Lithium—Occurrence and Exposure—A Review
Abstract
1. Preface
2. Technical Use and Cycling
2.1. Mining
2.2. Mine Tailings and Pollution
2.3. Recovery from Li-Ion Batteries
3. Geology
3.1. Rocks
3.2. Sediments
3.3. Coal
3.4. Dust
3.5. Li-Isotope Effects
4. Agriculture
4.1. Fertilizers
4.2. Soil
4.3. Plant Growth
4.4. Commercially Available Feedstuffs
5. Water
5.1. Limnic and Potable Waters
5.2. Bottled Water, Mineral Water, and Thermal Springs (Table 9)
Location | Mean | Median/Range | Remarks | Reference |
---|---|---|---|---|
Metamorphic rocks (I) | 1.35 | [95] | ||
Plutonic rocks (I) | 3.66 | [95] | ||
Sedimentary rocks (I) | 3.84 | [95] | ||
Sedimentary metamorphic rocks | 1.3 | [95] | ||
Sedimentary-volcanic rocks (I) | 1.69 | [95] | ||
Volcanic rocks (I) | 17.1 | Max 241 | [95] | |
Tolentino (I) | 370,000 | Thermal water | [8] | |
Salsomaggiore (I) | 96,000 | Thermal water | [8] | |
Castrocaro (I) | 80,000 | Thermal water | [8] | |
Montecatini town (I) | 5000 | Thermal water | [8] | |
Campi flegrei (I) | >10,000 | Thermal water | [8] | |
Siena (I) | 20,000 | Thermal water | [8] | |
Ischia Island (I) | 41,000 | Thermal water | [8] | |
Veii (I) | 442/517/544 | Thermal water | [96] | |
Romania | 4.8 | qu 0.40–94 | Mineral water | [18] |
qu 0.48–7.0 | Drink water | [18] | ||
Slanic Moldova (Ro) | 29–1390 | Mineral water | [97] | |
Greece < 4 g/L | 76.2/0.79–1625 | Thermal water | [98] | |
Greece > 4 g/L | 1333/104–17,630 | Thermal water | [98] | |
Greece cold gas-rich | 22.3/0.77–5683 | Thermal water | [98] | |
Greece acidic | 66.2/9.65–11,278 | Thermal water | [98] | |
Greece hyperalkaline | 0.38/0.09–41.4 | Thermal water | [98] | |
Greece | 6.2 | Drink water | [98] | |
Bad Gastein (A) | 198 | Mineral water | [94] | |
Austria | 0.9/0.1–45.8 | Well water | unpublished | |
Germany | 31.4/0.51–2790 | Bottled water | [93] | |
Germany | 0.27–74.9 | Tap water | [93] | |
Croatia | 0.17–880 | Bottled water | [99] | |
Serbia | 43.5/0.76–985 | Mineral water | [100] |
5.3. Seawater
6. Biochemistry and Toxicity
6.1. Molecular Biology
6.2. Animals
6.3. Men
7. Human Nutrition
7.1. Fruits and Vegetables
7.2. Meat and Fish
7.3. Milk and Dairy Products
7.4. Wine
7.5. Mushrooms
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berzelius, J.J. Ein neues mineralisches Alkali und ein neues Metall. J. Chem. Phys. 1817, 21, 44–48. [Google Scholar]
- Alimonti, A.; Petrucci, F.; Fioravanti, S.; Laurenti, F.; Caroli, S. Assessment of the content of selected trace elements in serum of term and pre-term newborns by inductively coupled plasma mass spectrometry. Anal. Chim. Acta 1997, 342, 75–81. [Google Scholar] [CrossRef]
- Trimmel, S.; Meisel, T.C.; Lancaster, S.T.; Prohaska, T.; Irrgeher, J. Determination of 48 elements in 7 plant CRMs by ICP-MS/MS with a focus on technology critical elements. Anal. Bioanal. Chem. 2023, 415, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Balaram, V.; Rahaman, W.; Roy, P. Recent advances in MC-ICP-MS applications in Earth and environmental sciences: Challenges and solutions. Geosys. Geoenviron. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Bolan, N.; Hoang, S.A.; Tanveer, M.; Wang, L.; Bolan, S.; Sooriyakumar, P.; Robinson, B.; Wijesekara, H.; Wijesooriya, M.; Keerthanan, S.; et al. From mine to mind and mobiles—Lithium contamination and its risk management. Environ. Poll. 2021, 290, 118067. [Google Scholar] [CrossRef]
- Antão, A.M.M.C.; Rodrigues, P.M.S.M.; Rodrigues, R.; Couto, G. Laboratory weathering studies to evaluate the water quality impact of a lithium mining in Portugal. Environ. Earth Sci. 2024, 83, 224. [Google Scholar] [CrossRef]
- Schrauzer, G.N. Lithium: Occurrence, dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef]
- Dini, A.; Lattanzi, P.; Ruggieri, G.; Trumpy, E. Lithium occurrence in Italy—An overview. Minerals 2022, 12, 945. [Google Scholar] [CrossRef]
- Peltzer, P.M.; Cuzziol Boccioni, A.P.; Attademo, A.M.; Simoniello, M.F.; Lener, G.; Lajmanovich, R.V. Ecotoxicologial characterization of lithium as a “timebomb” in aquatic systems tadpoles of the South American Toad Rhinella arenarum (Hensel 1867) as a model organism. Toxics 2024, 12, 176. [Google Scholar] [CrossRef]
- Liu, W.; Agusdinata, D.B.; Myint, S.W. Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile. Int. J. Appl. Earth Obs. Geoinform. 2019, 80, 145–156. [Google Scholar] [CrossRef]
- Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium recovery from brines a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Tot. Environ. 2018, 639, 1188–1204. [Google Scholar] [CrossRef] [PubMed]
- An, J.W.; Kang, D.J.; Tran, K.T.; Kim, M.J.; Lim, T.; Tran, T. Recovery of lithium from Uyuni salar brine. Hydrometallurgy 2012, 118, 64–70. [Google Scholar] [CrossRef]
- Cerda, A.; Quilaqueo, M.; Barros, L.; Seriche, G.; Gim-Krumm, M.; Santoro, S.; Avci, A.H.; Romero, J.; Curcio, E.; Estay, H. Recovering water from lithium-rich bines by a fractionation process based on membrane distillation-crystallization. J. Water Process Eng. 2021, 41, 102063. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Cao, D.; Wei, J.; Liu, X.; Zhang, Y.; Dong, B. Cooperative exploration model of coal-lithium deposit a case study of the Haerwusu coal-lithium deposit in the Jungar coalfield, Inner Mongolia, Northern China. Minerals 2024, 14, 179. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, B.; Geng, Y.; Liu, T.; Wang, Q. Extraction of soils above concealed lithium deposits for rare metal exploration in Jiajika area a pilot study. Appl. Geochem. 2019, 107, 142–159. [Google Scholar] [CrossRef]
- Roy, T.; Plante, B.; Demers, I.; Benzaazoua, M.; Isabel, D. Multi-year in situ hydrogeochemical monitoring of hard rock lithium mine tailings in a large-scale experimental pile. J. Environ. Manag. 2024, 356, 120602. [Google Scholar] [CrossRef]
- Sager, M. Element Composition from Urban Biowaste compared with Organic Fertilizers of Agricultural Origin. In Proceedings of the Heavy Metals in the Environment: Selected Papers of the ICHMET-15 Conference, Rome, Italy, 23–27 September 2012. [Google Scholar]
- Iordache, A.M.; Voica, C.; Roba, C.; Nechita, C. Evaluation of potential human health risks associated with Li and their relationship with Na, K, Mg, and Ca in Romania’s nationwide drinking water. Front. Public Health 2024, 12, 1456640. [Google Scholar] [CrossRef]
- Šima, J.; Svoboda, L.; Pomijova, Z. Removal of selected metals from wastewater using a constructed wetland. Chem. Biodivers. 2016, 13, 582–590. [Google Scholar] [CrossRef]
- Robinson, B.H.; Yalamanchali, R.; Reiser, R.; Dickinson, N.M. Lithium as an emerging environmental contaminant mobility in the soil-plant system. Chemosphere 2018, 197, 1–6. [Google Scholar] [CrossRef]
- Latini, D.; Vaccari, M.; Lagnoni, M.; Orefice, M.; Mathieux, F.; Huisman, J.; Tognotti, L.; Bertei, A. A comprehensive review and classification of unit operations with assessment of outputs quality in lithium-ion battery recycling. J. Power Sources 2022, 546, 231979. [Google Scholar] [CrossRef]
- Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeon, J.; Kim, K.; Dong, P.; Kwon, K. A comprehensive review on the pretreatment process in lithium-ion battery recycling. J. Cleaner Prod. 2021, 294, 126329. [Google Scholar] [CrossRef]
- Zanoletti, A.; Carena, E.; Ferrara, C.; Bontempi, E. A Review of Lithium-Ion Battery Recycling Technologies, Sustainability, and Open Issues. Batteries 2024, 10, 38. [Google Scholar] [CrossRef]
- Zamparas, C.; Eiche, E.; Kolb, J. Secondary phases developed from layered lithium nickel cobalt manganese oxide (NCM) cathode material waste: Environmental mineralogy implications for advancing NCM recycling methodologies. In Proceedings of the European Geophysical Union General Assembly, EGU25-6752, Vienna, Austria, 27 April–2 May 2025. [Google Scholar]
- Zeng, X.; Li, J.; Shen, B. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid. J. Hazard. Mat. 2015, 295, 112–118. [Google Scholar] [CrossRef]
- Yu, M.X.; Sun, Y.H.; Shi, W.X.; Wang, X.T.; Zhang, C.; Ke, Q.P. Synthesis of high performance magnetic biochar for adsorption of Ni and Co from spent lithium ion battery effluent. J. Hazar. Mat. Adv. 2025, 18, 100627. [Google Scholar]
- Lombardo, G.; Ebin, B.; Foreman, M.R.S.J.; Steenari, B.M.; Petranikova, M. Incineration of EV Lithium-ion batteries as a pretreatment for recycling–Determination of the potential formation of hazardous by-products and effects on metal compounds. J. Hazard. Mater 2020, 393, 122372. [Google Scholar] [CrossRef] [PubMed]
- Siedner, G. Distribution of alkali metals and thallium in some South-West African granites. Geochim. Cosmochim. Acta 1968, 32, 1303–1315. [Google Scholar] [CrossRef]
- Penniston-Dorland, S.; Liu, X.M.; Rudnick, R.L. Lithium isotope geochemistry. Rev. Mineral. Geochem. 2017, 82, 165–217. [Google Scholar] [CrossRef]
- Kashin, V.K. Lithium in oils and plants of western Transbaikalia. Eurasian Soil Sci. 2019, 52, 359–369. [Google Scholar] [CrossRef]
- Salvadori, M.; Pennisi, M.; D’Orazio, M.; Dini, A. Lithium distribution in argillite-clay sequences of the Northern Apennines, Italy: Investigating a potential source of Li-rich fluids. In Proceedings of the European Geophysical Union General Assembly, EGU25-4207, Vienna, Austria, 27 April–2 May 2025. [Google Scholar]
- Grebnev, R.A.; Rundkvist, T.V.; Pripachkin, P.V. Geochemistry of mafic rocks of the PGE-bearing Vurechuaivench massif (Monchegork Complex, Kola region). Geochem. Int. 2014, 52, 726–739. [Google Scholar] [CrossRef]
- Ohta, A.; Imai, N.; Terashima, S.; Tachibana, Y.; Ikehara, K.; Katayama, H.; Noda, A. Factors controlling regional distribution of 53 elements in coastal stream sediments in northern Japan comparison of geochemical data derived from stream and marine sediments. Appl. Geochem. 2010, 25, 357–376. [Google Scholar] [CrossRef]
- Dvoretskaya, O.A.; Boyko, T.F. Determination of rare alkali elements and thallium in surface layer precipitates along a trans-Pacific-ocean profile. Lit. Pol. Iskop. 1979, 4, 95–104. (In Russian) [Google Scholar]
- Andreev, G.; Simeonov, V. Occurrence and distribution of some elements from the Black Sea. Toxicol. Environ. Chem. 1988, 18, 221–228. [Google Scholar] [CrossRef]
- Sager, M.; Kralik, M. Environmental impact of historical harbour city Zadar (Croatia) on the composition of marine sediments and soils. Environ. Geochem. Health 2012, 34, 83–93. [Google Scholar] [CrossRef]
- Bodiš, D.; Rapant, S. Geochemical Atlas of the Slovak Republic; Geological Survey of the Slovak Republic: Bratislava, Slovakia, 1999. [Google Scholar]
- Pirkl, H.; Schedl, A.; Pfleiderer, S. Geochemischer Atlas von Österreich—Bundesweite Bach- und Flusssedimentgeochemie (1978–2010). Arch. Für Lagerstättenforschung 2015, 28, 108–111. [Google Scholar]
- Dolezel, P.; Rank, D.; Kappel, F.; Augustin-Gyurits, K. Übersichtsuntersuchung an Feinsedimenten aus den Stauräumen des österreichischen Donauabschnittes. II Chemische Untersuchungen. In Proceedings of the Arbeitstagung der IAD, Bratislava, Slovakia, 17–25 September 1985. [Google Scholar]
- Borovec, Z.; Tolar, V.; Mraz, L. Distribution of some metals in sediments of the central part of the Labe (Elbe) River, Czech Republic. Ambio 1993, 22, 200–205. [Google Scholar]
- Selig, U.; Leipe, T.; Dörfler, W. Paleolimnological records of nutrient and metal profiles in prehistoric, historic and modern sediments of 3 lakes in north-east Germany. Water Air Soil Pollut. 2007, 184, 183–194. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, X.Y.; Bouchez, J.; Chetelat, B.; Gaillardet, J.; Chen, J.; Zhang, T.; Cai, H.; Yuan, W.; Wang, Z. Deciphering the signatures of weathering and erosion processes and the effects of river management on Li isotopes in the subtropical Pearl River basin. Geochim. Cosmochim. Acta 2021, 313, 340–358. [Google Scholar] [CrossRef]
- Thébault, J.; Chauvaud, L. Li/Ca enrichments in great scallop shells (Pecten maximus) and their relationship with phytoplankton blooms. Palaeogeogr. Palaeoclim. Palaeoecol. 2013, 373, 108–122. [Google Scholar] [CrossRef]
- Doughten, M.W.; Gillison, J.R. Determination of selected elements in whole coal and in coal ash from the eight Argonne premium coal samples by AAS, AES and ion-selective electrode. Energy Fuels 1990, 4, 426–430. [Google Scholar] [CrossRef]
- Bellagamba, B.; Caridi, A.; Cereda, E.; Braga Marcazzan, G.M.; Valkovic, V. PIXE application to the study of trace element behaviour in coal combustion cycle. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interactions Mater. Atoms 1993, 75, 222–229. [Google Scholar] [CrossRef]
- Xu, F.; Qin, S.Y.; Wang, J.X.; Qi, D.E.; Lu, Q.F.; Xing, J.K. Distribution, occurrence mode, and extraction potential of critical elements in coal ashes of the Chongqing power plant. J. Clean. Prod. 2022, 342, 130910. [Google Scholar] [CrossRef]
- Špirič, Z.; Vučkovič, I.; Stafilov, T.; Kušan, V.; Frontasyeva, M. Air pollution study in Croatia using moss biomonitoring and ICP-AES and AAS analytical techniques. Arch. Environ. Contam. Toxicol. 2013, 65, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Lazo, P.; Stafilov, T.; Qarri, F.; Allajbeu, S.; Bekteshi, L.; Frontasyeva, M.; Harmens, H. Spatial distribution and temporal trend of airborne trace metal deposition in Albania studied by moss biomonitoring. Ecol. Indic. 2019, 101, 1007–1017. [Google Scholar] [CrossRef]
- Sager, M. Input of accessory elements from various mineral and organic fertilizers to arable soils. Int. J. AgriScience 2011, 1, 403–428. [Google Scholar]
- Sager, M.; Chon, H.-T.; Marton, L. Spatial variation of contaminant elements of roadside dust samples from Budapest (Hungary) and Seoul (Republic of Korea), including Pt, Pd and Ir. Environ. Geochem. Health 2015, 37, 181–193. [Google Scholar] [CrossRef]
- Hays, M.D.; Cho, S.-H.; Baldauf, R.; Schauer, J.J.; Shafer, M. Particle size distribution of metal and non-metal elements in an urban near-highway environment. Atmos. Environ. 2011, 45, 925–934. [Google Scholar] [CrossRef]
- Gout, T.L.; Bohlin, M.S.; Tipper, E.T.; Lampronti, G.T.; Farnan, I. Temperature dependent lithium isotope fractionation during glass dissolution. Geochim. Cosmochim. Acta 2021, 313, 133–154. [Google Scholar] [CrossRef]
- McBride, M.B.; Spies, G. Trace element contents of selected fertilizers and dairy manures as determined by ICP-MS. Commun. Soil Sci. Plant Anal. 2001, 32, 139–156. [Google Scholar] [CrossRef]
- Sager, M. Fertilization loads of less common elements to arable soils in Austria. In Organic Farming Methods, Economics and Structure; Nelson, M., Artamova, I., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; Volume 7, pp. 145–178. ISBN 978-1-60692-864-6. [Google Scholar]
- Sager, M. Trace Element Enrichment in Austrian Soils from Fertilization, and Regional Effects. Dyn. Soil Dyn. Plant 2009, 3, 115–131. [Google Scholar]
- Sager, M. Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biol. Biochem. 2007, 39, 1383–1390. [Google Scholar] [CrossRef]
- Dudka, S.; Markert, B. Baseline concentrations of As, Ba, Be, Li, Nb, Sr and V in surface soils of Poland. Sci. Total Environ. 1992, 122, 279–290. [Google Scholar] [CrossRef]
- Takeda, A.; Kimura, K.; Yamasaki, S. Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma 2004, 119, 291–307. [Google Scholar] [CrossRef]
- Abbas, M.N.; Al Tameemi, I.M.; Hasan, M.B.; Al Madhhachi, A.S.T. Chemical removal of cobalt and lithium in contaminated soils using promoted white eggshells with different catalysts. S. Afr. J. Chem. Eng. 2021, 35, 23–32. [Google Scholar] [CrossRef]
- Sager, M.; Mutsch, F. Mobilitätsänderungen von Haupt- und Spurenelementen in Waldbodenprofilen an Hand eines sequentiellen Löseverfahrens. Mitt. Österr. Bodenk. Ges. 2007, 74, 87–111. [Google Scholar]
- Sager, M. Ein vereinfachtes Verfahren zur Bestimmung mobiler Bodenfraktionen—Am Beispiel an Böden aus Apfelkulturen. VDLUFA—Schriftenreihe 2015, 70, 537–550. [Google Scholar]
- Rasmussen, P.E.; Subramanian, K.S.; Jessiman, B.J. A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Sci. Total Environ. 2001, 267, 125–140. [Google Scholar] [CrossRef]
- Wang, X.S.; Qin, Y. Spatial distribution of metals in urban topsoils of Xuzhou (China) Controlling factors and environmental implications. Environ. Geol. 2006, 49, 905–914. [Google Scholar] [CrossRef]
- Sager, M. Element concentrations and interelement relations in apple leaves, blossom leaves and fruits and adjacent surface soils. Agricultura 2020, 113, 83–109. [Google Scholar]
- Akhtar, M.S.; Steenhuis, T.S.; Richards, B.K.; McBride, M.B. Modeling transport of a metal (lithium) relative to a non-adsorbent tracer in soils. In Proceedings of the 6th International Conference on Trace Elements in Biogeochemistry, Guelph, ON, Canada, 1 July 2001; p. 434. [Google Scholar]
- Sager, M. Effects of a fertilization pulse on migration of nutrient and trace elements in chernozem soil columns within a vegetation period. Die Bodenkult. 2004, 55, 165–182. [Google Scholar]
- Husz, G. Lithium chloride as an extraction agent for soils. J. Plant Nutr. Soil Sci. 2001, 164, 71–75. [Google Scholar] [CrossRef]
- Qiao, L.; Tanveer, M.; Wang, L.; Tian, C. Subcellular distribution and chemical forms of lithium in Li-accumulator Apocynum venetum. Plant Phys. Biochem. 2018, 132, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Sager, M. Trace Elements in Chocolate and Cocoa. In Chocolate Production, Consumption and Health Benefits; Baker, E., Ed.; NOVA publishers: New York, NY, USA, 2016; Volume 1, pp. 1–16. ISBN 978-1-53610-433-2. [Google Scholar]
- Tyler, G. Changes in the concentration of major, minor and trace elements during leaf senescence and decomposition in a Fagus sylvatica forest. For. Ecol. Manag. 2005, 206, 167–177. [Google Scholar] [CrossRef]
- Gautam, M.K.; Lee, K.S.; Berg, B.; Song, B.Y.; Yeon, J.Y. Trends of major, minor and rare earth elements in decomposing litter in a cool temperate ecosystem, South Korea. Chemosphere 2019, 222, 214–226. [Google Scholar] [CrossRef] [PubMed]
- Greggio, N.; Giambastiani, B.M.S.; Mollema, P.; Laghi, M.; Capo, D.; Gabbianelli, G.; Antonellini, M.; Dinelli, E. Assessment of the main geochemical processes affecting surface water and groundwater in a low-lying coastal area implications for water management. Water 2020, 12, 1720. [Google Scholar] [CrossRef]
- Sager, M. Micro- and macro-element composition of animal feedstuffs sold in Austria. Ernährung/Nutrition 2006, 30, 455–473. [Google Scholar]
- Sager, M. Macro- and microelement composition of commercially available animal feedstuffs sold in Austria. In Schedle Spurenelementforschung an der Schnittstelle Zwischen Elementanalytik und Biofunktionalität; Mair, C., Windisch, W., Schedle, K., Eds.; Herbert Utz Verlag: München, Germany, 2011; pp. 159–164. [Google Scholar]
- Sager, M.; Rosenstingl, H. Elementzusammensetzung von Entenmägeninhalten und zugehörigen Magengeweben. Beiträge Zur Jagd Und Wildforschung 2007, 32, 399–407. [Google Scholar]
- Sager, M. Macro- and micro-elemental composition of wild duck stomach contents and corresponding tissues. In Spurenelementforschung an der Schnittstelle Zwischen Elementanalytik und Biofunktionalität; Mair, C., Windisch, W., Schedle, K., Eds.; Herbert Utz Verlag: München Germany, 2011; pp. 130–132. [Google Scholar]
- Markert, B. Inorganic chemical fingerprinting of the environment “reference freshwater”—A useful tool for comparison and harmonization of analytical data in freshwater chemistry. Fres. J. Anal. Chem. 1994, 349, 697–702. [Google Scholar] [CrossRef]
- Kljakovič-Gašpič, Z.; Tariba Lovakovič, B.; Smoljo, I.; Jurič, A.; Orct, T.; Sekovanič, A.; Brajenovič, N.; Brčič Karačonjič, I.; Pehnec, G.; Lovrič, M.; et al. Metal(loid)s, phthalate esters and polycyclic aromatic hydrocarbons in Croatian natural mineral waters Regulatory compliance and associated health risk. Environ. Technol. Innov. 2024, 34, 130570. [Google Scholar] [CrossRef]
- Voutchkova, D.D.; Schullehner, J.; Knudsen, N.N.; Flindt Jørgensen, L.; Kjær Ersbøll, A.; Munch Kristiansen, S.; Hansen, B. Exposure to Selected Geogenic Trace Elements (I, Li, and Sr) from Drinking Water in Denmark. Geosciences 2015, 5, 45–66. [Google Scholar] [CrossRef]
- Levins, I.; Gosk, E. Trace elements in groundwater as indicators of anthropogenic impact. Environ. Geol. 2007, 55, 285–290. [Google Scholar] [CrossRef]
- Giotakos, O.; Nisianakis, P.; Tsouvelas, G.; Giakalou, V.-V. Lithium in the Public Water Supply and Suicide Mortality in Greece. Biol. Trace Elem. Res. 2013, 156, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, N.D.; Mossaheb, N.; Etzersdorfer, E.; Hlavin, G.; Thau, K.; Willeit, M.; Praschak-Rieder, N.; Sonneck, G.; Leithner-Dziubas, K. Lithium in drinking water and suicide mortality. Br. J. Psychiatry 2011, 198, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Kabacs, N.; Memon, A.; Obinwa, T.; Stochl, J.; Perez, J. Lithium in drinking water and suicide rates across the East of England. Br. J. Psychiatry 2011, 198, 406–407. [Google Scholar] [CrossRef]
- Negrel, P.; Šanda, M.; Millot, R.; Kulasova, A. Detecting flow processes in peatlands using Li isotopes. EGU Gen. Assem. 2011, 13, EGU2011–EGU3786. [Google Scholar]
- Negrel, P.; Millot, R.; Brenot, A.; Bertin, C. Lithium isotopes a new tracer of groundwater circulation in a peat land. EGU Gen. Assem. 2011, 13, EGU2011–EGU3797. [Google Scholar]
- Blüml, V.; Regier, M.D.; Hlavin, G.; Rockett, I.R.H.; König, F.; Vyssoki, B.; Bschor, T.; Kapusta, N.D. Lithium in the public water supply and suicide mortality in Texas. J. Psychiatr. Res. 2013, 47, 407–411. [Google Scholar] [CrossRef]
- Schroll, E. Beitrag zur Hydrogeochemie des Donauwassers in Österreich. Tschermaks Min. Petr. Mitt. 1973, 20, 240–246. [Google Scholar] [CrossRef]
- Concha, G.; Broberg, K.; Grandér, M.; Cardozo, A.; Palm, B.; Vahter, M. High-Level Exposure to Lithium, Boron, Cesium, and Arsenic via Drinking Water in the Andes of Northern Argentina. Environ. Sci. Technol. 2010, 44, 6875–6880. [Google Scholar] [CrossRef]
- Skjelkvåle, B.L.; Wright, R.F. Response of runoff chemistry to experimental addition of LiF to a pristine catchment at Sogndal, Norway. J. Hydrol. 1994, 154, 19–34. [Google Scholar] [CrossRef]
- Schroll, E.; Krachsberger, H.; Dolezel, P. Hydrogeochemische Untersuchung des Donauwassers in Österreich in den Jahren 1971 und 1972. Arch. Hydrobiol./Suppl. 1975, 44, 492–514. [Google Scholar]
- Kilchmann, S.; Reinhard, M.; Schurch, M.; Traber, D. Ergebnisse der Grundwasserbeobachtung Schweiz, Zustand und Entwicklung 2004–2006; Bundesamt für Umwelt: Bern, Switzerland, 2009. [Google Scholar]
- Tkatcheva, V.; Holopainen, I.J.; Hyvärinen, H.; Kukkonen, J.V.K. The responses of rainbow trout gills to high Li and K concentrations in water. Ecotox. Environ. Saf. 2007, 68, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Birke, M.; Rauch, U.; Harazim, B.; Lorenz, H.; Glatte, W. Major and trace elements in German bottled water, their regional distribution, and accordance with national and international standards. J. Geochem. Explor. 2010, 107, 245–271. [Google Scholar] [CrossRef]
- Deetjen, P. Die Wissenschaftlichen Grundlagen der Kur in Bad Gastein und Bad Hofgastein; Sem. Reports Salzburg.; University of Innsbrook: Salzburg, Austria, 1998; ISSN -0256-4173. [Google Scholar]
- Dinelli, E.; Lima, A.; De Vivo, B.; Albanese, S.; Cichella, D.; Valera, P. Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology. J. Geochem. Explorat. 2010, 307, 317–335. [Google Scholar] [CrossRef]
- Viaroli, S.; Latini, T.; Cuoco, E.; Mormone, A.; Piochi, M.; Maggi, M. Geochemical evolution in historical time of thermal mineral springs at Campetti Southwest (Veii, Central Italy) through geoarcheological investigation. Water 2024, 16, 1113. [Google Scholar] [CrossRef]
- Misaila, L.; Barsan, N.; Nedeff, F.M.; Raducanu, D.; Radu, C.; Grosu, L.; Patriciu, O.-I.; Gavrila, L.; Finaru, A.-L. Perspectives for quality evaluation of some mineral waters from Slanic Moldova. Water 2022, 14, 2942. [Google Scholar] [CrossRef]
- Li Vigni, L.; Daskalopoulou, K.; Calabrese, S.; Kyriakopoulos, K.; Bellomo, S.; Brusca, L.; Brugnone, F.; D’Alessandro, W. Characterization of trace elements in thermal and mineral waters of Greece. Environ. Sci. Pollut. Res. 2023, 30, 78376–78393. [Google Scholar] [CrossRef]
- Peh, Z.; Šorša, A.; Halamič, J. Composition and variation of major and trace elements in Croatian bottled waters. J. Geochem. Explor. 2010, 107, 227–237. [Google Scholar] [CrossRef]
- Petrovič, T.; Zlokolica-Mandič, M.; Veljkovič, N.; Vidojevič, D. Hydrogeological conditions for the forming and quality of mineral waters in Serbia. J. Geochem. Explor. 2010, 107, 373–381. [Google Scholar] [CrossRef]
- Pantelič, N.D.; Jačimovič, S.; Štrbački, J.; Milovanovič, D.B.; Dojčinovič, B.P.; Kostič, A.Ž. Assessment of spa water quality from Vrjačcka Banja, Serbia: Geochemical, bacteriaologica, and health risk aspects. Environ. Monitor. Assess. 2019, 191, 648. [Google Scholar] [CrossRef]
- John, S.O.O.; Olukotun, S.F.; Kupi, T.G.; Mathuthu, M. Health risk assessment of heavy metals and physicochemical parameters in natural mineral bottled drinking water using ICP-MS in South Africa. Appl. Water Sci. 2024, 14, 202. [Google Scholar] [CrossRef]
- Pan, S.; Zhao, P.; Guan, H.; Nan, D.; Yang, Z.Y.; Liu, X.M.; Gao, S.P.; Yue, Y.H. Mechanisms of lithium and cesium enrichment in the Semi-Dazi geothermal field, Qinghai-Xizang plateau: Insights from H-O-Li-Sr isotopes. Geotherm. Energy 2025, 13, 22. [Google Scholar] [CrossRef]
- Viana, T.; Ferreira, N.; Henriques, B.; Leite, C.; de Marchi, L.; Amaral, J.; Freitas, R.; Pereira, E. How safe are the new green energy resources for marine wildlife? The case of lithium. Environ. Pollut. 2020, 267, 115458. [Google Scholar] [CrossRef] [PubMed]
- Suwalsky, M.; Fierro, P.; Villena, F.; Sotomayor, C.P. Effects of lithium on the human erythrocyte membrane and molecular models. Biophys. Chem. 2007, 129, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, B.M.; Bhuiyan, M.K.A.; Freitas, R.; Conradi, M. Mission impossible reach the carrion in a lithium pollution and marine warming scenario. Environ. Res. 2021, 199, 111332. [Google Scholar] [CrossRef]
- Tkatcheva, V.; Franklin, N.M.; McClelland, G.B.; Smith, R.W.; Holopainen, I.J. Physiologial and biochemical effects of lithium in rainbow trout. Arch. Environ. Contam. Toxicol. 2007, 53, 632–638. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Wang, X. Ecotoxicological effects on lithium on earthworm Eisenia fetida lethality, bioaccumulation, biomarker response, and histopathological changes. Environ. Pollut. 2023, 330, 121748. [Google Scholar] [CrossRef]
- Wei, W.; Pu, S.; Chan, C.; Yang, H.; Chen, H. Exploring the mechanism of lithium neurotoxicity based on network toxicology and molecular docking. Ecotox. Environ. Saf. 2025, 292, 117911. [Google Scholar] [CrossRef]
- Ziegelmann, B.; Abele, E.; Hannus, S.; Beitzinger, M.; Berg, S.; Rosenkranz, P. Lithium chloride effectively kills the honey bee parasite Varroa destructor by a systemic mode of action. Sci. Rep. 2018, 8, 683. [Google Scholar]
- Waldmann, K.D. Die Langzeitprophylaxe affektiver Psychosen mit Lithium. In Spurenelement; Meissner, D., Ed.; Schriftenreihe der Ges. für Mineralstoffe Spurenelemente: Stuttgart, Germany, 1999. [Google Scholar]
- Krachler, M.; Li, F.S.; Rossipal, E.; Irgolič, K.J. Changes in the concentrations of trace elements in human milk during lactation. J. Trace Elem. Med. Biol. 1998, 12, 156–176. [Google Scholar] [CrossRef]
- Statistik Austria, 2024, Wien. Available online: https://de.statista.com/themen/4142/getraenkemarkt-oesterreich (accessed on 14 April 2025).
- Spiegel, H.; Sager, M.; Oberforster, M.; Mechtler, K.; Stüger, H.P.; Baumgarten, A. Nutritionally relevant elements in staple foods influence of arable site versus choice of variety. Environ. Geochem. Health 2009, 31, 549–560. [Google Scholar] [CrossRef]
- Evans, W.H.; Read, J.I.; Caughlin, D. Quantification of results for estimating dietary intakes of Li, Rb, Sr. Mo, V, and Ag. Analyst 1985, 110, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Ysart, G.; Miller, P.; Crews, H.; Robb, P.; Baxter, M.; De L’Argy, C.; Lofthouse, S.; Sargent, C.; Harrison, N. Dietary exposure estimates of 30 elements from the UK total diet study. Food Add. Contam. 1999, 16, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, L.C.; Guérin, T.; Noel, L.; Calamassi-Tran, G.; Volatier, J.L.; Verger, P. Dietary exposure estimates of 18 elements from the 1st French total diet study. Food Add. Contam. 2005, 22, 624–641. [Google Scholar] [CrossRef] [PubMed]
- Sager, M. Aktuelle Elementgehalte in Fleisch und Innereien aus Österreich (Current elemental composition of meat, liver and kidneys from Austria). Ernährung/Nutrition 2005, 29, 199–206. [Google Scholar]
- Sager, M. Content of elements and trace elements in Austrian commercial dairy products. J. Elem. 2018, 23, 381–400. [Google Scholar] [CrossRef]
- Sager, M. Haupt- und Spurenelemente von Käse in Österreich. Ernährung/Nutrition 2012, 36, 149–159. [Google Scholar]
- Sager, M.; Lucke, A.; Ghareeb, K.; Allymehr, M.; Zebeli, Q.; Böhm, J. Dietary deoxynivalenol does not affect mineral element accumulation in breast and thigh muscles of broiler chicken. Mycotoxin Res. 2018, 34, 117–121. [Google Scholar] [CrossRef]
- Sager, M. Über die Elementzusammensetzung von in Österreich erhältlichen Fertiggerichten und Wurstwaren. Ernährung/Nutrition 2010, 34, 57–64. [Google Scholar]
- Sager, M. Main and Trace Element Contents of Tomatoes Grown in Austria. J. Food Sci. Eng. 2017, 7, 239–248. [Google Scholar]
- Bibak, A.; Behrens, A.; Stürup, S.; Knudsen, L.; Gundersen, V. Concentration of 63 major and trace elements in Danish agricultural crops measured by inductively coupled plasma mass spectrometry. 1. Onion (Allium cepa hysam). J. Agric. Food Chem. 1998, 46, 3139–3145. [Google Scholar] [CrossRef]
- Ariyama, K.; Nishida, T.; Noda, T.; Kadokura, M.; Yasui, A. Effects of fertilization, crop year, variety, and provenance factors on mineral concentrations in onions. J. Agric. Food Chem. 2006, 54, 3341–3350. [Google Scholar] [CrossRef] [PubMed]
- Bibak, A.; Stürup, S.; Knudsen, L.; Gundersen, V. Concentration of 63 elements in cabbage and sprouts in Denmark. Commun. Soil Sci. Plant Anal. 1999, 30, 2409–2418. [Google Scholar] [CrossRef]
- Konuk, M.; Afyon, A.; Yagiz, D. Minor element and heavy metal contents of wild growing and edible mushrooms from western Black Sea region of Turkey. Fres. Environ. Bull. 2007, 16, 1359–1361. [Google Scholar]
- Then, M.; May, Z.; Hajdu, M.; Balasz, A.; Lemberkovics, E.; Marczal, G.; Szöke, E.; Szentmihalyi, K. Examination of mineral elements in tea-mixture applied in catarrh lysis. In Trace Elements in the Food Chain Vol.3 Deficiency or Excess of Trace Elements in the Environment as a Risk of Health; Hungarian Academy of Sciences: Budapest, Hungary, 2009; pp. 3–97. [Google Scholar]
- Ananias, N.K.; Kandawa-Schulz, M.; Hedimbi, M.; Kwaambwa, H.M.; Tutu, H.; Makita, C.; Chimuka, L. Comparison of metal content in seeds of Moringa ovalifolia and Moringa oleifera. Afr. J. Food Sci. 2016, 10, 172–177. [Google Scholar]
- Sager, M. The honey as a bioindicator of the environment (miód jako biomonitor zanieczyszczenia środowiska). Ecol. Chem. Eng. 2017, 24, 583–594. [Google Scholar]
- Castineira Gomez, M.d.M.; Brandl, R.; Jakubowski, N.; Andersson, T. Changes of the metal composition in German white wines through the winemaking process. A study of 63 elements by Inductively coupled plasma mass spectrometry. J. Agric. Food Chem. 2004, 52, 2953–2961. [Google Scholar] [CrossRef]
- Šperkova, J.; Suchanek, M. Multivariate classification of wines from different Bohemian regions (Czech Republic). Food Chem. 2005, 93, 659–663. [Google Scholar] [CrossRef]
- San Onofre, N.; Vie, D.; Soriano, J.M.; Soler, C. Presence of trace elements in edible insects commercialized through online E-commerce platform. Toxics 2024, 12, 741. [Google Scholar] [CrossRef]
- Ivanič, M.; Turk, M.T.; Tkalčec, Z.; Fiket, Ž.; Mešič, A. Distribution and origin of major, trace and rare earth elements in wild edible mushrooms urban vs. forest areas. J. Fungi 2021, 7, 1068. [Google Scholar] [CrossRef]
- Bentlin, F.R.S.; Pulgati, F.H.; Dressler, V.L.; Pozebon, D. Elemental analysis of wines from South America and their classification according to the country. J. Braz. Chem. Soc. 2011, 22, 327–336. [Google Scholar] [CrossRef]
- Rebolo, S.; Peña, R.M.; Latorre, M.J.; Garcia, S.; Botana, A.M.; Herrero, C. Characterization of Galician (NW Spain) Ribeira Sacra wines using pattern recognition analysis. Anal. Chim. Acta 2000, 417, 211–220. [Google Scholar] [CrossRef]
- Rust, P.; Hasenegger, V.; König, J. Österreichischer Ernährungsbericht; Department für Ernährungswissenschaften, Universität Wien: Wien, Austria, 2017. [Google Scholar]
- Seidel, U.; Jans, K.; Hommen, N.; Ipharraguerre, I.R.; Lüersen, K.; Birringer, M.; Rimbach, G. Lithium content of 160 beverages and its impact on lithium status in Drosophila melanogaster. Foods 2020, 9, 795. [Google Scholar] [CrossRef] [PubMed]
- Sager, M.; Gössinger, M. Elementgehalte naturtrüber reinsortiger Apfelsäfte. Mitt. Klosterneubg. 2015, 65, 121–129. [Google Scholar]
- Sager, M.; Spornberger, A. Gehalte an Haupt- und Spurenelemente in Früchten und Blättern von Äpfeln in Abhängigkeit verschiedener Unterlagen. Mitt. Klosterneubg. 2015, 65, 250–272. [Google Scholar]
- Sager, M.; Spornberger, A. Effect of Copper Foliar Spray upon the Contents of Other Elements in Apple Leaves. Int. J. Environ. Agric. Res. 2017, 3, 28–35. [Google Scholar] [CrossRef]
- Sager, M. Major minerals and trace elements in different honeys. Bee World 2020, 97, 70–74. [Google Scholar] [CrossRef]
- Sager, M.; Hobegger, M. Elementgehalte in Rohmilch aus drei Regionen Niederösterreichs (Contents of elements in raw milk from three regions in Lower Austria). Ernährung/Nutrition 2013, 37, 277–290. [Google Scholar]
- Sager, M. Element- und Spurenelementgehalte in handelsüblichen Milchprodukten in Österreich—Element and trace element contents in Austrian commercial dairy products. J. Für Ernährungsmedizin 2016, 16, 12. [Google Scholar]
- Anderson, R.R. Comparison of trace elements in milk of four species. J. Dairy Sci. 1992, 75, 3050–3055. [Google Scholar] [CrossRef]
- Sager, M.; McCulloch, C.R.; Schoder, D. Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market International branded versus black market products. Food Chem. 2018, 255, 365–371. [Google Scholar] [CrossRef]
- Hódi, K.; Puskas-Preszner, A.; Czipa, N.; Kovacs, B. The elements distribution in the main and secondary product during processing of cow milk. In Trace Elements in the Food Chain Vol.3 Deficiency or Excess of Trace Elements in the Environment as a Risk of Health; Hungarian Academy of Sciences: Budapest, Hungary, 2009; pp. 78–81. [Google Scholar]
- Tamari, Y.; Tsuchiya, K. Selenium and lithium contents of human breast milk effects of days postpartum and different season on the content of those elements. Mem. Konan Univ. Sci. Eng. Ser. 2004, 51, 17–28. [Google Scholar]
- Coni, E.; Bocca, B.; Galoppi, B.; Alimonti, A.; Caroli, S. Identification of chemical species of some trace and minor elements in mature breast milk. Microchem. J. 2000, 67, 187–194. [Google Scholar] [CrossRef]
- Rossipal, E.; Krachler, M. Pattern of trace elements in human milk during the course of lactation. Nutr. Res. 1998, 18, 11–24. [Google Scholar] [CrossRef]
- Eberhard-Gran, M.; Eskid, A.; Opjordsmoen, S. Use of psychotropic medications in treating mood disorders during lactation. CNS Drugs 2006, 20, 187–198. [Google Scholar] [CrossRef]
- Moretti, M.E.; Koren, G.; Verjee, Z.; Ito, S. Monitoring lithium in breast milk an individualized approach for breast feeding mothers. Ther. Drug Monit. 2003, 25, 364–366. [Google Scholar] [CrossRef]
mg/kg | Min | 25% | Median | Mean | 75% | Max |
---|---|---|---|---|---|---|
Hokkaido—coastal | 5.2 | 19.4 | 28.0 | 26.8 | 32.9 | 68.0 |
Hokkaido—terrestrial | 5.0 | 16.8 | 25.6 | 25.9 | 34.3 | 56.9 |
Zone | <1 µm | 1–10 µm | Japanese Side | Mexican Side |
---|---|---|---|---|
Volcanic-terrigenic and biogenic precipitates of the shelf | 37 | 30 | 20 | 54 |
Hemipelagic clayey weakly siliceous layers | 55 | 30 | 33 | 54 |
Pelagic clays of transient type | 71 | 46 | 40 | 57 |
Pelagic red clays of deep sea with volcanic ashes | 77 | 46 | 56 | 50 |
Pelagic red clays of deep sea with zeolites | 70 | 59 | 57 | 61 |
Gravel and pebbles of submarine underwater hills | - | - | 41 | - |
Precipitates of the Hawaiian archipelago containing volcanoclasts | - | - | 31 | 31 |
mg/kg | Aschach | Ottensheim | Abwinden | Wallsee | Ybbs | Melk | Altenwörth | Greifenstein |
---|---|---|---|---|---|---|---|---|
63–250 µm | 28 | 29 | 33 | 30 | 29 | 31 | 31 | 33 |
20–63 µm | 22 | 21 | 24 | 24 | 24 | 24 | 25 | 25 |
<20 µm | 45 | 43 | 45 | 47 | 46 | 43 | 43 | 42 |
mg/kg | Range | g for 100 kg N | Range | g for 100 kg P | Range | Samples | |
---|---|---|---|---|---|---|---|
Ammonium nitrate lime | 0.34 | 0.12–0.65 | 0.13 | 0.03–0.24 | 22 | ||
K-salts | 0.42 | 0.09–5.31 | 18 | ||||
NPK + sulfate | 0.91 | 0.14–3.38 | 0.67 | 0.11–2.60 | 2.06 | 0.53–12.3 | 398 |
PK fertilizer | 0.96 | 0.40–3.05 | 1.66 | 0.79–3.85 | 110 | ||
NPK fertilizer | 0.99 | 0.04–4.13 | 0.65 | 0.02–3.09 | 2.09 | 0.06–12.6 | 362 |
Super phosphate | 1.28 | 0.94–3.51 | 0.54 | 0.43–0.76 | 1.84 | 1.18–2.69 | 12 |
Lime, dolomite | 1.99 | 0.48–21.1 | 77 | ||||
Rock phosphate | 2.32 | 1.55–3.60 | 1.90 | 1.32–3.59 | |||
Di-ammonium phosphate | 3.00 | 1.29–4.55 | 1.65 | 0.62–2.53 | 1.47 | 0.61–2.51 | 88 |
Triple phosphate | 3.00 | 1.85–7.48 | 1.32 | 0.89–4.76 | 81 | ||
Manures and dungs | 3.71 | 0.18–10.9 | 3.69 | 0.38–44 | 26.9 | 2.89–115 | |
Garden molds | 5.36 | 0.22–12.0 | 341 | 33.8–1293 | |||
Composts | 14.1 | 10.2–25.8 | 70 | 24–350 | 353 | 65–1129 |
Soil Type | Median//Range | Digestion | Reference | |
---|---|---|---|---|
New Zealand | Silty clay loam | 48.8 ± 11.1 | HCl-HNO3 | [20] |
New Zealand | Clay loam | 24.9 ± 4.3 | HCl-HNO3 | [20] |
New Zealand | Silt loam | 24.3 ± 4.4 | HCl-HNO3 | [20] |
New Zealand | Loam | 21.6 ± 2.7 | HCl-HNO3 | [20] |
New Zealand | Sandy loam | 11.7 ± 2.6 | HCl-HNO3 | [20] |
New Zealand | Sandy clay loam | 10.9 ± 3.2 | HCl-HNO3 | [20] |
Ottawa Canada | Urban soil | 10.5//7.4–18.5 | HF-HNO3-HClO4 | [62] |
Xuzhou China | Urban soil | 36//25–47 | HF-HNO3-HClO4 | [63] |
Poland | Sandy soil | 8.55//4.0–26.0 | HF-HCl-HNO3-HClO4 | [57] |
Poland | Silty and loamy soils | 21.0//10.0–45.0 | HF-HCl-HNO3-HClO4 | [57] |
Japan | Andosols | 22 ± 11//1.6–58 | HF-HNO3-HClO4 | [58] |
Japan | Cambisols | 39 ± 23//2.2–110 | HF-HNO3-HClO4 | [58] |
Japan | Gleysols | 43 ± 18//15–98 | HF-HNO3-HClO4 | [58] |
Japan | Acrisols | 42 ± 21//5–110 | HF-HNO3-HClO4 | [58] |
Austria | Apple orchard soils | 35//29.6–52.6 | HF-HNO3-HClO4 | [61,64] |
Austria | Apple orchard soils | 21.1//15.9–33.7 | KClO3-HNO3 | [61,64] |
Carinthia Austria | Forest soils | 17.2//9.6–30.3 | HCl-HNO3 | [60] |
Composite Feed | Median | Range | Number of Samples |
---|---|---|---|
For calves | 0.945 | 0.150–1.46 | 12 |
For sheep and goats | 1.32 | 0.160–2.93 | 15 |
For pigs and sows | 0.66 | 0.254–1.77 | 27 |
For piglets | 0.935 | 0.161–2.50 | 60 |
For poultry | 0.945 | 0.257–3.09 | 46 |
For cats and dogs | 0.800 | 0.126–5.65 | 35 |
Hay + grass silage | 0.44 | 0.031–3.56 | 81 |
Maize silage | 0.100 | 0.023–0.24 | 13 |
Apple leaves | 0.136 | 0.045–0.628 | 133 |
Supplementary Feed | Median | Range | Number of Samples |
---|---|---|---|
For cattle | 0.94 | 0.041–3.41 | 85 |
For calves | 1.46 | 0.410–5.84 | 39 |
For horses | 1.05 | 0.363–4.29 | 45 |
For pigs and sows | 1.57 | 0.387–4.96 | 166 |
For piglets | 1.70 | 0.232–4.64 | 122 |
For poultry | 1.93 | 0.362–9.90 | 42 |
Location | Samples | Median | Range | Reference | |
---|---|---|---|---|---|
Freshwater reference | 3 | [77] | |||
Denmark | 139 | 10.3 | <5–30.7 | [79] | |
Latvia | 720 | 1.3 shallow wells 1.9 springs 5.5 confined aquifers | <0.45 µm | [80] | |
Greece | 149 | 11.1 | 0.1–121 | [81] | |
Austria | 6460 | 11.3 | <1–1300 | [82] | |
Eastern England | 47 | <1–21 | [83] | ||
Romania | 1.7 | Qu: 0.71–5.8 | springwater | [18] | |
Jizera peatland CZ | 0.35 ± 0.21 precipitation 1.87 ± 0.23 shallow groundwater 3.10 ± 0.36 outflow | [84] | |||
Massif Central F | 0.07–195 | [85] | |||
Texas | 3123 | 2.8–219 | [86] | ||
Danube | 7 | [87] | |||
Oceans | 170–180 | [5] | |||
Puna highland (NW Argentina) | 81 | 8–1003 | Urban + 5 villages | [88] |
Bakery Products | µg/kg | Reference | Country | |
---|---|---|---|---|
Wheat | 10.5//1–92 | Dry weight | [114] | A |
Cereals | 34.6 | Wet weight | [115] | UK |
Bread | 10 | Prepared meal | [116] | UK |
Cereals | 20 | Prepared meal | [116] | UK |
Bread | 27 | Prepared meal | [117] | F |
Breakfast cereals | 9 | Prepared meal | [117] | F |
Pasta | 2 | Prepared meal | [117] | F |
Rice and semolina | 4 | Prepared meal | [117] | F |
Biscuits | 5 | Prepared meal | [117] | F |
Cakes | 12 | Prepared meal | [117] | F |
Milk and dairy | ||||
Milk | 3 | Prepared meal | [116] | UK |
milk | 2.1 | Wet weight | [115] | UK |
Milk | 6 | Prepared meal | [117] | F |
Raw Milk | 19.5//27–63 | Dry weight | [118] | A |
Raw milk | 25.5 ± 0.4 | Wet weight | [119] | H |
Skimmed milk | 26.3 ± 0.2 | Wet weight | [119] | H |
cream | 34.2 ± 0.3 | Wet weight | [119] | H |
Dairy products | 5 | Prepared meal | [116] | UK |
Fresh dairy products | 4 | Prepared meal | [117] | F |
Cheese (trappista, hajdu) | 96–98 | Wet weight | [119] | H |
Cheese | 10 | Prepared meal | [117] | F |
Hard cheese | 13.8 | Wet weight | [120] | A |
Semi hard cheese | 11.7 | Wet weight | [120] | A |
Soft cheese | 21.1 | Wet weight | [120] | A |
Curdled milk cheese | 6.9 | Wet weight | [120] | A |
Processed cheese | 41.6 | Wet weight | [120] | A |
Cream cheese cow | 12.1 | Wet weight | [120] | A |
Sheep + goat cheese | 7.8 | Wet weight | [120] | A |
Meat | ||||
Fish | 21.8 | Wet weight | [115] | UK |
Fish | 60 | Prepared meal | [116] | UK |
Fish | 30 | Prepared meal | [117] | F |
Shellfish | 123 | Prepared meal | [117] | F |
Chicken breast | 7.5//<1–19 | Dry weight | [121] | A |
Chicken drumstick | 9.0//1.5–20 | Dry weight | [121] | A |
Poultry | 10 | Prepared meal | [116] | UK |
Poultry and game | 6 | Prepared meal | [117] | F |
Meat | 2 | Prepared meal | [117] | F |
Meat products | 10 | Prepared meal | [116] | UK |
Offals | 41 | Prepared meal | [117] | F |
Pork | 1.2//<1–1.4 | Wet weight | [118] | A |
Wild pork | 3.5//3–4 | Wet weight | [118] | A |
Veal | 1.3//<1–2.5 | Wet weight | [118] | A |
Beef | 2.5//<1–3.7 | Wet weight | [118] | A |
Horsemeat | 3.6//1.5–22.5 | Wet weight | [118] | A |
Deer | 5.6//<1–22.5 | Wet weight | [118] | A |
Liver | 2.9//1.4–16.6 | Wet weight | [118] | A |
Kidney | 9.9//2.6–75.8 | Wet weight | [118] | A |
Sausage | 14.8/4.7–34.5 | Wet weight | [122] | A |
Fruits and vegetables | ||||
Fresh fruit | 5 | Prepared meal | [116] | UK |
Fruits | 13.9 | Wet weight | [115] | UK |
Fruit products | 10 | Prepared meal | [116] | UK |
Fruits | 7 | Prepared meal | [117] | F |
Apples | 6.6//<1–24 | Dry weight | [64] | A |
Tomatoes | 92//25–310 | Dry weight | [123] | A |
Potatoes | 17.5//<1–338 | Dry weight | [114] | A |
Potatoes | 10 | Prepared meal | [116] | UK |
Potatoes | 16 | Prepared meal | [117] | F |
Root vegetables | 7.4 | Wet weight | [115] | UK |
Carrots | 71.5//48–118 | Dry weight | unpublished | A |
Radishes | 361//137–1880 | Dry weight | unpublished | A |
Onions | 0.64//<−5.2 | Wet weight | [124] | DK |
onions | 3–9 | Wet weight | [125] | J |
sprouts | 0.48//<−12.8 | Wet weight | [112] | DK |
Green vegetables | 10 | Prepared meal | [115] | UK |
Cabbage | 1.48//<−11.0 | Wet weight | [126] | DK |
Vegetable | 14 | Prepared meal | [117] | F |
Other vegetables | 11.3 | Wet weight | [115] | UK |
Other vegetables | 30 | Prepared meal | [116] | UK |
Mushrooms | 94–186 | Dry weight | [127] | TR |
Thyme | 5860 | Dry weight | [128] | H |
Moringa seeds | 10,800 | Dry weight | [129] | Namibia |
Fat | ||||
Oils and fat | 3 | Prepared meal | [116] | UK |
Oils, margarine | 2 | Prepared meal | [117] | F |
Butter | 2 | Prepared meal | [117] | F |
Others | ||||
Feed salt (Bergkern) | 15 | Dry weight | unpublished | A |
Table salt | 860/1640 | Dry weight | unpublished | A |
Sea salt | 310/430 | Dry weight | unpublished | global |
Eggs | 70 | Prepared meal | [116] | UK |
Nuts | 10 | Prepared meal | [116] | UK |
Nuts and oilseeds | 22 | Prepared meal | [117] | F |
Chocolate | 21 | Prepared meal | [117] | F |
Sugar | 6 | Prepared meal | [116] | UK |
Sugars | 2 | Prepared meal | [117] | F |
Honey–rapeseed | 1.2//<1–4 | Dry weight | [130] | A |
Honey–honeydew | 6.3//3.8–12 | Dry weight | [130] | A |
Beverages | 3.7 | Wet weight | [115] | UK |
Beverages | 4 | Prepared meal | [116] | UK |
Non alcoholic bev. | 4 | Prepared meal | [117] | F |
Alcoholic bev. | 3 | Prepared meal | [117] | F |
Beer (median) | 8.3/1.9–19.9 | Prepared meal | [131] | D |
Coffee | 6 | Prepared meal | [106] | F |
Coffee (from deionized water) | 0.1 | Prepared meal | [132] | D |
Tea (from deionized water) | 1.4 | Prepared meal | [132] | D |
Soups | 38 | Prepared meal | [117] | F |
Edible insects | 96 ± 96 | Dry weight | [133] | global |
Insect based food | 57 ± 50 | Dry weight | [133] | global |
Wine | ||||
Red wine | 189//71–354 | [134] | Argentina | |
Red wine | 9//3–14 | [134] | Brazil | |
Red wine | 28//18–42 | [134] | Uruguay | |
White wine | 16.4 | [131] | Germany | |
Red wine | 35 ± 11 | Galicia | [135] | Spain |
Red wine | 19 ± 3 | Ribeiro Saco | [135] | Spain |
Wine | 6.0/2.0–48.1 | 40 samples | [132] | global |
Wine | 5.1/2.4–15.2 (40.2) | 15 samples | [132] | D |
White wine | 240 | Mostecko | [136] | CZ |
11 | Zernosecko | [136] | CZ | |
10 | Roudnicko | [136] | CZ | |
4.7 | Melnicko | [136] | CZ | |
Red wine | 160 | Mostecko | [136] | CZ |
12 | Zernosecko | [136] | CZ | |
14 | Roudnicko | [136] | CZ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sager, M. Lithium—Occurrence and Exposure—A Review. Toxics 2025, 13, 567. https://doi.org/10.3390/toxics13070567
Sager M. Lithium—Occurrence and Exposure—A Review. Toxics. 2025; 13(7):567. https://doi.org/10.3390/toxics13070567
Chicago/Turabian StyleSager, Manfred. 2025. "Lithium—Occurrence and Exposure—A Review" Toxics 13, no. 7: 567. https://doi.org/10.3390/toxics13070567
APA StyleSager, M. (2025). Lithium—Occurrence and Exposure—A Review. Toxics, 13(7), 567. https://doi.org/10.3390/toxics13070567