Characterizing Indoor Black Carbon Dynamics in a Residential Environment: The Role of Human Activity and Ventilation Behavior
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Instrumentation
2.2. Statistical Analysis
3. Results and Discussion
3.1. General Black Carbon Concentration Levels and Temporal Variability
3.2. Impact of Indoor Activities on Black Carbon Concentrations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cakaj, A.; Lisiak-Zielińska, M.; Khaniabadi, Y.O.; Sicard, P. Premature Deaths Related to Urban Air Pollution in Poland. Atmos. Environ. 2023, 301, 119723. [Google Scholar] [CrossRef]
- Khomenko, S.; Cirach, M.; Pereira-Barboza, E.; Mueller, N.; Barrera-Gómez, J.; Rojas-Rueda, D.; De Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M. Premature Mortality Due to Air Pollution in European Cities: A Health Impact Assessment. Lancet Planet. Health 2021, 5, e121–e134. [Google Scholar] [CrossRef]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The Contribution of Outdoor Air Pollution Sources to Premature Mortality on a Global Scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO European Centre for Environment and Health: Bonn, Germany, 2021; ISBN 9789240034228. [Google Scholar]
- Alahmad, B.; Khraishah, H.; Althalji, K.; Borchert, W.; Al-Mulla, F.; Koutrakis, P. Connections Between Air Pollution, Climate Change, and Cardiovascular Health. Can. J. Cardiol. 2023, 39, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health. J. Med. Toxicol. 2012, 8, 166–175. [Google Scholar] [CrossRef]
- Fordyce, T.A.; Leonhard, M.J.; Chang, E.T. A Critical Review of Developmental Exposure to Particulate Matter, Autism Spectrum Disorder, and Attention Deficit Hyperactivity Disorder. J. Environ. Sci. Health Part A 2018, 53, 174–204. [Google Scholar] [CrossRef]
- Idani, E.; Geravandi, S.; Akhzari, M.; Goudarzi, G.; Alavi, N.; Yari, A.R.; Mehrpour, M.; Khavasi, M.; Bahmaei, J.; Bostan, H.; et al. Characteristics, Sources, and Health Risks of Atmospheric PM10 -Bound Heavy Metals in a Populated Middle Eastern City. Toxin Rev. 2020, 39, 266–274. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Zhan, X.-L.; Jin, C.-Y.; Liang, J.-H.; Jing, J.; Dong, G.-H. The Epidemiological Evidence Linking Exposure to Ambient Particulate Matter with Neurodevelopmental Disorders: A Systematic Review and Meta-Analysis. Environ. Res. 2022, 209, 112876. [Google Scholar] [CrossRef]
- Shang, M.; Tang, M.; Xue, Y. Neurodevelopmental Toxicity Induced by Airborne Particulate Matter. J. Appl. Toxicol. 2023, 43, 167–185. [Google Scholar] [CrossRef]
- Anenberg, S.C.; Schwartz, J.; Shindell, D.; Amann, M.; Faluvegi, G.; Klimont, Z.; Janssens-Maenhout, G.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; et al. Global Air Quality and Health Co-Benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls. Environ. Health Perspect. 2012, 120, 831–839. [Google Scholar] [CrossRef]
- Grahame, T.J.; Klemm, R.; Schlesinger, R.B. Public Health and Components of Particulate Matter: The Changing Assessment of Black Carbon. J. Air Waste Manag. Assoc. 2014, 64, 620–660. [Google Scholar] [CrossRef]
- Jansen, K.L.; Larson, T.V.; Koenig, J.Q.; Mar, T.F.; Fields, C.; Stewart, J.; Lippmann, M. Associations between Health Effects and Particulate Matter and Black Carbon in Subjects with Respiratory Disease. Environ. Health Perspect. 2005, 113, 1741–1746. [Google Scholar] [CrossRef] [PubMed]
- Janssen, N.A.H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; Van Bree, L.; Ten Brink, H.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B.; et al. Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cheng, Y.; Liang, L.; Liu, J. The Measurement of Atmospheric Black Carbon: A Review. Toxics 2023, 11, 975. [Google Scholar] [CrossRef]
- Lei, W.; Li, X.; Yin, Z.; Zhang, L.; Zhao, W. Pollution Characteristics and Source Apportionment of Black Carbon Aerosols During Spring in Beijing. Toxics 2024, 12, 202. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, G.; Traina, S.J.; Swanston, C.W. Black Carbon’s Properties and Role in the Environment: A Comprehensive Review. Sustainability 2010, 2, 294–320. [Google Scholar] [CrossRef]
- Kirrane, E.F.; Luben, T.J.; Benson, A.; Owens, E.O.; Sacks, J.D.; Dutton, S.J.; Madden, M.; Nichols, J.L. A Systematic Review of Cardiovascular Responses Associated with Ambient Black Carbon and Fine Particulate Matter. Environ. Int. 2019, 127, 305–316. [Google Scholar] [CrossRef]
- Luben, T.J.; Nichols, J.L.; Dutton, S.J.; Kirrane, E.; Owens, E.O.; Datko-Williams, L.; Madden, M.; Sacks, J.D. A Systematic Review of Cardiovascular Emergency Department Visits, Hospital Admissions and Mortality Associated with Ambient Black Carbon. Environ. Int. 2017, 107, 154–162. [Google Scholar] [CrossRef]
- Bauer, K.; Bosker, T.; Dirks, K.N.; Behrens, P. The Impact of Seating Location on Black Carbon Exposure in Public Transit Buses: Implications for Vulnerable Groups. Transp. Res. Part D Transp. Environ. 2018, 62, 577–583. [Google Scholar] [CrossRef]
- Cunha-Lopes, I.; Martins, V.; Faria, T.; Correia, C.; Almeida, S.M. Children’s Exposure to Sized-Fractioned Particulate Matter and Black Carbon in an Urban Environment. Build. Environ. 2019, 155, 187–194. [Google Scholar] [CrossRef]
- Suglia, S.F.; Gryparis, A.; Wright, R.O.; Schwartz, J.; Wright, R.J. Association of Black Carbon with Cognition among Children in a Prospective Birth Cohort Study. Am. J. Epidemiol. 2007, 167, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Lovrić, M.; Račić, N.; Pehnec, G.; Horvat, T.; Lovrić Štefiček, M.J.; Jakovljević, I. Indoor Polycyclic Aromatic Hydrocarbons—Relationship to Ambient Air, Risk Estimation, and Source Apportionment Based on Household Measurements. Atmosphere 2024, 15, 1525. [Google Scholar] [CrossRef]
- Lovrić, M.; Gajski, G.; Fernández-Agüera, J.; Pöhlker, M.; Gursch, H.; The EDIAQI Consortium; Borg, A.; Switters, J.; Mureddu, F. Evidence Driven Indoor Air Quality Improvement: An Innovative and Interdisciplinary Approach to Improving Indoor Air Quality. BioFactors 2025, 51, e2126. [Google Scholar] [CrossRef]
- Briggs, N.L.; Long, C.M. Critical Review of Black Carbon and Elemental Carbon Source Apportionment in Europe and the United States. Atmos. Environ. 2016, 144, 409–427. [Google Scholar] [CrossRef]
- LaRosa, L.E.; Buckley, T.J.; Wallace, L.A. Real-Time Indoor and Outdoor Measurements of Black Carbon in an Occupied House: An Examination of Sources. J. Air Waste Manag. Assoc. 2002, 52, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Rönkkö, T.; Saarikoski, S.; Kuittinen, N.; Karjalainen, P.; Keskinen, H.; Järvinen, A.; Mylläri, F.; Aakko-Saksa, P.; Timonen, H. Review of Black Carbon Emission Factors from Different Anthropogenic Sources. Environ. Res. Lett. 2023, 18, 033004. [Google Scholar] [CrossRef]
- Healy, R.M.; Sofowote, U.; Su, Y.; Debosz, J.; Noble, M.; Jeong, C.-H.; Wang, J.M.; Hilker, N.; Evans, G.J.; Doerksen, G.; et al. Ambient Measurements and Source Apportionment of Fossil Fuel and Biomass Burning Black Carbon in Ontario. Atmos. Environ. 2017, 161, 34–47. [Google Scholar] [CrossRef]
- Saarikoski, S.; Niemi, J.V.; Aurela, M.; Pirjola, L.; Kousa, A.; Rönkkö, T.; Timonen, H. Sources of Black Carbon at Residential and Traffic Environments Obtained by Two Source Apportionment Methods. Atmos. Chem. Phys. 2021, 21, 14851–14869. [Google Scholar] [CrossRef]
- Singh, S.; Tiwari, S.; Hopke, P.K.; Zhou, C.; Turner, J.R.; Panicker, A.S.; Singh, P.K. Ambient Black Carbon Particulate Matter in the Coal Region of Dhanbad, India. Sci. Total Environ. 2018, 615, 955–963. [Google Scholar] [CrossRef]
- Cyrys, J.; Pitz, M.; Bischof, W.; Wichmann, H.; Heinrich, J. Relationship Between Indoor and Outdoor Levels of Fine Particle Mass, Particle Number Concentrations and Black Smoke under Different Ventilation Conditions. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 275–283. [Google Scholar] [CrossRef]
- Isiugo, K.; Jandarov, R.; Cox, J.; Chillrud, S.; Grinshpun, S.A.; Hyttinen, M.; Yermakov, M.; Wang, J.; Ross, J.; Reponen, T. Predicting Indoor Concentrations of Black Carbon in Residential Environments. Atmos. Environ. 2019, 201, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fung, P.L.; Zaidan, M.A.; Wehner, B.; Weinhold, K.; Wiedensohler, A.; Hussein, T. Indoor Black Carbon Concentrations and Their Sources in Residential Environments: Validation of an Input-Adaptive Proxy Model. Aerosol Air Qual. Res. 2024, 24, 230228. [Google Scholar] [CrossRef]
- Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A.S.H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; et al. The “Dual-Spot” Aethalometer: An Improved Measurement of Aerosol Black Carbon with Real-Time Loading Compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. [Google Scholar] [CrossRef]
- Lovrić, M.; Petrić, V.; Strbad, D.; Terzić, T.; Frka, S.; Cvitešić Kušan, A.; Fermoso, J.; Düsing, S.; Dawn Alas, H.; Dobrić Ladavac, M.; et al. Indoor and Ambient Air Pollution Dataset Using a Multi-Instrument Approach and Total Event Monitoring; EU Open Research Repository: Brussel, Belgium, 2025. [Google Scholar] [CrossRef]
Date | Mean (TBC) | Min (TBC) | Max (TBC) | Mean (BB) | Mean (FF) |
---|---|---|---|---|---|
11 October 2024 | 884.43 | 94 | 1753 | 363.83 | 517.42 |
12 October 2024 | 518.8 | 63 | 1784 | 417.17 | 101.04 |
13 October 2024 | 356.62 | 48 | 1037 | 174.72 | 181.89 |
14 October 2024 | 558.02 | 84 | 1228 | 281.01 | 276.82 |
15 October 2024 | 799.07 | 60 | 3047 | 592.16 | 206.49 |
16 October 2024 | 398.84 | 152 | 692 | 288.84 | 109.8 |
17 October 2024 | 576.44 | 78 | 994 | 509.53 | 66.91 |
18 October 2024 | 612.88 | 337 | 801 | 559.68 | 53.19 |
19 October 2024 | 604.58 | 195 | 812 | 491.2 | 113.38 |
20 October 2024 | 532.97 | 84 | 1904 | 360.89 | 171.57 |
21 October 2024 | 1347.43 | 558 | 5430 | 779.39 | 568.04 |
22 October 2024 | nan | nan | nan | nan | nan |
23 October 2024 | 957.78 | 696 | 2964 | 691.57 | 266.22 |
24 October 2024 | 1009.46 | 561 | 1433 | 1009.46 | 0 |
25 October 2024 | 817.93 | 511 | 1085 | 754.96 | 62.98 |
26 October 2024 | 593.08 | 407 | 797 | 280.28 | 312.79 |
27 October 2024 | 718.3 | 430 | 903 | 450.99 | 267.31 |
28 October 2024 | 681.64 | 334 | 1026 | 520.16 | 161.48 |
29 October 2024 | 1111.63 | 157 | 3900 | 623.39 | 488.23 |
30 October 2024 | 1933.37 | 881 | 5133 | 1053.09 | 880.28 |
31 October 2024 | 1547.11 | 930 | 2833 | 892.46 | 654.65 |
1 November 2024 | 579.33 | 116 | 994 | 230.07 | 349.1 |
2 November 2024 | 729.32 | 31 | 2151 | 311.93 | 416.95 |
3 November 2024 | 716.84 | 14 | 5083 | 336.16 | 379.34 |
Metric | Day | Late Night | Night |
---|---|---|---|
BB BC Mean | 441.73 | 662.22 | 698.43 |
BB BC Min | 0 | 0 | 0 |
BB BC Max | 1654 | 1736 | 1666 |
FF BC Mean | 333.6 | 124.02 | 200.27 |
FF BC Min | 0 | 0 | 0 |
FF BC Max | 5133 | 561.38 | 929 |
TBC Mean | 775.72 | 786.25 | 898.71 |
TBC Min | 14 | 152 | 213 |
TBC Max | 5430 | 1766 | 1833 |
Event | ANOVA, p (BB) | Kruskal, p (BB) | ANOVA, p (FF) | Kruskal, p (FF) |
---|---|---|---|---|
Candle Burning (Closed Door 1) | 0.280 | 0.218 | 0.073 | 0.057 |
Candle Burning (Closed Door 2) | 0.852 | 0.884 | 0.885 | 0.721 |
Scented Candle | 0.000 | 0.000 | 0.000 | 0.000 |
Candle Burning (Open Door) | 0.001 | 0.000 | 0.028 | 0.002 |
Gas Burner (Closed Door) | 0.222 | 0.317 | 0.018 | 0.023 |
Gas Burner (Open Door) | 0.000 | 0.000 | 0.000 | 0.000 |
Human Presence (1) | 0.007 | 0.010 | 0.000 | 0.001 |
Human Presence (2) | 0.000 | 0.000 | 0.000 | 0.000 |
Exercise Rowing (Closed Door) | 0.000 | 0.000 | 0.697 | 0.867 |
Exercise Rowing (Open Door) | 0.000 | 0.000 | 0.192 | 0.142 |
Door Open to Garden | 0.000 | 0.000 | 0.566 | 0.381 |
Door Open to Hallway | 0.000 | 0.000 | 0.359 | 0.418 |
Doors Open (Garden + Hallway) | 0.000 | 0.000 | 0.192 | 0.064 |
Car Running (3 m from door) | 0.141 | 0.085 | 0.000 | 0.003 |
Car Running (5 m from door) | 0.017 | 0.037 | 0.971 | 0.983 |
Diffuser (Water) | 0.011 | 0.023 | 0.000 | 0.001 |
Diffuser (Oil) | 0.001 | 0.001 | 0.000 | 0.000 |
Vacuum Cleaning (Windows Closed) | 0.893 | 0.922 | 0.000 | 0.000 |
Neighbor Burning Odor | 0.000 | 0.009 | 0.000 | 0.000 |
Tar Burning (Unplanned Event) | 0.821 | 0.737 | 0.278 | 0.295 |
Electric Heater (1) | 0.000 | 0.000 | 0.073 | 0.057 |
Electric Heater (2) | 0.990 | 0.939 | 0.885 | 0.721 |
Electric Heater (3) | 0.143 | 0.061 | 0.000 | 0.000 |
Central Heating (Radiator) | 0.000 | 0.000 | 0.028 | 0.002 |
Aquarium Pump | 0.383 | 0.614 | 0.018 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Račić, N.; Frka, S.; Cvitešić Kušan, A.; Petrić, V.; Mureddu, F.; Lovrić, M. Characterizing Indoor Black Carbon Dynamics in a Residential Environment: The Role of Human Activity and Ventilation Behavior. Toxics 2025, 13, 536. https://doi.org/10.3390/toxics13070536
Račić N, Frka S, Cvitešić Kušan A, Petrić V, Mureddu F, Lovrić M. Characterizing Indoor Black Carbon Dynamics in a Residential Environment: The Role of Human Activity and Ventilation Behavior. Toxics. 2025; 13(7):536. https://doi.org/10.3390/toxics13070536
Chicago/Turabian StyleRačić, Nikolina, Sanja Frka, Ana Cvitešić Kušan, Valentino Petrić, Francesco Mureddu, and Mario Lovrić. 2025. "Characterizing Indoor Black Carbon Dynamics in a Residential Environment: The Role of Human Activity and Ventilation Behavior" Toxics 13, no. 7: 536. https://doi.org/10.3390/toxics13070536
APA StyleRačić, N., Frka, S., Cvitešić Kušan, A., Petrić, V., Mureddu, F., & Lovrić, M. (2025). Characterizing Indoor Black Carbon Dynamics in a Residential Environment: The Role of Human Activity and Ventilation Behavior. Toxics, 13(7), 536. https://doi.org/10.3390/toxics13070536