazard. Mater. 2020, 384, 121258. [Google Scholar] [CrossRef] [PubMed]
  542. Ziajahromi, S.; Neale, P.A.; Silveira, I.T.; Chua, A.; Leusch, F.D. An audit of microplastic abundance throughout three Australian wastewater treatment plants. Chemosphere 2021, 263, 128294. [Google Scholar] [CrossRef] [PubMed]
  543. Zwart, N.; Jonker, W.; Ten Broek, R.; de Boer, J.; Somsen, G.; Kool, J.; Hamers, T.; Houtman, C.J.; Lamoree, M.H. Identification of mutagenic and endocrine disrupting compounds in surface water and wastewater treatment plant effluents using high-resolution effect-directed analysis. Water Res. 2020, 168, 115204. [Google Scholar] [CrossRef] [PubMed]
Figure 1. PRISMA flow diagram of the study selection process.
Figure 1. PRISMA flow diagram of the study selection process.
Toxics 13 00616 g001
Figure 2. Geographical distribution of literature reports on selected ECs in aquatic environments (based on study occurrence, not concentrations): (A) PCPs, (B) antibiotics (ABX), (C) EDCs, (D) PFASs, (E) MPs, (F) Global distribution of publications on 5 types of ECs.
Figure 2. Geographical distribution of literature reports on selected ECs in aquatic environments (based on study occurrence, not concentrations): (A) PCPs, (B) antibiotics (ABX), (C) EDCs, (D) PFASs, (E) MPs, (F) Global distribution of publications on 5 types of ECs.
Toxics 13 00616 g002
Figure 3. Schematic diagram of the multifaceted sources of EC production, utilization, and environmental release.
Figure 3. Schematic diagram of the multifaceted sources of EC production, utilization, and environmental release.
Toxics 13 00616 g003
Figure 4. Pathways of ECs entering the environment and its migration.
Figure 4. Pathways of ECs entering the environment and its migration.
Toxics 13 00616 g004
Figure 5. Environmental and health risks of ECs.
Figure 5. Environmental and health risks of ECs.
Toxics 13 00616 g005
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Y.; Li, Y.; Zhang, S.; Gao, T.; Gao, Z.; Lai, C.W.; Xiang, P.; Yang, F. Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review. Toxics 2025, 13, 616. https://doi.org/10.3390/toxics13080616

AMA Style

Li Y, Li Y, Zhang S, Gao T, Gao Z, Lai CW, Xiang P, Yang F. Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review. Toxics. 2025; 13(8):616. https://doi.org/10.3390/toxics13080616

Chicago/Turabian Style

Li, Yue, Yihui Li, Siyuan Zhang, Tianyi Gao, Zhaoyi Gao, Chin Wei Lai, Ping Xiang, and Fengqi Yang. 2025. "Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review" Toxics 13, no. 8: 616. https://doi.org/10.3390/toxics13080616

APA Style

Li, Y., Li, Y., Zhang, S., Gao, T., Gao, Z., Lai, C. W., Xiang, P., & Yang, F. (2025). Global Distribution, Ecotoxicity, and Treatment Technologies of Emerging Contaminants in Aquatic Environments: A Recent Five-Year Review. Toxics, 13(8), 616. https://doi.org/10.3390/toxics13080616

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop