Mycotoxins in Ready-to-Eat Foods: Regulatory Challenges and Modern Detection Methods
Abstract
1. Background
2. Ochratoxin A (OTA)
3. Aflatoxin (AFs)
4. Fumonisins (FUM)
5. Zearalenone (ZEN) and Deoxynivalenol (DON)
6. T-2 and HT-2 Toxins
7. Citrinin (CIT)
8. Alternaria
9. Mycotoxin Detection
10. Mycotoxins Regulations
11. Future Perspective
11.1. Mycotoxin Prevention and Control
11.2. The Application of Innovative Materials
12. Impact of Artificial Intelligence on Mycotoxin Contamination
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RTE | ready-to-eat food |
OTA | ochratoxin A |
AFs | aflatoxins |
FUM | fumonisin |
CIT | citrinin |
DON | deoxynivalenol |
ZEN | zearalenone |
LC-MS/MS | liquid chromatography–mass spectrometry |
HPLC | high-performance liquid chromatography |
FLD | fluorescence detector |
TLC | thin-layer chromatography |
RP-HPLC | reverse phase HPLC |
IAC-LC | immuno-affinity column and reversed-phase liquid chromatography |
DAD-HPLC | diode array detector-HPLC |
EFSA | European Food Safety Authority |
AI | artificial intelligence |
References
- Abdullahi, A.; Muhammad, R.G.; Mohammed, J.N.; Mohammed, A.; Muhammad, I.L. Diversity of Ochratoxin A in Ready-to-Eat Foods in Nigeria. Jewel J. Sci. Res. 2022, 7, 124–140. [Google Scholar]
- Elkenany, R.; Awad, A. Types of Mycotoxins and Different Approaches Used for Their Detection in Foodstuffs. Mansoura Vet. Med. J. 2021, 22, 25–32. [Google Scholar] [CrossRef]
- Hamad, G.M.; Mehany, T.; Simal-Gandara, J.; Abou-Alella, S.; Esua, O.J.; Abdel-Wahhab, M.A.; Hafez, E.E. A Review of Recent Innovative Strategies for Controlling Mycotoxins in Foods. Food Control 2023, 144, 109350. [Google Scholar] [CrossRef]
- Yang, J.; Li, J.; Jiang, Y.; Duan, X.; Qu, H.; Yang, B.; Chen, F.; Sivakumar, D. Natural Occurrence, Analysis, and Prevention of Mycotoxins in Fruits and Their Processed Products. Crit. Rev. Food Sci. Nutr. 2014, 54, 64–83. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in Fruits and Their Processed Products: Analysis, Occurrence and Health Implications. J. Adv. Res. 2010, 1, 113–122. [Google Scholar] [CrossRef]
- Coppock, R.W.; Christian, R.G.; Jacobsen, B.J. Aflatoxins. In Veterinary Toxicology; Elsevier: Amsterdam, The Netherlands, 2018; pp. 983–994. [Google Scholar]
- Silberbauer, A.; Schmid, M. Packaging Concepts for Ready-to-Eat Food: Recent Progress. J. Package Technol. Res. 2017, 1, 113–126. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Yang, C. Application of Ultrasound Technology in Processing of Ready-to-Eat Fresh Food: A Review. Ultrason. Sonochem. 2020, 63, 104953. [Google Scholar] [CrossRef]
- Carballo, D.; Moltó, J.C.; Berrada, H.; Ferrer, E. Presence of Mycotoxins in Ready-to-Eat Food and Subsequent Risk Assessment. Food Chem. Toxicol. 2018, 121, 558–565. [Google Scholar] [CrossRef]
- Cabañes, F.J.; Bragulat, M.R.; Castellá, G. Ochratoxin A Producing Species in the Genus Penicillium. Toxins 2010, 2, 1111–1120. [Google Scholar] [CrossRef]
- Luque, M.I.; Córdoba, J.J.; Rodríguez, A.; Núñez, F.; Andrade, M.J. Development of a PCR Protocol to Detect Ochratoxin A Producing Moulds in Food Products. Food Control 2013, 29, 270–278. [Google Scholar] [CrossRef]
- Lindermayr, H.; Knobler, R.; Kraft, D.; Baumgartner, W. Challenge of Penicillin-Allergic Volunteers with Penicillin-Contaminated Meat. Allergy 1981, 36, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Magnin, S.; Marti, A.; Brousse, M. Molecular Tools for Identification of Penicillium Starter Cultures Used in the Food Industry. Int. J. Food Microbiol. 1999, 49, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Darwish, S.M.; Yousef, N.M.; Ismail, M.A. Microbiological Quality and Elemental Analysis of Some Ready-to-Eat Meat Products. J. Food Dairy Sci. 2008, 33, 5865–5877. [Google Scholar] [CrossRef]
- Majeed, M.; Khaneghah, A.M.; Kadmi, Y.; Khan, M.U.; Shariati, M.A. Assessment of Ochratoxin A in Commercial Corn and Wheat Products. Curr. Nutr. Food Sci. 2018, 14, 116–120. [Google Scholar] [CrossRef]
- Makun, H.A.; Dutton, M.F.; Njobeh, P.B.; Mwanza, M.; Kabiru, A.Y. Natural Multi-Occurrence of Mycotoxins in Rice from Niger State, Nigeria. Mycotoxin Res. 2011, 27, 97–104. [Google Scholar] [CrossRef]
- Makinde, O.M.; Ayeni, K.I.; Sulyok, M.; Krska, R.; Adeleke, R.A.; Ezekiel, C.N. Microbiological Safety of Ready-to-eat Foods in Low- and Middle-income Countries: A Comprehensive 10-year (2009 to 2018) Review. Comp. Rev. Food Sci. Food Safe 2020, 19, 703–732. [Google Scholar] [CrossRef]
- Palermo, D.; Pietrobono, P.; Palermo, C.; Rotunno, T. Occurrence of Ochratoxin A in Cereals from Puglia (Italy). Ital. J. Food Sci. 2002, 14, 447–454. [Google Scholar]
- Imperato, R.; Campone, L.; Piccinelli, A.L.; Veneziano, A.; Rastrelli, L. Survey of Aflatoxins and Ochratoxin a Contamination in Food Products Imported in Italy. Food Control 2011, 22, 1905–1910. [Google Scholar] [CrossRef]
- Benkerroum, N. Chronic and Acute Toxicities of Aflatoxins: Mechanisms of Action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human Aflatoxicosis in Developing Countries: A Review of Toxicology, Exposure, Potential Health Consequences, and Interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Oyedele, O.A.; Kraak, B.; Ayeni, K.I.; Sulyok, M.; Houbraken, J.; Krska, R. Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria. Front. Microbiol. 2020, 11, 615. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.; et al. Risk Assessment of Aflatoxins in Food. EFS2 2020, 18, e06040. [Google Scholar] [CrossRef]
- Adekoya, I.; Obadina, A.; Phoku, J.; De Boevre, M.; De Saeger, S.; Njobeh, P. Fungal and Mycotoxin Contamination of Fermented Foods from Selected South African Markets. Food Control 2018, 90, 295–303. [Google Scholar] [CrossRef]
- dos Santos, M.R.R.; das Chagas Cardoso Filho, F.; Calvet, R.M.; Andrade, R.R.; Pires, R.M.C.; Pereira, M.M.G.; Costa, A.P.R.; Muratori, M.C.S. Aflatoxin B1 in Commercial Granolas. Afr. J. Microbiol. Res. 2015, 9, 2391–2395. [Google Scholar] [CrossRef]
- Iamanaka, B.T.; Nakano, F.; Lemes, D.P.; Ferranti, L.S.; Taniwaki, M.H. Aflatoxin Evaluation in Ready-to-Eat Brazil Nuts Using Reversed-Phase Liquid Chromatography and Post-Column Derivatisation. Food Addit. Contam. Part A 2014, 31, 917–923. [Google Scholar] [CrossRef]
- Anshida, M.; Juliet, R.M.R.; Mamatha, B.S.; Akhila, D.S.; Vittal, R. Incidence of Aflatoxin in Ready to Eat Nuts from Local Food Markets in Mangaluru, India. J. Health Allied Sci. NU 2022, 13, 103–106. [Google Scholar] [CrossRef]
- Matumba, L.; Monjerezi, M.; Biswick, T.; Mwatseteza, J.; Makumba, W.; Kamangira, D.; Mtukuso, A. A Survey of the Incidence and Level of Aflatoxin Contamination in a Range of Locally and Imported Processed Foods on Malawian Retail Market. Food Control 2014, 39, 87–91. [Google Scholar] [CrossRef]
- Adefolalu, F.S.; Apeh, D.O.; Salubuyi, S.B.; Galadima, M.; Agbo, A.; Anthony, M.; Makun, A.H. Quantitative Appraisal of Total Aflatoxin in Ready-to-Eat Groundnut in North-Central Nigeria. J. Chem. Health Risks 2021, 12. [Google Scholar] [CrossRef]
- Sombie, J.I.N.; Ezekiel, C.N.; Sulyok, M.; Ayeni, K.I.; Jonsyn-Ellis, F.; Krska, R. Survey of Roasted Street-Vended Nuts in Sierra Leone for Toxic Metabolites of Fungal Origin. Food Addit. Contam. Part A 2018, 35, 1573–1580. [Google Scholar] [CrossRef] [PubMed]
- Siruguri, V.; Kurella, S.; Bharadwaj, N. Assessment of Aflatoxin Contamination from Discoloured Kernels in Ready-To-Eat Processed Groundnut Products. Indian J. Nutr. Diet. 2018, 55, 397. [Google Scholar] [CrossRef]
- Mupunga, I.; Lebelo, S.L.; Mngqawa, P.; Rheeder, J.P.; Katerere, D.R. Natural Occurrence of Aflatoxins in Peanuts and Peanut Butter from Bulawayo, Zimbabwe. J. Food Prot. 2014, 77, 1814–1818. [Google Scholar] [CrossRef] [PubMed]
- Elzupir, A.O.; Salih, A.O.A.; Suliman, S.A.; Adam, A.A.; Elhussein, A.M. Aflatoxins in Peanut Butter in Khartoum State, Sudan. Mycotoxin Res. 2011, 27, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.; Sultana, B.; Anwar, F.; Khan, M.Z.; Ashrafuzzaman, M. Occurrence of Aflatoxins in Selected Processed Foods from Pakistan. Int. J. Mol. Sci. 2012, 13, 8324–8337. [Google Scholar] [CrossRef] [PubMed]
- Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, Mechanism of Action and Toxicity. Anim. Feed Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
- Dutton, M.F. Fumonisins, Mycotoxins of Increasing Importance: Their Nature and Their Effects. Pharmacol. Ther. 1996, 70, 137–161. [Google Scholar] [CrossRef]
- Stockmann-Juvala, H.; Savolainen, K. A Review of the Toxic Effects and Mechanisms of Action of Fumonisin B1. Hum. Exp. Toxicol. 2008, 27, 799–809. [Google Scholar] [CrossRef]
- Turner, P.C.; Nikiema, P.; Wild, C.P. Fumonisin Contamination of Food: Progress in Development of Biomarkers to Better Assess Human Health Risks. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 1999, 443, 81–93. [Google Scholar] [CrossRef]
- Castells, M.; Marín, S.; Sanchis, V.; Ramos, A.J. Distribution of Fumonisins and Aflatoxins in Corn Fractions during Industrial Cornflake Processing. Int. J. Food Microbiol. 2008, 123, 81–87. [Google Scholar] [CrossRef]
- Sbardelotto Di Domenico, A.; Christ, D.; Hashimoto, E.H.; Busso, C.; Coelho, S.R.M. Evaluation of Quality Attributes and the Incidence of Fusarium sp. and Aspergillus sp. in Different Types of Maize Storage. J. Stored Prod. Res. 2015, 61, 59–64. [Google Scholar] [CrossRef]
- Ezekiel, C.N.; Sulyok, M.; Ogara, I.M.; Abia, W.A.; Warth, B.; Šarkanj, B.; Turner, P.C.; Krska, R. Mycotoxins in Uncooked and Plate-Ready Household Food from Rural Northern Nigeria. Food Chem. Toxicol. 2019, 128, 171–179. [Google Scholar] [CrossRef]
- Caldas, E.D.; Silva, A.C.S. Mycotoxins in Corn-Based Food Products Consumed in Brazil: An Exposure Assessment for Fumonisins. J. Agric. Food Chem. 2007, 55, 7974–7980. [Google Scholar] [CrossRef]
- Alexander, J.; Dall’Asta, C.; Gutleb, A.C.; Metzler, M.; Oswald, I.P.; Massin, D.P.; Steinkellner, H. EFSA’s Integrated Approach to Set a Tolerable Daily Intake for Zearalenone and Its Modified Forms. In Proceedings of the 52nd Congress of the European-Societies-of-Toxicology (EUROTOX), Seville, Spain, 4–7 September 2016; Elsevier Ireland Ltd.: Dublin, Ireland, 2016; Volume 258, p. 2. [Google Scholar]
- Ryu, D.; Jackson, L.S.; Bullerman, L.B. Effects of Processing on Zearalenone. In Mycotoxins and Food Safety; DeVries, J.W., Trucksess, M.W., Jackson, L.S., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2002; Volume 504, pp. 205–216. ISBN 978-1-4613-5166-5. [Google Scholar]
- Pazaiti, A.; Kontos, M.; Fentiman, I.S. ZEN and the Art of Breast Health Maintenance. Int. J. Clin. Pract. 2012, 66, 28–36. [Google Scholar] [CrossRef]
- Pestka, J.J. Deoxynivalenol: Toxicity, Mechanisms and Animal Health Risks. Anim. Feed Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- González-Osnaya, L.; Cortés, C.; Soriano, J.M.; Moltó, J.C.; Mañes, J. Occurrence of Deoxynivalenol and T-2 Toxin in Bread and Pasta Commercialised in Spain. Food Chem. 2011, 124, 156–161. [Google Scholar] [CrossRef]
- Gab-Allah, M.A.; Choi, K.; Kim, B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins 2023, 15, 85. [Google Scholar] [CrossRef]
- Palermo, N. Regolamento (UE) 2024/1022 della Commissione dell’8 Aprile 2024 che Modifica il Regolamento (UE) 2023/915 per Quanto Riguarda i Tenori Massimi di Deossinivalenolo Negli Alimenti. Available online: https://www.eurokomonline.eu/index.php/novita-legislative/41547-regolamento-ue-2024-1022-della-commissione-dell8-aprile-2024-che-modifica-il-regolamento-ue-2023-915-per-quanto-riguarda-i-tenori-massimi-di-deossinivalenolo-negli-alimenti (accessed on 5 June 2025).
- Binder, E.M.; Tan, L.M.; Chin, L.J.; Handl, J.; Richard, J. Worldwide Occurrence of Mycotoxins in Commodities, Feeds and Feed Ingredients. Anim. Feed Sci. Technol. 2007, 137, 265–282. [Google Scholar] [CrossRef]
- Li, D.; Zhao, L.; Ji, J.; Liu, N.; Qin, Z. Contamination Status of Deoxynivalenol and Zearalenone in Cereal Products in Parts of Jinan City. J. Food Saf. Quality 2019, 10, 8081–8086. [Google Scholar]
- Narváez, A.; Rodríguez-Carrasco, Y.; Castaldo, L.; Izzo, L.; Graziani, G.; Ritieni, A. Occurrence and Exposure Assessment of Mycotoxins in Ready-to-Eat Tree Nut Products through Ultra-High Performance Liquid Chromatography Coupled with High Resolution Q-Orbitrap Mass Spectrometry. Metabolites 2020, 10, 344. [Google Scholar] [CrossRef]
- Wang, Y.; Nie, J.; Yan, Z.; Li, Z.; Cheng, Y.; Chang, W. Occurrence and Co-Occurrence of Mycotoxins in Nuts and Dried Fruits from China. Food Control 2018, 88, 181–189. [Google Scholar] [CrossRef]
- Abecassis, J.; Feillet, P. Basis of Knowledge on Deoxynivalenol Distribution in Durum Wheat, Semolina and Pasta Products. In Proceedings of the Second International Workshop on Durum Wheat and Pasta Quality: Recent Achievements and New Trends; MiPAF Cereals Experimental Institute: Rome, Italy, 2003; pp. 135–139. [Google Scholar]
- Dexter, J.E.; Marchylo, B.A.; Clear, R.M.; Clarke, J.M. Effect of Fusarium Head Blight on Semolina Milling and Pasta-Making Quality of Durum Wheat. Cereal Chem. 1997, 74, 519–525. [Google Scholar] [CrossRef]
- Visconti, A.; Haidukowski, E.M.; Pascale, M.; Silvestri, M. Reduction of Deoxynivalenol during Durum Wheat Processing and Spaghetti Cooking. Toxicol. Lett. 2004, 153, 181–189. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.P.; Stanley, A.M.; Stover, N.A.; Alexander, N.J. Trichothecenes: From Simple to Complex Mycotoxins. Toxins 2011, 3, 802–814. [Google Scholar] [CrossRef] [PubMed]
- Meneely, J.; Greer, B.; Kolawole, O.; Elliott, C. T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review. Toxins 2023, 15, 481. [Google Scholar] [CrossRef] [PubMed]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 Toxin—The Most Toxic Trichothecene Mycotoxin: Metabolism, Toxicity, and Decontamination Strategies. Molecules 2021, 26, 6868. [Google Scholar] [CrossRef]
- EUR-Lex-32013H0165-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reco/2013/165/oj/eng (accessed on 26 May 2025).
- Ok, H.E.; Kang, Y.-W.; Kim, M.; Chun, H.S. T-2 and HT-2 Toxins in Cereals and Cereal-Based Products in South Korea. Food Addit. Contam. Part B 2013, 6, 103–109. [Google Scholar] [CrossRef]
- Pettersson, H.; Brown, C.; Hauk, J.; Hoth, S.; Meyer, J.; Wessels, D. Survey of T-2 and HT-2 Toxins by LC–MS/MS in Oats and Oat Products from European Oat Mills in 2005–2009. Food Addit. Contam. Part B 2011, 4, 110–115. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.W.G.; Islam, M.T.; Ali, E.S.; Uddin, S.J.; Santos, J.V.d.O.; de Alencar, M.V.O.B.; Júnior, A.L.G.; Paz, M.F.C.J.; de Brito, M.D.R.M.; de Castro E Sousa, J.M.; et al. A Comprehensive Review on Biological Properties of Citrinin. Food Chem. Toxicol. 2017, 110, 130–141. [Google Scholar] [CrossRef]
- Zhang, H.; Ahima, J.; Yang, Q.; Zhao, L.; Zhang, X.; Zheng, X. A Review on Citrinin: Its Occurrence, Risk Implications, Analytical Techniques, Biosynthesis, Physiochemical Properties and Control. Food Res. Int. 2021, 141, 110075. [Google Scholar] [CrossRef]
- Wang, T.; Lin, T. Monascus Rice Products. In Advances in Food and Nutrition Research; Academic Press: Cambridge, MA, USA, 2007; Volume 53, pp. 123–159. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risks for Public and Animal Health Related to the Presence of Citrinin in Food and Feed. EFSA J. 2012, 10, 2605. [Google Scholar] [CrossRef]
- Somorin, Y.; Akinyemi, A.; Bertuzzi, T.; Pietri, A. Co-Occurrence of Aflatoxins, Ochratoxin A and Citrinin in “Egusi” Melon (Colocynthis citrullus L.) Seeds Consumed in Ireland and the United Kingdom. Food Addit. Contam. Part B 2016, 9, 230–235. [Google Scholar] [CrossRef]
- Makinde, O.M.; Sulyok, M.; Adeleke, R.A.; Krska, R.; Ezekiel, C.N. Bacteriological Quality and Biotoxin Profile of Ready-to-Eat Foods Vended in Lagos, Nigeria. Foods 2023, 12, 1224. [Google Scholar] [CrossRef] [PubMed]
- Aiko, V.; Mehta, A. Inhibitory Effect of Clove (Yzygium aromaticum) on the Growth of Enicillium citrinum and Citrinin Production. J. Food Saf. 2013, 33, 440–444. [Google Scholar] [CrossRef]
- Ostry, V. Alternaria Mycotoxins: An Overview of Chemical Characterization, Producers, Toxicity, Analysis and Occurrence in Foodstuffs. World Mycotoxin J. 2008, 1, 175–188. [Google Scholar] [CrossRef]
- Escrivá, L.; Oueslati, S.; Font, G.; Manyes, L. Alternaria Mycotoxins in Food and Feed: An Overview. J. Food Qual. 2017, 2017, 1569748. [Google Scholar] [CrossRef]
- Lou, J.; Fu, L.; Peng, Y.; Zhou, L. Metabolites from Alternaria Fungi and Their Bioactivities. Molecules 2013, 18, 5891–5935. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, Y.; Jin, C.; Wang, W.; Lyu, W.; Tang, B.; Yang, H. Alternaria Mycotoxins in Food Commodities Marketed through e-Commerce Stores in China: Occurrence and Risk Assessment. Food Control 2022, 140, 109125. [Google Scholar] [CrossRef]
- Velez-Haro, J.M.; Pérez-Rodríguez, F.; Velázquez-Márquez, S.; Ramírez Medina, H.; Velázquez-Márquez, N. Mycology in Oncology: Exploring the Role of the Mycobiome in Human Cancer, Etiology, Progression, Epidemiology, Mycoses, and Mycotoxins. In Pathogens Associated with the Development of Cancer in Humans: OMICs, Immunological, and Pathophysiological Studies; Velázquez-Márquez, N., Paredes-Juárez, G.A., Vallejo-Ruiz, V., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 303–348. ISBN 978-3-031-62558-9. [Google Scholar]
- Yekeler, H.; Bitmiş, K.; Ozçelik, N.; Doymaz, M.Z.; Çalta, M. Analysis of Toxic Effects of Alternaria Toxins on Esophagus of Mice by Light and Electron Microscopy. Toxicol Pathol 2001, 29, 492–497. [Google Scholar] [CrossRef]
- EUR-Lex-32022H0553-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reco/2022/553/oj/eng (accessed on 26 May 2025).
- Rychlik, M.; Lepper, H.; Weidner, C.; Asam, S. Risk Evaluation of the Alternaria Mycotoxin Tenuazonic Acid in Foods for Adults and Infants and Subsequent Risk Management. Food Control 2016, 68, 181–185. [Google Scholar] [CrossRef]
- Gonçalves, C.; Tölgyesi, Á.; Bouten, K.; Cordeiro, F.; Stroka, J. Determination of Alternaria Toxins in Food by SPE and LC-IDMS: Development and in-House Validation of a Candidate Method for Standardisation. Separations 2022, 9, 70. [Google Scholar] [CrossRef]
- Gonçalves, C.; Tölgyesi, Á.; Bouten, K.; Robouch, P.; Emons, H.; Stroka, J. Determination of Alternaria Toxins in Tomato, Wheat, and Sunflower Seeds by SPE and LC-MS/MS—A Method Validation Through a Collaborative Trial. J. AOAC Int. 2022, 105, 80–94. [Google Scholar] [CrossRef]
- Scott, P.M.; Zhao, W.; Feng, S.; Lau, B.P.-Y. Alternaria Toxins Alternariol and Alternariol Monomethyl Ether in Grain Foods in Canada. Mycotoxin Res. 2012, 28, 261–266. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria Toxins in Food Products in The Netherlands. Food Control 2016, 60, 196–204. [Google Scholar] [CrossRef]
- Mujahid, C.; Savoy, M.-C.; Baslé, Q.; Woo, P.M.; Ee, E.C.Y.; Mottier, P.; Bessaire, T. Levels of Alternaria Toxins in Selected Food Commodities Including Green Coffee. Toxins 2020, 12, 595. [Google Scholar] [CrossRef]
- Setyabudi, F.M.C.S.; Nuryono, N.; Wedhastri, S.; Mayer, H.K.; Razzazi-Fazeli, E. Limited Survey of Deoxynivalenol Occurrence in Maize Kernels and Maize-Products Collected from Indonesian Retail Market. Food Control 2012, 24, 123–127. [Google Scholar] [CrossRef]
- Adjou, E.S.; Yehouenou, B.; Sossou, C.M.; Soumanou, M.M.; Souza, C.A. de Occurrence of Mycotoxins and Associated Mycoflora in Peanut Cake Product (Kulikuli) Marketed in Benin. Afr. J. Biotechnol. 2012, 11, 14354–14360. [Google Scholar] [CrossRef]
- Ezekiel, C.; Kayode, F.O.; Fapohunda, S.O.; Olorunfemi, M.F.; Kponi, B.T. Aflatoxigenic Moulds and Aflatoxins in Street-Vended Snacks in Lagos, Nigeria. Internet J. Food Saf. 2012, 14, 88–92. [Google Scholar]
- Ezekiel, C.N.; Sulyok, M.; Babalola, D.A.; Warth, B.; Ezekiel, V.C.; Krska, R. Incidence and Consumer Awareness of Toxigenic Aspergillus Section Flavi and Aflatoxin B1 in Peanut Cake from Nigeria. Food Control 2013, 30, 596–601. [Google Scholar] [CrossRef]
- Nyirahakizimana, H.; Mwamburi, L.; Wakhisi, J.; Mutegi, C.; Christie, M.E.; Wagacha, M. Occurrence of Aspergillus Species and Aflatoxin Contamination in Raw and Roasted Peanuts from Formal and Informal Markets in Eldoret and Kericho Towns, Kenya. Adv. Microbiol. 2013, 3, 333–342. [Google Scholar] [CrossRef]
- Adetunji, M.; Atanda, O.; Ezekiel, C.N.; Sulyok, M.; Warth, B.; Beltrán, E.; Krska, R.; Obadina, O.; Bakare, A.; Chilaka, C.A. Fungal and Bacterial Metabolites of Stored Maize (Zea mays L.) from Five Agro-Ecological Zones of Nigeria. Mycotoxin Res. 2014, 30, 89–102. [Google Scholar] [CrossRef]
- Da, O.; Adebayo-Tayo, B. Mycoflora and Aflatoxin Contamination of Kokoro—A Nigerian Maiza Snack. Asia J. Appl. Microbiol. 2014, 1, 1–5. [Google Scholar]
- Atter, A.; Ofori, H.; Anyebuno, G.A.; Amoo-Gyasi, M.; Amoa-Awua, W.K. Safety of a Street Vended Traditional Maize Beverage, Ice-Kenkey, in Ghana. Food Control 2015, 55, 200–205. [Google Scholar] [CrossRef]
- Afolabi, C.G.; Ezekiel, C.N.; Kehinde, I.A.; Olaolu, A.W.; Ogunsanya, O.M. Contamination of Groundnut in South-Western Nigeria by Aflatoxigenic Fungi and Aflatoxins in Relation to Processing. J. Phytopathol. 2015, 163, 279–286. [Google Scholar] [CrossRef]
- Azaiez, I.; Font, G.; Mañes, J.; Fernández-Franzón, M. Survey of Mycotoxins in Dates and Dried Fruits from Tunisian and Spanish Markets. Food Control 2015, 51, 340–346. [Google Scholar] [CrossRef]
- Jonathan, S.G.; Okoawo, E.E.; Asemoloye, M.D. Fungi and Aflatoxin Contamination of Sausage Rolls in Ibadan Nigeria. Int. J. Sci. Res. Knowl. 2016, 4, 99–104. [Google Scholar] [CrossRef]
- Abia, W.A.; Warth, B.; Ezekiel, C.N.; Sarkanj, B.; Turner, P.C.; Marko, D.; Krska, R.; Sulyok, M. Uncommon Toxic Microbial Metabolite Patterns in Traditionally Home-Processed Maize Dish (Fufu) Consumed in Rural Cameroon. Food Chem. Toxicol. 2017, 107, 10–19. [Google Scholar] [CrossRef]
- Chilaka, C.A.; De Boevre, M.; Atanda, O.O.; De Saeger, S. Prevalence of Fusarium Mycotoxins in Cassava and Yam Products from Some Selected Nigerian Markets. Food Control 2018, 84, 226–231. [Google Scholar] [CrossRef]
- Anoman, A.T.; Koffi, K.M.; Aboua, K.N.; Koussemon, M. Determination of ETM, Histamine and Mycotoxins in Garba, a Traditional Ivoirian Meal. Am. J. Anal. Chem. 2018, 9, 245–256. [Google Scholar] [CrossRef]
- Adetunji, M.C.; Alika, O.P.; Awa, N.P.; Atanda, O.O.; Mwanza, M. Microbiological Quality and Risk Assessment for Aflatoxins in Groundnuts and Roasted Cashew Nuts Meant for Human Consumption. J. Toxicol. 2018, 2018, 1308748. [Google Scholar] [CrossRef]
- de Sá, S.V.M.; Fernandes, J.O.; Faria, M.A.; Cunha, S.C. Assessment of Mycotoxins in Infants and Children Cereal-Based Foods: Dietary Exposure and Potential Health Risks. Expo Health 2024, 17, 425–444. [Google Scholar] [CrossRef]
- Łozowicka, B.; Kaczyński, P.; Iwaniuk, P.; Rutkowska, E.; Socha, K.; Orywal, K.; Farhan, J.A.; Perkowski, M. Nutritional Compounds and Risk Assessment of Mycotoxins in Ecological and Conventional Nuts. Food Chem. 2024, 458, 140222. [Google Scholar] [CrossRef]
- Bashir, H.A.; Emam, A.M.; Abd Elghaffar, R.Y.; Amer, M.M.; Sehim, A.E. Occurrences and Frequency of Fungi Isolated from Fast Foods and Spices. J. Basic Environ. Sci. 2024, 11, 41–50. [Google Scholar] [CrossRef]
- Adewunmi, O.O.; Adetunji, M.C.; Fagbemi, O.T.; Aransiola, M.N.; Odunlade, A.K.; Fowora, M.A.; Omoyajowo, A.O. A Survey of Fungal Contamination and Their Metabolites in Street-Vended Tiger Nuts and Dates in Lagos State, Nigeria Using LCMS/MS Analysis. Covenant J. Health Life Sci. 2024, 2, 1–12. [Google Scholar]
- Marschik, S.; Hepperle, J.; Lauber, U.; Schnaufer, R.; Maier, S.; Kühn, C.; Schwab-Bohnert, G. Extracting Fumonisins from Maize: Efficiency of Different Extraction Solvents in Multi-Mycotoxin Analytics. Mycotoxin Res. 2013, 29, 119–129. [Google Scholar] [CrossRef]
- Zhang, L.; Dou, X.-W.; Zhang, C.; Logrieco, A.F.; Yang, M.-H. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 2018, 10, 65. [Google Scholar] [CrossRef]
- Diana Di Mavungu, J.; Monbaliu, S.; Scippo, M.-L.; Maghuin-Rogister, G.; Schneider, Y.-J.; Larondelle, Y.; Callebaut, A.; Robbens, J.; Van Peteghem, C.; De Saeger, S. LC-MS/MS Multi-Analyte Method for Mycotoxin Determination in Food Supplements. Food Addit. Contam. Part A 2009, 26, 885–895. [Google Scholar] [CrossRef] [PubMed]
- Somsubsin, S.; Seebunrueng, K.; Boonchiangma, S.; Srijaranai, S. A Simple Solvent Based Microextraction for High Performance Liquid Chromatographic Analysis of Aflatoxins in Rice Samples. Talanta 2018, 176, 172–177. [Google Scholar] [CrossRef]
- Delmulle, B.; De Saeger, S.; Adams, A.; De Kimpe, N.; Van Peteghem, C. Development of a Liquid Chromatography/Tandem Mass Spectrometry Method for the Simultaneous Determination of 16 Mycotoxins on Cellulose Filters and in Fungal Cultures. Rapid Commun. Mass Spectrom. 2006, 20, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Razzazi-Fazeli, E.; Reiter, E.V. 2—Sample Preparation and Clean up in Mycotoxin Analysis: Principles, Applications and Recent Developments. In Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed; De Saeger, S., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2011; pp. 37–70. ISBN 978-1-84569-674-0. [Google Scholar]
- Alshannaq, A.; Yu, J.-H. Occurrence, Toxicity, and Analysis of Major Mycotoxins in Food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef]
- He, T.; Zhou, T.; Wan, Y.; Tan, T. A Simple Strategy Based on Deep Eutectic Solvent for Determination of Aflatoxins in Rice Samples. Food Anal. Methods 2020, 13, 542–550. [Google Scholar] [CrossRef]
- Singh, K.N.; Patil, S.; Barkate, H. Protective Effects of Astaxanthin on Skin: Recent Scientific Evidence, Possible Mechanisms, and Potential Indications. J. Cosmet. Dermatol. 2020, 19, 22–27. [Google Scholar] [CrossRef]
- Azaiez, I.; Giusti, F.; Sagratini, G.; Mañes, J.; Fernández-Franzón, M. Multi-Mycotoxins Analysis in Dried Fruit by LC/MS/MS and a Modified QuEChERS Procedure. Food Anal. Methods 2014, 7, 935–945. [Google Scholar] [CrossRef]
- Xing, Y.; Meng, W.; Sun, W.; Li, D.; Yu, Z.; Tong, L.; Zhao, Y. Simultaneous Qualitative and Quantitative Analysis of 21 Mycotoxins in Radix Paeoniae Alba by Ultra-High Performance Liquid Chromatography Quadrupole Linear Ion Trap Mass Spectrometry and QuEChERS for Sample Preparation. J. Chromatogr. B 2016, 1031, 202–213. [Google Scholar] [CrossRef]
- Hagan, A.K.; Zuchner, T. Lanthanide-Based Time-Resolved Luminescence Immunoassays. Anal. Bioanal. Chem. 2011, 400, 2847–2864. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, H.; Zhang, H.; He, G.; Li, X.; Zhang, X.; Liu, Y.; Li, C.M. Sensitive Detection of Multiple Mycotoxins by SPRi with Gold Nanoparticles as Signal Amplification Tags. J. Colloid Interface Sci. 2014, 431, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-J.; Yang, Y.; Kong, W.-J.; Yang, S.-H.; Yang, M.-H. Application of Nanoparticle Probe-Based Lateral Flow Immunochromatographic Assay in Mycotoxins Detection. Chin. J. Anal. Chem. 2015, 43, 618–628. [Google Scholar] [CrossRef]
- Angioni, A.; Russo, M.; La Rocca, C.; Pinto, O.; Mantovani, A. Modified Mycotoxins, a Still Unresolved Issue. Chemistry 2022, 4, 1498–1514. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Foglia, P.; Samperi, R.; Laganà, A. Multiclass Mycotoxin Analysis in Food, Environmental and Biological Matrices with Chromatography/Mass Spectrometry. Mass Spectrom. Rev. 2012, 31, 466–503. [Google Scholar] [CrossRef]
- Anfossi, L.; Giovannoli, C.; Baggiani, C. Mycotoxin Detection. Curr. Opin. Biotechnol. 2016, 37, 120–126. [Google Scholar] [CrossRef]
- Chilaka, C.A.; Obidiegwu, J.E.; Chilaka, A.C.; Atanda, O.O.; Mally, A. Mycotoxin Regulatory Status in Africa: A Decade of Weak Institutional Efforts. Toxins 2022, 14, 442. [Google Scholar] [CrossRef]
- Cheli, F.; Battaglia, D.; Gallo, R.; Dell’Orto, V. EU Legislation on Cereal Safety: An Update with a Focus on Mycotoxins. Food Control 2014, 37, 315–325. [Google Scholar] [CrossRef]
- Authority, E.F.S. The 2011 European Union Report on Pesticide Residues in Food. EFSA J. 2014, 12, 3694. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); Arcella, D.; Gergelova, P.; Innocenti, M.L.; Steinkellner, H. Human and Animal Dietary Exposure to T-2 and HT-2 Toxin. EFSA J. 2017, 15, e04972. [Google Scholar] [CrossRef]
- Regulation-2023/915-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj/eng (accessed on 28 April 2025).
- Regulation—EU—2024/1038—EN—EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2024/1038/oj/eng (accessed on 5 June 2025).
- Tittlemier, S.A.; Blagden, R.; Chan, J.; Roscoe, M.; Pleskach, K. A Multi-Year Survey of Mycotoxins and Ergosterol in Canadian Oats. Mycotoxin Res. 2020, 36, 103–114. [Google Scholar] [CrossRef]
- Program, H.F. Mycotoxins; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Program, H.F. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-fumonisin-levels-human-foods-and-animal-feeds (accessed on 26 May 2025).
- Wu, F. Mycotoxin Risk Assessment for the Purpose of Setting International Regulatory Standards. Environ. Sci. Technol. 2004, 38, 4049–4055. [Google Scholar] [CrossRef]
- Wagacha, J.M.; Muthomi, J.W. Mycotoxin Problem in Africa: Current Status, Implications to Food Safety and Health and Possible Management Strategies. Int. J. Food Microbiol. 2008, 124, 1–12. [Google Scholar] [CrossRef]
- Pandey, A.K.; Samota, M.K.; Kumar, A.; Silva, A.S.; Dubey, N.K. Fungal Mycotoxins in Food Commodities: Present Status and Future Concerns. Front. Sustain. Food Syst. 2023, 7, 1162595. [Google Scholar] [CrossRef]
- Shephard, G.S. Impact of Mycotoxins on Human Health in Developing Countries. Food Addit. Contam. Part A 2008, 25, 146–151. [Google Scholar] [CrossRef]
- Zhang, K.; Flannery, B.; Zhang, L. Challenges and Future State for Mycotoxin Analysis: A Review From a Regulatory Perspective. J. Agric. Food Chem. 2024, 72, 8380–8388. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, A.; Mahato, D.K.; Pandhi, S.; Pandey, A.K.; Kargwal, R.; Mishra, S.; Suhag, R.; Sharma, N.; Saurabh, V. Aflatoxins in Cereals and Cereal-Based Products: Occurrence, Toxicity, Impact on Human Health, and Their Detoxification and Management Strategies. Toxins 2022, 14, 687. [Google Scholar] [CrossRef] [PubMed]
- Milićević, D.; Udovicki, B.; Petrović, Z.; Janković, S.; Radulović, S.; Gurinovic, M.; Rajkovic, A. Current Status of Mycotoxin Contamination of Food and Feeds and Associated Public Health Risk in Serbia. Meat Technol. 2020, 61, 1–36. [Google Scholar] [CrossRef]
- Mannaa, M.; Kim, K.D. Influence of Temperature and Water Activity on Deleterious Fungi and Mycotoxin Production during Grain Storage. Mycobiology 2017, 45, 240–254. [Google Scholar] [CrossRef]
- Gbashi, S.; Madala, N.E.; De Saeger, S.; De Boevre, M.; Njobeh, P.B. Numerical Optimization of Temperature-Time Degradation of Multiple Mycotoxins. Food Chem. Toxicol. 2019, 125, 289–304. [Google Scholar] [CrossRef]
- Munkvold, G. Crop Management Practices to Minimize the Risk of Mycotoxins Contamination in Temperate-Zone Maize. In Mycotoxin Reduction in Grain Chains; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 59–77. ISBN 978-1-118-83279-0. [Google Scholar]
- Peng, W.-X.; Marchal, J.L.M.; van der Poel, A.F.B. Strategies to Prevent and Reduce Mycotoxins for Compound Feed Manufacturing. Anim. Feed Sci. Technol. 2018, 237, 129–153. [Google Scholar] [CrossRef]
- Magan, N.; Aldred, D. Post-Harvest Control Strategies: Minimizing Mycotoxins in the Food Chain. Int. J. Food Microbiol. 2007, 119, 131–139. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Britzi, M.; Zakin, V.; Kostyukovsky, M.; Trostanetsky, A.; Quinn, E.; Sionov, E. Rapid Detection and Identification of Mycotoxigenic Fungi and Mycotoxins in Stored Wheat Grain. Toxins 2017, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.R.; Wohlgemuth, F.; Young, T.; Violet, J.; Dickinson, M.; Sanders, J.-W.; Vallieres, C.; Avery, S.V. Evolving Challenges and Strategies for Fungal Control in the Food Supply Chain. Fungal Biol. Rev. 2021, 36, 15–26. [Google Scholar] [CrossRef]
- Villanueva, C.M.; Cordier, S.; Font-Ribera, L.; Salas, L.A.; Levallois, P. Overview of Disinfection By-Products and Associated Health Effects. Curr. Environ. Health Rep. 2015, 2, 107–115. [Google Scholar] [CrossRef]
- Mahajan, P.V.; Caleb, O.J.; Singh, Z.; Watkins, C.B.; Geyer, M. Postharvest Treatments of Fresh Produce. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130309. [Google Scholar] [CrossRef]
- Marroquín-Cardona, A.G.; Johnson, N.M.; Phillips, T.D.; Hayes, A.W. Mycotoxins in a changing global environment—A review. Food Chem. Toxicol. 2014, 69, 220–230. [Google Scholar] [CrossRef]
- Bullerman, L.B.; Lieu, F.Y.; Seier, S.A. Inhibition of Growth and Aflatoxin Production by Cinnamon and Clove Oils. Cinnamic Aldehyde and Eugenol. J. Food Sci. 1977, 42, 1107–1109. [Google Scholar] [CrossRef]
- Perczak, A.; Gwiazdowska, D.; Gwiazdowski, R.; Juś, K.; Marchwińska, K.; Waśkiewicz, A. The Inhibitory Potential of Selected Essential Oils on Fusarium Spp. Growth and Mycotoxins Biosynthesis in Maize Seeds. Pathogens 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Chen, B.; Rao, J. Natural Compounds of Plant Origin in the Control of Fungi and Mycotoxins in Foods. Curr. Opin. Food Sci. 2023, 52, 101054. [Google Scholar] [CrossRef]
- Agriopoulou, S.; Stamatelopoulou, E.; Varzakas, T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020, 9, 137. [Google Scholar] [CrossRef]
- Guilford, F.T.; Hope, J. Deficient Glutathione in the Pathophysiology of Mycotoxin-Related Illness. Toxins 2014, 6, 608–623. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Giamouri, E.; Tavrizelou, S.; Zacharioudaki, M.; Danezis, G.; Simitzis, P.E.; Zoidis, E.; Tsiplakou, E.; Pappas, A.C.; Georgiou, C.A. Impact of Mycotoxins on Animals’ Oxidative Status. Antioxidants 2021, 10, 214. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Havenaar, R.; Visconti, A. Assessment of the Multi-Mycotoxin-Binding Efficacy of a Carbon/Aluminosilicate-Based Product in an in Vitro Gastrointestinal Model. J. Agric. Food Chem. 2007, 55, 4810–4819. [Google Scholar] [CrossRef]
- Kolosova, A.; Stroka, J. Substances for Reduction of the Contamination of Feed by Mycotoxins: A Review. World Mycotoxin J. 2011, 4, 225–256. [Google Scholar] [CrossRef]
- Spina, R.; Ropars, A.; Bouazzi, S.; Dadi, S.; Lemiere, P.; Dupire, F.; Khiralla, A.; Yagi, S.; Frippiat, J.-P.; Laurain-Mattar, D. Screening of Anti-Inflammatory Activity and Metabolomics Analysis of Endophytic Fungal Extracts; Identification and Characterization of Perylenequinones and Terpenoids from the Interesting Active Alternaria Endophyte. Molecules 2023, 28, 6531. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Tabassum, N.; Aggarwal, A.; Kim, Y.-M.; Khan, F. Artificial Intelligence-Driven Analysis of Antimicrobial-Resistant and Biofilm-Forming Pathogens on Biotic and Abiotic Surfaces. Antibiotics 2024, 13, 788. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, G.; Hussain, W.; Pan, Y.; Yang, Z.; Liu, Y.; Li, E. Machine Learning and Network Analysis with Focus on the Biofilm in Staphylococcus aureus. Comput. Struct. Biotechnol. J. 2024, 23, 4148–4160. [Google Scholar] [CrossRef]
- Amin, H.U.; Malik, A.S.; Ahmad, R.F.; Badruddin, N.; Kamel, N.; Hussain, M.; Chooi, W.-T. Feature Extraction and Classification for EEG Signals Using Wavelet Transform and Machine Learning Techniques. Australas. Phys. Eng. Sci. Med. 2015, 38, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, R.; Wu, Y.; Tang, L.; Wang, C.; Qiu, M.; Zheng, L.; Li, P.; Weng, S. Dynamic Surface-Enhanced Raman Spectroscopy and Positively Charged Probes for Rapid Detection and Accurate Identification of Fungal Spores in Infected Apples via Deep Learning Methods. Food Control 2024, 157, 110151. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Makino, Y. Assessment of Food Safety Risk Using Machine Learning-Assisted Hyperspectral Imaging: Classification of Fungal Contamination Levels in Rice Grain. Microb. Risk Anal. 2024, 27–28, 100295. [Google Scholar] [CrossRef]
- Mateo, F.; Mateo, E.M.; Tarazona, A.; García-Esparza, M.Á.; Soria, J.M.; Jiménez, M. New Strategies and Artificial Intelligence Methods for the Mitigation of Toxigenic Fungi and Mycotoxins in Foods. Toxins 2025, 17, 231. [Google Scholar] [CrossRef]
- Aggarwal, A.; Mishra, A.; Tabassum, N.; Kim, Y.-M.; Khan, F. Detection of Mycotoxin Contamination in Foods Using Artificial Intelligence: A Review. Foods 2024, 13, 3339. [Google Scholar] [CrossRef] [PubMed]
- Camardo Leggieri, M.; Mazzoni, M.; Battilani, P. Machine Learning for Predicting Mycotoxin Occurrence in Maize. Front. Microbiol. 2021, 12, 661132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, H.; Song, G.; Huang, K.; Luo, Y.; Liu, Q.; He, X.; Cheng, N. Intelligent Biosensing Strategies for Rapid Detection in Food Safety: A Review. Biosens. Bioelectron. 2022, 202, 114003. [Google Scholar] [CrossRef]
- Sun, K.; Wang, Z.; Tu, K.; Wang, S.; Pan, L. Recognition of Mould Colony on Unhulled Paddy Based on Computer Vision Using Conventional Machine-Learning and Deep Learning Techniques. Sci. Rep. 2016, 6, 37994. [Google Scholar] [CrossRef]
Country of Origin of Sample | Type of Food | Mycotoxin | Target Analyte Concentration (Mean-μg/kg) | Methodology | Reference |
---|---|---|---|---|---|
Sudan | Peanut butter | AFs | 287 ± 200.5 | HPLC | [33] |
Nigeria | Rice | OTA | 134–341 | HPLC | [16] |
Spain | Bread | DON | 12.2 | GC-MS | [47] |
Italy | Hazelnut | AFB1 | 91.7 ± 5.2 | HPLC-FLD and HPLC-MS | [19] |
AFB2 | 74.7 ± 6.7 | ||||
AFG1 | 89.7 ± 1.7 | ||||
AFG2 | 60.0 ± 8.8 | ||||
AFBs | 86.0 ± 4.1 | ||||
Wheat flour | AFB1 | 94.0 ± 2.4 | |||
AFB2 | 78.0 ± 9.2 | ||||
AFG1 | 91.0 ± 3.6 | ||||
AFG2 | 91.0 ± 3.6 | ||||
AFBs | 89.4 ± 3.3 | ||||
Dried figs | AFB1 | 98.2 ± 6.4 | |||
AFB2 | 76.0 ± 5.3 | ||||
AFG1 | 90.8 ± 3.9 | ||||
AFG2 | 53.3 ± 5.7 | ||||
AFBs | 88.5 ± 5.2 | ||||
Coffee | OTA | 88.7 ± 5.4 | |||
Sultanas | 99.8 ± 3.5 | ||||
Indonesia | Maize kernels | DON | 59.9–202 | HPLC | [83] |
Fried maize | 67.1–348 | ||||
Cereal | AFB1 | 0.2 ± 0.01 | |||
Noodles | AFB1 | 0.40 ± 0.09 | |||
Baby powder milk | AFB1 | 0.17 ± 0.05 | |||
AFB2 | 0.03 ± 0.01 | ||||
AFG1 | 0.11 ± 0.03 | ||||
AFG2 | 0.07 ± 0.001 | ||||
Cream rice | AFB1 | 0.07 ± 0.02 | |||
Pakistan | Biscuits | AFB1 | 0.31 ± 0.01 | RP-HPLC | [34] |
AFB2 | 0.38 ± 0.01 | ||||
AFG1 | 1.13 ± 0.06 | ||||
AFG2 | 0.68 ± 0.01 | ||||
(continued) | Wheat | AFB1 | 0.28 | ||
Chinese fried rice | AFG1 | 0.025 | |||
AFG2 | 1.3 | ||||
Milk powder (tea) | AFB1 | 0.05 | |||
AFG1 | 0.15 | ||||
AFG2 | 0.09 | ||||
Gram flour | AFB1 | 0.12 | |||
AFB2 | 0.59 | ||||
AFG1 | 0.35 | ||||
AFG2 | 0.80 | ||||
Barian | AFB1 | 0.07 | |||
AFG1 | 0.15 | ||||
AFG2 | 0.25 | ||||
AFT | 0.48 ± 0.06 | ||||
Peanuts | AFB1 | 9–71 | |||
Canada | Cereal products | AME | 9.0 | LC-MS/MS | [80] |
AOH | 4.4 | ||||
Africa | Kuli-kuli (snack) | AFB1 | 25.5 to 455 | ELISA and LC–MS/MS | [84] |
Nigeria | Corn-based | AFB1 | 14.0 | TLC | [85] |
AFB2 | 8.0 | ||||
AFG1 | 6.0 | ||||
Groundnuts-based | AFB1 | 8.5 | |||
AFB2 | 9.0 | ||||
AFG1 | 15.8 | ||||
Nut-based wheat-based | AFB1 | 6.0 | |||
AFB1 | 17.8 | ||||
AFG1 | 13.0 | ||||
Nigeria | Peanut cake | AFB1 | 88.0 | TLC | [86] |
(A. flavus) | |||||
AFB1 | 8.0 | ||||
(A. parasiticus) | |||||
Kenya | Raw peanuts | AFBs | 201 | ELISA | [87] |
Roasted coated peanuts | AFBs | 382 | |||
Zimbabwe | Peanuts and peanut butter | AFs | 75.66 ng/g | HPLC | [32] |
Nigeria | Maize grain | AFB1 | 394 | LC-MS/MS | [88] |
AFB2 | 44 | ||||
AFG1 | 47 | ||||
AFG2 | 16 | ||||
AFM1 | 14.5 | ||||
DON | 60 | ||||
FUMB1 | 1.552 | ||||
FUMB2 | 442 | ||||
FUMB3 | 161 | ||||
OTA | 111 | ||||
ZEN | 174 | ||||
Malawi | Peanut butter de-skinned | AFB1 | 13.2–40.6 | IAC-LC | [28] |
AFB2 | 1.7–7.2 | ||||
Roasted groundnut | AFB1 | 0.1–12.3 | |||
AFB2 | 0.2–1.8 | ||||
Nigeria | Kokoro (snack) | AFB1 | 0.75–7.25 | ELISA | [89] |
Ghana | Ice-kenkey (dessert) | AFB1 | 7.01–20.54 | HPLC | [90] |
AFB2 | 0.51–1.63 | ||||
AFG1 | 0.47 | ||||
Nigeria | Groundnuts (raw) | AFB1 | 104.1 | TLC | [91] |
Groundnuts (roasted) | AFB1 | 14.1 | |||
Brazil | Maize | FUM | 1.83 ± 13.38 | Plate count | [40] |
Tunisia Spain | Dried fruit | AFB1 | 16.5 | LC-MS/MS | [92] |
AFB2 | 1.1 | ||||
AFG1 | 3.2 | ||||
AFG2 | 5.5 | ||||
OTA | 1.2 | ||||
Netherlands | Tomato sauces | TeA | 462 | LC-MS/MS | [81] |
dried figs | 2345 | ||||
Sunflower seeds | 449 | ||||
Nigeria | Aadun (snack) | AFB1 | 1.08–1.88 | HPLC-MS | [93] |
AFB2 | 0.99–1.98 | ||||
AFG1 | 0.92–1.23 | ||||
AFG2 | 0.91–1.73 | ||||
United Kingdom | Melon seeds | AFB1 | 9.7 | HPLC-MS/MS | [67] |
AFB2 | 1.5 | ||||
AFG1 | 1.3 | ||||
AFG2 | 0.2 | ||||
Cameroon | Maize-fufu | AFB1 | 0.9 ± 0.4 | LC-MS/MS | [94] |
DON | 23 ± 7 | ||||
ZEN | 49 ± 38 | ||||
Nigeria | Garri (flour) | DON | 35.0–99.0 | LC–MS/MS | [95] |
FUM B1 | 45.0–80.0 | ||||
FUM B2 | 29.0–65.0 | ||||
ZEN | 11.0–17.0 | ||||
Ivory Coast | Garba (couscous) | AFB1 | 3.44 | HPLC-FLD | [96] |
AFB2 | 1.90 | ||||
AFG1 | 8.07 | ||||
AFG2 | 0.56 | ||||
OTA | 0.42 | ||||
Nigeria | Roasted cashew nuts | AFs | 0.1–6.8 | ELISA | [97] |
India | Groundnut | AFs | 13.834 | HPLC | [31] |
China | Dry fruits | AFB1 | 49.47 ± 2.02 | HPLC | [53] |
AFB2 | 0.83 ± 0.02 | ||||
ZEN | 20.48 ± 0.34 | ||||
OTA | 6.23 ± 0.40 | ||||
Sierra Leone | Roasted peanut | AFB1 | 0.62–1.387 | LC-MS/MS | [30] |
AFB2 | 6.49–271 | ||||
AFG1 | 0.34–3328 | ||||
AFG2 | 14.7–742 | ||||
AFM1 | 1.22–66.8 | ||||
Pakistan | Biscuits | OTA | 23.9 | LC | [15] |
Bread | 1.96 | ||||
Nigeria | Uncooked flour/grain | AFB1 | 34 | LC-MS/MS | [41] |
FUM | 500 | ||||
ZEN | 200 | ||||
China | Cereal products | ZEN | 39.2 | ELISA | [51] |
DON | 975.0 | ||||
Nigeria | Granola | AFB1 | 30.9 | LC-MS/MS | [22] |
AFB2 | 6.72 | ||||
AFG1 | 1.42 | ||||
AFM1 | 2.27 | ||||
CIT | 1481 | ||||
DON | 158 | ||||
FUM A1 | 7.23 | ||||
FUM B1 | 74.0 | ||||
FUM B2 | 25.2 | ||||
OTA A | 3.47 | ||||
ZEN | 1.47 | ||||
Italy | Almonds | AFB1 | 0.45 | LC-MS/MS | [52] |
Almonds | ZEN | 3.70/4.54 | |||
Walnuts | ZEN | 0.93 | |||
Pistachios | ZEN | 0.96/8.6 | |||
Switzerland | Cereal-based | ALT | 0.5 | LC-MS/MS | [82] |
AOH | 0.5 | ||||
AME | 0.5 | ||||
TEN | 0.5 | ||||
TeA | 2.5 | ||||
Green coffee | ALT | 2 | |||
AOH | 2 | ||||
AME | 2 | ||||
TEN | 2 | ||||
Cocoa | TeA | 10 | |||
Nigeria | Biscuits | CIT | 10.9 | LC-MS/MS | [68] |
ZEN | 4.0 | ||||
DON | 308 | ||||
Bread | CIT | 10.2 | |||
DON | 59.8 | ||||
Shawarma (kebab) | CIT | 105 | |||
DON | 23.6 | ||||
Portugal | Breakfast Cereals | AFB1 | 194.2 ± 164.0 | HPLC-MS/MS | [98] |
AFG2 | 68 ± 42.8 | ||||
CIT | 6.7 ± 9.9 | ||||
FUM B1 | 178.6 ± 72.5 | ||||
FUM B2 | 34.9 ± 3.5 | ||||
OTA | 8.4 ± 2.6 | ||||
ZEN | 65.2 ± 57.6 | ||||
Cereals (infant) | AFB1 | 0 | |||
AFG2 | 0 | ||||
CIT | 0 | ||||
FUM B1 | 41.0 ± 33.5 | ||||
OTA | 0 | ||||
ZEN | 0 | ||||
Snacks | AFB1 | 0 | |||
AFG2 | 0 | ||||
CIT | 0 | ||||
FUM B1 | 8.8 ± 5.7 | ||||
OTA | 0 | ||||
ZEN | 0 | ||||
From 25 countries | Peanuts | AFB1 | 4.1 | LC-MS/MS | [99] |
AFB2 | 3.7 | ||||
AFG1 | 0.4 | ||||
Brazil nuts | FUM B2 | 2.9 | |||
DON | 0.6 | ||||
Hazelnuts | AFB1 | 0.6 | |||
AFG2 | 0.6 | ||||
FUM B1 | 13.9 | ||||
Macadamias | AFB1 | 0.3 | |||
AFB2 | 0.2 | ||||
AFG1 | 0.4 | ||||
AFG2 | 0.2 | ||||
FUM B1 | 0.3 | ||||
FUM B2 | 4.6 | ||||
DON | 1.9 | ||||
Almonds | AFB1 | 0.4 | |||
AFB2 | 7.6 | ||||
AFG2 | 0.3 | ||||
Pecans | AFB2 | 0.3 | |||
AFG2 | 4.0 | ||||
DON | 1.1 | ||||
Pine nuts | AFB1 | 0.7 | |||
FUM B1 | 0.3 | ||||
FUM B2 | 17.8 | ||||
DON | 2.6 | ||||
Pistachios | AFG2 | 0.7 | |||
FUM B2 | 2.6 | ||||
DON | 0.3 | ||||
Walnuts | AFB1 | 3.4 | |||
AFG1 | 0.2 | ||||
FUM B2 | 9.4 | ||||
DON | 1.3 | ||||
Egypt | Basterma (typical dish meat) | OTA | 17.26 | HPLC | [100] |
Corn flex | OTA | 0.55 | |||
Nigeria | Nuts | AFB1 | 0.1 | LC-MS/MS | [101] |
AFB2 | 0.1 | ||||
AFG1 | 0.1 | ||||
AFG2 | 0.1 | ||||
ZEA | 3.0 | ||||
DON | 6.1 | ||||
FUM B1 | 7.6 | ||||
FUM B2 | 7.6 | ||||
OTA | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Salvo, E.; Bartolomeo, G.; Vadalà, R.; Costa, R.; Cicero, N. Mycotoxins in Ready-to-Eat Foods: Regulatory Challenges and Modern Detection Methods. Toxics 2025, 13, 485. https://doi.org/10.3390/toxics13060485
Di Salvo E, Bartolomeo G, Vadalà R, Costa R, Cicero N. Mycotoxins in Ready-to-Eat Foods: Regulatory Challenges and Modern Detection Methods. Toxics. 2025; 13(6):485. https://doi.org/10.3390/toxics13060485
Chicago/Turabian StyleDi Salvo, Eleonora, Giovanni Bartolomeo, Rossella Vadalà, Rosaria Costa, and Nicola Cicero. 2025. "Mycotoxins in Ready-to-Eat Foods: Regulatory Challenges and Modern Detection Methods" Toxics 13, no. 6: 485. https://doi.org/10.3390/toxics13060485
APA StyleDi Salvo, E., Bartolomeo, G., Vadalà, R., Costa, R., & Cicero, N. (2025). Mycotoxins in Ready-to-Eat Foods: Regulatory Challenges and Modern Detection Methods. Toxics, 13(6), 485. https://doi.org/10.3390/toxics13060485