Organophosphate Flame Retardants in Indoor Dust in the Tampa Bay (Florida) Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Chemicals and Reagents
2.3. Extraction and Analysis
2.4. Quality Assurance and Control
3. Results and Discussion
3.1. Overall OPEs Levels
3.2. Comparison of Urban and Suburban Σιτεσ
3.3. Comparison of Levels in Residential and Non-Residential Locations
3.4. Comparison of Levels in Apartment and Single-Family Residences
3.5. Comparison of University, Daycare, and Home Sites
3.6. Influence of Age of Buildings on OPE Levels
3.7. Influence of Type of Floor on OPE Levels
3.8. Comparison of Home Levels to Other Locations
3.9. Exposure Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fromme, H.; Lahr, T.; Kraft, M.; Fembacher, L.; Mach, C.; Dietrich, S.; Burkardt, R.; Volkel, W.; Goen, T. Organophosphate flame retardants and plasticizers in the air and dust in German daycare centers and human biomonitoring in visiting children (LUPE 3). Environ. Int. 2014, 71, 158–163. [Google Scholar] [CrossRef]
- Kademoglou, K.; Xu, F.; Padilla-Sanchez, J.A.; Haug, L.S.; Covaci, A.; Collins, C.D. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion. Environ. Int. 2017, 102, 48–56. [Google Scholar] [CrossRef]
- Araki, A.; Bastiaensen, M.; Yamat, Y.-A.; Van den Eede, N.; Kawai, T.; Tsuboi, T.; Ketema, R.-M.; Covaci, A.; Kishi, R. Associations between allergic symptoms and phosphate flame retardants in dust and their urinary metabolites among school children. Environ. Int. 2018, 119, 438–446. [Google Scholar] [CrossRef]
- Bi, C.; Maestre, J.P.; Li, H.; Zhang, G.; Givehchi, R.; Mahdavi, A.; Kinney, K.A.; Siegel, J.; Horner, S.D.; Xu, Y. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: Association with season, building characteristics, and childhood asthma. Environ. Int. 2018, 121, 916–930. [Google Scholar] [CrossRef]
- Bjornsdotter, M.K.; Romero-Garcia, E.; Borrull, J.; de Boer, J.; Rubio, S.; Ballesteros-Gomez, A. Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microenvironments in Spain and the Netherlands and estimation of human exposure. Environ. Int. 2018, 112, 59–67. [Google Scholar] [CrossRef]
- Kim, U.-J.; Wang, Y.; Li, W.; Kannan, K. Occurrence of and human exposure to organophosphate flame retardants/plasticizers in indoor air and dust from various microenvironments in the United States. Environ. Int. 2019, 125, 342–349. [Google Scholar] [CrossRef]
- Shoeib, T.; Webster, G.M.; Hassan, Y.; Tepe, S.; Yalcin, M.; Turgut, C.; Kurt-Karakus, P.B.; Jantunen, L. Organophosphate esters in house dust: A comparative study between Canada, Turkey and Egypt. Sci. Tot. Environ. 2019, 650, 193–201. [Google Scholar] [CrossRef]
- Tao, F.; Sellstrom, U.; de Wit, C.A. Organohalogenated flame retardants and organophosphate esters in office air and dust from Sweden. Environ. Sci. Technol. 2019, 53, 2124–2133. [Google Scholar] [CrossRef]
- Tokumura, M.; Ogo, S.; Kume, K.; Muramatsu, K.; Wang, Q.; Miyake, Y.; Amagai, T.; Makino, M. Comparison of rates of direct and indirect migration of phosphorus flame retardants from flame-retardant-treated polyester curtains to indoor dust. Ecotox. Environ. Safety 2019, 169, 464–469. [Google Scholar] [CrossRef]
- Ma, H.; Wang, C.; Suo, H.; Huang, Y.; Huo, Y.; Yang, G.; Yan, Y.; Huang, T.; Gao, H.; Ma, J.; et al. Global gridded emission inventory of organophosphate flame retardants from 2010 to 2020. Env. Sci. Technol. 2024, 58, 17070–17080. [Google Scholar] [CrossRef]
- Du, Z.; Ruan, Y.; Chen, J.; Fang, J.; Xiao, S.; Zheng, W. Global trends and hotspots in research on the health risks of organophosphate flame retardants: A bibliometric and visual analysis. Toxics 2024, 12, 391. [Google Scholar] [CrossRef]
- Hoffman, K.; Lorenzo, A.M.; Butt, C.M.; Hammel, S.C.; Henderson, B.B.; Roman, S.A.; Scheri, R.P.; Stapleton, H.M.; Sosa, J.A. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: A case-control study. Environ. Int. 2017, 107, 235–242. [Google Scholar] [CrossRef]
- Dishaw, L.V.; Macaulay, L.J.; Roberts, S.C.; Stapleton, H.M. Exposures, mechanisms, and impacts of endocrine-active flame retardants. Curr. Opin. Pharmacol. 2014, 19, 125–133. [Google Scholar] [CrossRef]
- Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef]
- Kucharska, A.; Cequier, E.; Thomsen, C.; Becher, G.; Covaci, A.; Voorspoels, S. Assessment of human hair as an indicator of exposure to organophosphate flame retardants. Case study on a Norwegian mother-child cohort. Environ. Int. 2015, 83, 50–57. [Google Scholar] [CrossRef]
- Cao, D.; Lv, K.; Gao, W.; Fu, J.; Wu, J.; Fu, J.; Wang, Y.; Jiang, G. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China. Ecotoxicol. Environ. Safety 2019, 169, 283–391. [Google Scholar] [CrossRef]
- Li, P.; Jin, J.; Wang, Y.; Hu, J.; Xu, M.; Sun, Y.; Ma, Y. Concentrations of organophosphorus, polybromobenzene, and polybrominated diphenyl ether flame retardants in human serum, and relationships between concentrations and donor ages. Chemosphere 2017, 171, 654–660. [Google Scholar] [CrossRef]
- Ma, Y.; Jin, J.; Li, P.; Xu, M.; Sun, Y.; Wang, Y.; Yuan, H. Organophosphate ester flame retardant concentrations and distributions in serum from inhabitants of shandong, china, and changes between 2011 and 2015. Environ. Toxicol. Chem. 2017, 36, 414–421. [Google Scholar] [CrossRef]
- Butt, C.M.; Hoffman, K.; Chen, A.; Lorenzo, A.; Congleton, J.; Stapleton, H.M. Regional comparison of organophosphate flame retardant (PFR) urinary metabolites and tetrabromobenzoic acid (TBBA) in mother-toddler pairs from California and New Jersey. Environ. Int. 2016, 94, 627–634. [Google Scholar] [CrossRef]
- Liu, L.-Y.; He, K.; Hites, R.A.; Salamova, A. Hair and nails as noninvasive biomarkers of human exposure to brominated and organophosphate flame retardants. Environ. Sci. Technol. 2016, 50, 3065–3073. [Google Scholar] [CrossRef]
- Qiao, L.; Zheng, X.-B.; Zheng, J.; Lei, W.-X.; Li, H.-F.; Wang, M.-H.; He, C.-T.; Chen, S.-J.; Yuan, J.-G.; Luo, X.-J.; et al. Analysis of human hair to assess exposure to organophosphate flame retardants: Influence of hair segments and gender differences. Environ. Res. 2016, 148, 177–183. [Google Scholar] [CrossRef]
- Meeker, J.D.; Cooper, E.M.; Stapleton, H.M.; Hauser, R. Urinary metabolites of organophosphate flame retardants: Temporal variability and correlations with house dust concentrations. Environ. Health Perspect. 2013, 121, 580–585. [Google Scholar] [CrossRef]
- Bergman, A.; Ryden, A.; Law, R.J.; de Boer, J.; Covaci, A.; Alaee, M.; Birnbaum, L.; Petreas, M.; Rose, M.; Sakai, S.; et al. A novel abbreviation standard for organobromine, organochlorine, and organophosphorus flame retardants and some characteristics of the chemicals. Environ. Int. 2012, 49, 57–82. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Song, C.; Crump, D. Computational evaluation of interactions between organophosphate esters and nuclear hormone receptors. Environ. Res. 2020, 182, 108982. [Google Scholar] [CrossRef]
- Ionas, A.C.; Covaci, A. Simplifying multi-residue analysis of flame retardants in indoor dust Simplifying multi-residue analysis of flame retardants in indoor dust. Int. J. Environ. Anal. Chem. 2013, 93, 1074–1083. [Google Scholar] [CrossRef]
- Stapleton, H.M.; Allen, J.G.; Kelly, S.M.; Konstantinov, A.; Klosterhaus, S.; Watkins, D.; McClean, M.D.; Webster, T.F. Alternate and new brominated flame retardants detected in U.S. house dust. Environ. Sci. Technol. 2008, 42, 6910–6916. [Google Scholar] [CrossRef]
- Cristale, J.; Gomez Aragao Bele, T.; Lacorte, S.; Rodrigues de Marchi, M.R. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city. Environ. Pollut. 2018, 237, 695–703. [Google Scholar] [CrossRef]
- Truong, J.W.; Diamond, M.L.; Helm, P.A.; Jantunen, L.M. Isomers of tris (chloropropyl) phosphate (TCPP) in technical mixtures and environmental samples. Anal. Bioanal. Chem. 2017, 409, 6989–6997. [Google Scholar] [CrossRef]
- Dodson, R.E.; Perovich, L.J.; Covaci, A.; Van den Eede, N.; Ionas, A.C.; Dirtu, A.C.; Brody, J.G.; Rudel, R.A. After the PBDE Phase-Out: A Broad Suite of Flame Retardants in Repeat House Dust Samples from California. Environ. Sci. Technol. 2012, 46, 13056–13066. [Google Scholar] [CrossRef]
- Phillips, A.L.; Hammel, S.C.; Hoffman, K.; Lorenzo, A.M.; Chen, A.; Webster, T.F.; Stapleton, H.M. Children’s residential exposure to organophosphate ester flame retardants and plasticizers: Investigating exposure pathways in the TESIE study. Environ. Int. 2018, 116, 176–185. [Google Scholar] [CrossRef]
- Wong, F.; Suzuki, G.; Michinaka, C.; Yuan, B.; Takigami, H.; de Wit, C.A. Dioxin-like activities, halogenated flame retardants, organophosphate esters and chlorinated paraffins in dust from Australia, the United Kingdom, Canada, Sweden and China. Chemosphere 2017, 168, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Giovanoulis, G.; van Waes, S.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Magner, J.; Haug, L.S.; Neels, H.; Covaci, A. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes:The Importance of Sampling and Assessment Strategy. Environ. Sci. Technol. 2016, 50, 7752–7760. [Google Scholar] [CrossRef] [PubMed]
- Mizouchi, S.; Ichiba, M.; Takigami, H.; Kajiwara, N.; Takamuku, T.; Miyajima, T.; Kodama, H.; Someya, T.; Ueno, D. Exposure assessment of organophosphorus and organobromine flame retardants via indoor dust from elementary schools and domestic houses. Chemosphere 2015, 123, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Cequier, E.; Ionas, A.C.; Covaci, A.; Marcé, R.M.; Becher, G.; Thomsen, C. Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway. Environ. Sci. Technol. 2014, 48, 6827–6835. [Google Scholar] [CrossRef]
- Tajima, S.; Araki, A.; Kawai, T.; Tsuboi, T.; Bamai, Y.A.; Yoshioka, E.; Kanazawa, A.; Cong, S.; Kishi, R. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings. Sci. Tot. Environ. 2014, 478, 190–199. [Google Scholar] [CrossRef]
- Brommer, S.; Harrad, S.; Van den Eede, N.; Covaci, A. Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J. Environ. Monit. 2012, 14, 2482–2487. [Google Scholar] [CrossRef]
- Kanazawa, A.; Saito, I.; Araki, A.; Takeda, M.; Ma, M.; Saijo, Y.; Kishi, R. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings. Indoor Air 2010, 20, 72–84. [Google Scholar] [CrossRef]
- Castorina, R.; Butt, C.; Stapleton, H.M.; Avery, D.; Harley, K.G.; Holland, N.; Eskenazi, B.; Bradman, A. Flame retardants and their metabolites in the homes and urine of pregnant women residing in California (the CHAMACOS cohort). Chemosphere 2017, 179, 159–166. [Google Scholar] [CrossRef]
- Hammel, S.C.; Hoffman, K.; Lorenzo, A.M.; Chen, A.; Phillips, A.L.; Butt, C.M.; Sosa, J.A.; Webster, T.F.; Stapleton, H.M. Associations between flame retardant applications in furniture foam, house dust levels, and residents’ serum levels. Environ. Int. 2017, 107, 181–189. [Google Scholar] [CrossRef]
- Vykoukalova, M.; Venier, M.; Vojta, S.; Melymuk, L.; Becanova, J.; Romanak, K.; Prokes, R.; Okeme, J.O.; Saini, A.; Diamond, M.L.; et al. Organophosphate esters flame retardants in the indoor environment. Environ. Int. 2017, 106, 97–104. [Google Scholar] [CrossRef]
- Wu, M.; Yu, G.; Cao, Z.; Wu, D.; Liu, K.; Deng, S.; Huang, J.; Wang, B.; Wang, Y. Characterization and human exposure assessment of organophosphate flame retardants in indoor dust from several microenvironments of Beijing, China. Chemosphere 2016, 150, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.A.-E.; Covaci, A. Organophosphate flame retardants in indoor dust from Egypt: Implications for human exposure. Environ. Sci. Technol. 2014, 48, 4782–4789. [Google Scholar] [CrossRef] [PubMed]
- Marklund, A.; Anderson, B.; Haglung, P. Screening of organophosporus compounds and their distribution in various indoor environments. Chemosphere 2003, 53, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Jilkova, S.; Melymuk, L.; Vojta, S.; Vykoukalova, M.; Bohlin-Nizzetto, P.; Klanova, J. Small-scale spatial variability of flame retardants in indoor dust and implications for dust sampling. Chemosphere 2018, 206, 132–141. [Google Scholar] [CrossRef]
- Larsson, K.; de Wit, C.A.; Sellstrom, U.; Sahlstrom, L.; Lindh, C.H.; Berglund, M. Brominated Flame Retardants and Organophosphate Esters in Preschool Dust and Children’s Hand Wipes. Environ. Sci. Technol. 2018, 52, 4878−4888. [Google Scholar] [CrossRef]
- He, C.; Wang, X.; Thai, P.; Baduel, C.; Gallen, C.; Banks, A.; Bainton, P.; English, K.; Mueller, J.F. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary, assessment of human exposure. Environ. Pollut. 2018, 235, 670–679. [Google Scholar] [CrossRef]
- Araki, A.; Saito, I.; Kanazawa, A.; Morimoto, K.; Nakayama, K.; Shibata, E.; Tanaka, M.; Takigawa, T.; Yoshimura, T.; Chikara, H.; et al. Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants. Indoor Air 2014, 24, 3–15. [Google Scholar] [CrossRef]
- Ali, N.; Dirtu, A.C.; Van den Eede, N.; Goosey, E.; Harrad, S.; Neels, H.; Mannetje, A.; Coakley, J.; Douwes, J.; Covaci, A. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment. Chemosphere 2012, 88, 1276–1282. [Google Scholar] [CrossRef]
- Ali, N.; Ali, L.; Mehdi, T.; Dirtu, A.C.; Al-Shammari, F.; Neels, H.; Covaci, A. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: Implications for human exposure via dust ingestion. Environ. Int. 2013, 55, 62–70. [Google Scholar] [CrossRef]
- Brandsma, S.H.; de Boer, J.; van Velzen, M.J.; Leonards, P.E. Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment. Chemosphere 2014, 116, 3–9. [Google Scholar] [CrossRef]
- Dirtu, A.C.; Ali, N.; Van den Eede, N.; Neels, H.; Covaci, A. Country specific comparison for profile of chlorinated, brominated and phosphate organic contaminants in indoor dust. Case study for Eastern Romania, 2010. Environ. Int. 2012, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- He, C.T.; Zheng, J.; Qiao, L.; Chen, S.J.; Yang, J.Z.; Yuan, J.G.; Yang, Z.Y.; Mai, B.X. Occurrence of organophosphorus flame retardants in indoor dust in multiple microenvironments of southern China and implications for human exposure. Chemosphere 2015, 133, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.; Peng, C.; Guo, Y.; Wang, X.; Wu, Y.; Chen, D. Organophosphate flame retardants in house dust from south China and related human exposure risks. Bull. Environ. Contam. Toxicol. 2017, 99, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Van den Eede, N.; Dirtu, A.C.; Neels, H.; Covaci, A. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ. Int. 2011, 37, 454–461. [Google Scholar] [CrossRef]
- Yadav, I.C.; Devi, N.L.; Zhong, G.; Li, J.; Zhang, G.; Covaci, A. Occurrence and fate of organophosphate ester flame retardants and plasticizers in indoor air and dust of Nepal: Implication for human exposure. Environ. Pollut. 2017, 229, 668–678. [Google Scholar] [CrossRef]
- Ali, N.; Shah Eqani, A.M.A.; Ibrahim Ismail, I.M.; Malarvannan, G.; Kadi, M.W.; Salem Albar, M.S.; Rehan, M.; Covaci, A. Brominated and organophosphate flame retardants in indoor dust of Jeddah, Kingdom of Saudi Arabia: Implications for human exposure. Sci. Tot. Environ. 2016, 569–570, 269–277. [Google Scholar] [CrossRef]
- Stubbings, W.A.; Schreder, E.D.; Thomas, M.B.; Romanak, K.; Venier, M.; Salamova, A. Exposure to brominated and organophosphate ester flame retardants in U.S. childcare environments: Effect of removal of flame-retarded nap mats on indoor levels. Environ. Pollut. 2018, 238, 1056–1068. [Google Scholar] [CrossRef]
- Luongo, G.; Ostman, C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air 2016, 26, 414–425. [Google Scholar] [CrossRef]
- Zhou, L.; Hiltscher, M.; Puttmann, W. Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany. Indoor Air 2017, 27, 1113–1127. [Google Scholar] [CrossRef]
OPE | Range (min–max) | Mean | Median | DF a (%) |
---|---|---|---|---|
TIPP | BD b—18 | 3.48 | 2 | 86 |
TPP | BD—26 | 5.95 | 5 | 84 |
TNBP | BD—4.789 | 223 | 41 | 92 |
TCEP | 5—2199 | 181 | 85 | 100 |
TCIPP | 18—18,807 | 937 | 360 | 100 |
T2CPP | 17—27,212 | 1211 | 458 | 100 |
TDCIPP | BD—23,898 | 1775 | 530 | 98 |
TPHP | BD—210,108 | 7614 | 1046 | 98 |
TBOEP | BD—250,904 | 22,672 | 4641 | 88 |
EHDPP | 15—1484 | 178 | 109 | 100 |
TEHP | BD—1741 | 239 | 76 | 98 |
TIPPP | BD—621 | 42 | 38 | 36 |
TMPP c | BD—34,131 | 1052 | 54 | 50 d |
∑13OPEs | 545–502,086 | 36,135 | 15,447 |
Location | Year of Sampling | n | No of OPEs in ∑OPEs | Median | Range | Ref. |
---|---|---|---|---|---|---|
Tampa Bay, USA | 2016 | 25 | 13 | 15,447 | 545–502,086 | This study |
Albany, USA | 2018 | 8 | 15 | 30,600 | 16,200–224,000 | A |
Texas, USA | 2014 | 92 | 5 | 19,300 | 8240–1,220,000 | B |
Egypt | 2012–2013 | 20 | 8 | 189 | 38–962 | C |
New Zealand | 2010 | 34 | 7 | 5510 | D | |
Kuwait | 2011 | 15 | 12 | 6550 | 2260–146,900 | E |
Pakistan | 2011 | 15 | 12 | 575 | 65–900 | E |
Netherlands | 2012 | 8 | 9 | 27,000 | 7400–167,000 | F |
Germany | 2010–2011 | 6 | 7 | 800–6000 | G | |
Spain | 5 | 10 | 10,121 | 5223–20,851 | H | |
Romania | 2010 | 47 | 9 | 7890 | I | |
China (urban) | 2013–2014 | 11 | 12 | 9340 | 4450–27,500 | J |
China (rural) | 2013–2014 | 25 | 12 | 7480 | 2260–20,700 | J |
China | 20 | 14 | 9200 | 2060–19,950 | K | |
Belgium | 2008 | 33 | 9 | 13,100 | 1920–94,700 | L |
Canada | 2008 | 92 | 11 | 41,400 | 2600–733,300 | M |
Turkey | 2012 | 39 | 11 | 2400 | 1100–61,900 | M |
Egypt | 2013–2014 | 17 | 11 | 14,000 | 7300–99,500 | M |
U.K. | 2013 | 10 | 10 | 79,000 | N | |
Norway | 2013–2014 | 10 | 10 | 23,000 | N | |
Nepal | 2014 | 28 | 8 | 732 | 153–12,100 | O |
Saudi Arabia | 15 | 8 | 3750 | 1000–13,800 | P | |
Japan | 2009–2010 | 10 | 9 | 97,000 | 9300–1,100,000 | Q |
Norway | 61 | 9 | 20,500 | 3662–505,000 | R |
OPE | Toddler a | Adult | |||
---|---|---|---|---|---|
RfD | Mean | High | Mean | High | |
TIPP | 0.003 | 0.044 | 0.001 | 0.031 | |
TPP | 0.009 | 0.071 | 0.003 | 0.050 | |
TNBP | 0.068 | 4.33 | 0.029 | 2.98 | |
TCEP | 2200 | 0.117 | 1.67 | 0.061 | 1.24 |
TCIPP | 8000 | 0.681 | 14.7 | 0.257 | 9.72 |
T2CPP | 0.801 | 18.5 | 0.327 | 12.3 | |
TDCIPP | 1500 | 0.526 | 16.4 | 0.379 | 12.7 |
TPHP | 7000 | 0.991 | 28.6 | 0.747 | 71.3 |
TBOEP | 1500 | 7.42 | 462 | 3.32 | 326 |
EHDPP | 0.155 | 1.21 | 0.078 | 1.01 | |
TEHP | 0.081 | 1.19 | 0.054 | 4.01 | |
TIPPP | 0.139 | 1.19 | 0.027 | 0.724 | |
ToCP | 1.15 | 1.63 | 0.246 | 2.13 | |
TmCP | 0.047 | 0.133 | 0.031 | 0.775 | |
TpCP | 0.030 | 0.133 | 0.026 | 5.17 | |
TOTAL | 12.2 | 552 | 5.58 | 451 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solanke, A.; Talalaj, L.; Graham, C.; Alegria, H. Organophosphate Flame Retardants in Indoor Dust in the Tampa Bay (Florida) Area. Toxics 2025, 13, 508. https://doi.org/10.3390/toxics13060508
Solanke A, Talalaj L, Graham C, Alegria H. Organophosphate Flame Retardants in Indoor Dust in the Tampa Bay (Florida) Area. Toxics. 2025; 13(6):508. https://doi.org/10.3390/toxics13060508
Chicago/Turabian StyleSolanke, Adebayo, Lukasz Talalaj, Claire Graham, and Henry Alegria. 2025. "Organophosphate Flame Retardants in Indoor Dust in the Tampa Bay (Florida) Area" Toxics 13, no. 6: 508. https://doi.org/10.3390/toxics13060508
APA StyleSolanke, A., Talalaj, L., Graham, C., & Alegria, H. (2025). Organophosphate Flame Retardants in Indoor Dust in the Tampa Bay (Florida) Area. Toxics, 13(6), 508. https://doi.org/10.3390/toxics13060508