Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cities and Air Quality
2.2. Study Design and Brain Samples
2.2.1. Magnetic Experiments
2.2.2. Transmission Electron Microscopy (TEM) and Energy-Dispersive X-Ray Spectrometry (EDX)
2.2.3. Light Microscopy and Orexin Immunohistochemistry
2.3. Statistical Analysis
3. Results
3.1. Air Pollution
3.2. Brain Magnetic Studies
3.2.1. Anhysteretic Remanent Magnetization (ARM)
3.2.2. Brain Samples: SIRM and IRM Measurements
3.2.3. Brain Samples: Saturation Isothermal Remanent Magnetization (SIRM)
3.2.4. Brain Samples: Magnetic Components in Equi-Angular Projection Diagrams
3.3. Energy-Dispersive X-Ray Spectrometry (EDX) and Brain Transmission Electron Microscopy (TEM)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazzari, S.; Cagliero, L.; Grumi, S.; Pisoni, E.; Mallucci, G.; Bergamaschi, R.; Maccarini, J.; Giorda, R.; Provenzi, L. Prenatal Exposure to Environmental Air Pollution and Psychosocial Stress Jointly Contribute to the Epigenetic Regulation of the Serotonin Transporter Gene in Newborns. Mol. Psychiatry 2023, 28, 3503–3511. [Google Scholar] [CrossRef] [PubMed]
- Smolker, H.R.; Reid, C.E.; Friedman, N.P.; Banich, M.T. The Association between Exposure to Fine Particulate Air Pollution and the Trajectory of Internalizing and Externalizing Behaviors during Late Childhood and Early Adolescence: Evidence from the Adolescent Brain Cognitive Development (ABCD) Study. Environ. Health Perspect. 2024, 132, 087001. [Google Scholar] [CrossRef]
- Cotter, D.L.; Ahmadi, H.; Cardenas-Iniguez, C.; Bottenhorn, K.L.; Gauderman, W.J.; McConnell, R.; Berhane, K.; Schwartz, J.; Hackman, D.A.; Chen, J.-C.; et al. Exposure to Multiple Ambient Air Pollutants Changes White Matter Microstructure during Early Adolescence with Sex-Specific Differences. Commun. Med. 2024, 4, 155. [Google Scholar] [CrossRef] [PubMed]
- Herting, M.M.; Bottenhorn, K.L.; Cotter, D.L. Outdoor Air Pollution and Brain Development in Childhood and Adolescence. Trends Neurosci. 2024, 47, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Zundel, C.G.; Ely, S.; Brokamp, C.; Strawn, J.R.; Jovanovic, T.; Ryan, P.; Marusak, H.A. Particulate Matter Exposure and Default Mode Network Equilibrium during Early Adolescence. Brain Connect. 2024, 14, 307–318. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Yanosky, J.D.; Bixler, E.O.; Fernandez-Mendoza, J.; Chinchilli, V.M.; Al-Shaar, L.; Vgontzas, A.N.; Liao, D. Short-Term and Intermediate-Term Fine Particulate Air Pollution Are Synergistically Associated with Habitual Sleep Variability in Adolescents: A Cross-Sectional Study. Environ. Res. 2023, 227, 115726. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Longcore, T.; Benbow, J.; Chung, N.T.; Chau, K.; Wang, S.S.; Lacey, J.V.; Franklin, M. Environmental Influences on Sleep in the California Teachers Study Cohort. Am. J. Epidemiol. 2022, 191, 1532–1549. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Huang, N.; Guo, X.; Huang, T. Role of Sleep Quality in the Acceleration of Biological Aging and Its Potential for Preventive Interaction on Air Pollution Insults: Findings from the UK Biobank Cohort. Aging Cell 2022, 21, e13610. [Google Scholar] [CrossRef]
- Cai, J.; Shen, Y.; Zhao, Y.; Meng, X.; Niu, Y.; Chen, R.; Quan, G.; Li, H.; Groeger, J.A.; Du, W.; et al. Early-Life Exposure to PM2.5 and Sleep Disturbances in Preschoolers from 551 Cities of China. Am. J. Respir. Crit. Care Med. 2023, 207, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ji, X.; Rovit, E.; Pitt, S.; Lipman, T. Childhood Sleep: Assessments, Risk Factors, and Potential Mechanisms. World J. Pediatr. 2024, 20, 105–121. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Reynoso-Robles, R.; Delgado-Chávez, R.; Mukherjee, P.S.; Kulesza, R.J.; Torres-Jardón, R.; Ávila-Ramírez, J.; Villarreal-Ríos, R. Hallmarks of Alzheimer Disease Are Evolving Relentlessly in Metropolitan Mexico City Infants, Children, and Young Adults. APOE4 Carriers Have Higher Suicide Risk and Higher Odds of Reaching NFT Stage V at ≤40 Years of Age. Environ. Res. 2018, 164, 475–487. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Reynoso-Robles, R.; Hammond, J.; Kulesza, R.; Lachmann, I.; Torres-Jardón, R.; Mukherjee, P.S.; Maher, B.A. Quadruple Abnormal Protein Aggregates in Brainstem Pathology and Exogenous Metal-Rich Magnetic Nanoparticles (and Engineered Ti-Rich Nanorods). The Substantia Nigrae Is a Very Early Target in Young Urbanites and the Gastrointestinal Tract a Key Brainstem Portal. Environ. Res. 2020, 191, 110139. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Reynoso-Robles, R.; Silva-Pereyra, H.G.; Torres-Jardón, R.; Brito-Aguilar, R.; Ayala, A.; Stommel, E.W.; Delgado-Chávez, R. Environmentally Toxic Solid Nanoparticles in Noradrenergic and Dopaminergic Nuclei and Cerebellum of Metropolitan Mexico City Children and Young Adults with Neural Quadruple Misfolded Protein Pathologies and High Exposures to Nano Particulate Matter. Toxics 2022, 10, 164. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Stommel, E.W.; Torres-Jardón, R.; Hernández-Luna, J.; Aiello-Mora, M.; González-Maciel, A.; Reynoso-Robles, R.; Pérez-Guillé, B.; Silva-Pereyra, H.G.; Tehuacanero-Cuapa, S.; et al. Alzheimer and Parkinson Diseases, Frontotemporal Lobar Degeneration, and Amyotrophic Lateral Sclerosis Overlapping Neuropathology Start in the First Two Decades of Life in Pollution-Exposed Urbanites and Brain Ultrafine Particulate Matter and Industrial Nanoparticles, Including Fe, Ti, Al, V, Ni, Hg, Co, Cu, Zn, Ag, Pt, Ce, La, Pr, and W Are Key Players. Metropolitan Mexico City Health Crisis Is in Progress. Front. Hum. Neurosci. 2024, 17, 1297467. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Reynoso-Robles, R.; Pérez-Guillé, B.; Mukherjee, P.S.; Gónzalez-Maciel, A. Combustion-Derived Nanoparticles, the Neuroenteric System, Cervical Vagus, Hyperphosphorylated Alpha Synuclein, and Tau in Young Mexico City Residents. Environ. Res. 2017, 159, 186–201. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Pérez-Calatayud, Á.A.; González-Maciel, A.; Reynoso-Robles, R.; Silva-Pereyra, H.G.; Ramos-Morales, A.; Torres-Jardón, R.; Soberanes-Cerino, C.d.J.; Carrillo-Esper, R.; Briones-Garduño, J.C.; et al. Environmental Nanoparticles Reach Human Fetal Brains. Biomedicines 2022, 10, 410. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Annual National Ambient Air Quality Standard for PM2.5. U.S. Environmental Protection Agency. Available online: https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed on 5 February 2025).
- Calderón-Garcidueñas, L.; Ayala, A.; Mukherjee, P.S. 2024 United States Elections: Air Pollution, Neurodegeneration, Neuropsychiatric, and Neurodevelopmental Disorders. Who Cares? J. Alzheimers Dis. 2024, 98, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, E.; Aerts, S.; Coesoij, R.; Bhatt, C.R.; Velghe, M.; Colussi, L.; Land, D.; Petroulakis, N.; Spirito, M.; Bolte, J. A Comprehensive Review of 5G NR RF-EMF Exposure Assessment Technologies: Fundamentals, Advancements, Challenges, Niches, and Implications. Environ. Res. 2024, 260, 119524. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, C.R.; Henderson, S.; Sanagou, M.; Brzozek, C.; Thielens, A.; Benke, G.; Loughran, S. Micro-Environmental Personal Radio-Frequency Electromagnetic Field Exposures in Melbourne: A Longitudinal Trend Analysis. Environ. Res. 2024, 251 Pt 2, 118629. [Google Scholar] [CrossRef]
- Liu, L.; Huang, B.; Lu, Y.; Zhao, Y.; Tang, X.; Shi, Y. Interactions between Electromagnetic Radiation and Biological Systems. iScience 2024, 27, 109201. [Google Scholar] [CrossRef]
- Eicher, C.; Marty, B.; Achermann, P.; Huber, R.; Landolt, H.-P. Reduced Subjective Sleep Quality in People Rating Themselves as Electro-Hypersensitive: An Observational Study. Sleep Med. 2024, 113, 165–171. [Google Scholar] [CrossRef]
- Bozok, S.; Karaagac, E.; Sener, D.; Akakin, D.; Tumkaya, L. The Effects of Long-Term Prenatal Exposure to 900, 1800, and 2100 MHz Electromagnetic Field Radiation on Myocardial Tissue of Rats. Toxicol. Ind. Health 2023, 39, 1–9. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Engle, R.; Mora-Tiscareño, A.; Styner, M.; Gómez-Garza, G.; Zhu, H.; Jewells, V.; Torres-Jardón, R.; Romero, L.; Monroy-Acosta, M.E.; et al. Exposure to Severe Urban Air Pollution Influences Cognitive Outcomes, Brain Volume and Systemic Inflammation in Clinically Healthy Children. Brain Cogn. 2011, 77, 345–355. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Hernández-Luna, J.; Mukherjee, P.S.; Styner, M.; Chávez-Franco, D.A.; Luévano-Castro, S.C.; Crespo-Cortés, C.N.; Stommel, E.W.; Torres-Jardón, R. Hemispheric Cortical, Cerebellar and Caudate Atrophy Associated to Cognitive Impairment in Metropolitan Mexico City Young Adults Exposed to Fine Particulate Matter Air Pollution. Toxics 2022, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Chávez-Franco, D.A.; Luévano-Castro, S.C.; Macías-Escobedo, E.; Hernández-Castillo, A.; Carlos-Hernández, E.; Franco-Ortíz, A.; Castro-Romero, S.P.; Cortés-Flores, M.; Crespo-Cortés, C.N.; et al. Metals, Nanoparticles, Particulate Matter, and Cognitive Decline. Front. Neurol. 2022, 12, 794071. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Kulesza, R.J.; Mansour, Y.; Aiello-Mora, M.; Mukherjee, P.S.; González-González, L.O. Increased Gain in the Auditory Pathway, Alzheimer’s Disease Continuum, and Air Pollution: Peripheral and Central Auditory System Dysfunction Evolves across Pediatric and Adult Urbanites. J. Alzheimers Dis. 2019, 70, 1275–1286. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Torres-Solorio, A.K.; Kulesza, R.J.; Torres-Jardón, R.; González-González, L.O.; García-Arreola, B.; Chávez-Franco, D.A.; Luévano-Castro, S.C.; Hernández-Castillo, A.; Carlos-Hernández, E.; et al. Gait and Balance Disturbances Are Common in Young Urbanites and Associated with Cognitive Impairment. Air Pollution and the Historical Development of Alzheimer’s Disease in the Young. Environ. Res. 2020, 191, 110087. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, A.; Smit, E.; Welch, B.M.; Bethel, J.; Kile, M.L. Alzheimer’s Disease and Alpha-Synuclein Pathology in the Olfactory Bulbs of Infants, Children, Teens and Adults ≤ 40 y in Metropolitan Mexico City. APOE4 Carriers at Higher Risk of Suicide Accelerate Their Olfactory Bulb Pathology. Environ. Res. 2018, 166, 348–362. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Torres-Jardón, R.; Greenough, G.P.; Kulesza, R.; González-Maciel, A.; Reynoso-Robles, R.; García-Alonso, G.; Chávez-Franco, D.A.; García-Rojas, E.; Brito-Aguilar, R.; et al. Sleep Matters: Neurodegeneration Spectrum Heterogeneity, Combustion and Friction Ultrafine Particles, Industrial Nanoparticle Pollution, and Sleep Disorders—Denial Is Not an Option. Front. Neurol. 2023, 14, 1117695. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Kulesza, R.; Greenough, G.P.; García-Rojas, E.; Revueltas-Ficachi, P.; Rico-Villanueva, A.; Flores-Vázquez, J.O.; Brito-Aguilar, R.; Ramírez-Sánchez, S.; Vacaseydel-Aceves, N.; et al. Fall Risk, Sleep Behavior, and Sleep-Related Movement Disorders in Young Urbanites Exposed to Air Pollution. J. Alzheimers Dis. 2023, 91, 847–862. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Hernández-Luna, J.; Aiello-Mora, M.; Brito-Aguilar, R.; Evelson, P.A.; Villarreal-Ríos, R.; Torres-Jardón, R.; Ayala, A.; Mukherjee, P.S. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM2.5 Polluted Cities. Biomolecules 2023, 13, 927. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.; Cesari, M.; Heidbreder, A.; Aiello-Mora, M.; Brito-Aguilar, R.; Evelson, P.A.; Villarreal-Ríos, R.; Torres-Jardón, R.; Ayala, A.; Mukherjee, P.S. Sleep Features and Long-Term Incident Neurodegeneration: A Polysomnographic Study. Sleep 2024, 47, zsad304. [Google Scholar] [CrossRef] [PubMed]
- Boeve, B.F.; Silber, M.H.; Ferman, T.J.; Lin, S.; Benarroch, E.; Schmeichel, A.; Ahlskog, J.; Caselli, R.; Jacobson, S.; Sabbagh, M.; et al. Clinicopathologic Correlations in 172 Cases of Rapid Eye Movement Sleep Behavior Disorder with or without a Coexisting Neurologic Disorder. Sleep Med. 2013, 14, 754–762. [Google Scholar] [CrossRef]
- Postuma, R.B.; Iranzo, A.; Hu, M.; Högl, B.; Boeve, B.F.; Manni, R.; Oertel, W.H.; Arnulf, I.; Ferini-Strambi, L.; Puligheddu, M.; et al. Risk and Predictors of Dementia and Parkinsonism in Idiopathic REM Sleep Behaviour Disorder: A Multicentre Study. Brain 2019, 142, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Van Egroo, M.; van Someren, E.J.W.; Grinberg, L.T.; Bennett, D.A.; Jacobs, H.I. Associations of 24-Hour Rest-Activity Rhythm Fragmentation, Cognitive Decline, and Postmortem Locus Coeruleus Hypopigmentation in Alzheimer’s Disease. Ann. Neurol. 2024, 95, 653–664. [Google Scholar] [CrossRef]
- Fernandes, M.; Maio, S.; Eusebi, P.; Placidi, F.; Izzi, F.; Spanetta, M.; De Masi, C.; Lupo, C.; Calvello, C.; Nuccetelli, M.; et al. Cerebrospinal-Fluid Biomarkers for Predicting Phenoconversion in Patients with Isolated Rapid-Eye Movement Sleep Behavior Disorder. Sleep 2024, 47, zsad198. [Google Scholar] [CrossRef] [PubMed]
- Boentert, M. Sleep Disturbances in Patients with Amyotrophic Lateral Sclerosis: Current Perspectives. Nat. Sci. Sleep 2019, 11, 97–111. [Google Scholar] [CrossRef]
- Wallace, D.A.; Gallagher, J.P.; Peterson, S.R.; Ndiaye-Gueye, S.; Fox, K.; Redline, S.; Johnson, D.A. Is Exposure to Chemical Pollutants Associated with Sleep Outcomes? A Systematic Review. Sleep Med. Rev. 2023, 70, 101805. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gueye-Ndiaye, C.; Castro-Diehl, C.; Bhaskar, S.; Li, L.; Tully, M.; Rueschman, M.; Owens, J.; Gold, D.R.; Chen, J.; et al. Associations between Indoor Fine Particulate Matter (PM2.5) and Sleep-Disordered Breathing in an Urban Sample of School-Aged Children. Sleep Health 2024. [Google Scholar] [CrossRef]
- Bianciardi, M.; Toschi, N.; Edlow, B.L.; Eichner, C.; Setsompop, K.; Polimeni, J.R.; Brown, E.N.; Kinney, H.C.; Rosen, B.R.; Wald, L.L. Toward an In Vivo Neuroimaging Template of Human Brainstem Nuclei of the Ascending Arousal, Autonomic, and Motor Systems. Brain Connect. 2015, 5, 597–607. [Google Scholar] [CrossRef]
- Bianciardi, M.; Strong, C.; Toschi, N.; Edlow, B.L.; Fischl, B.; Brown, E.N.; Rosen, B.R.; Wald, L.L. A Probabilistic Template of Human Mesopontine Tegmental Nuclei from In Vivo 7T MRI. Neuroimage 2018, 170, 222–230. [Google Scholar] [CrossRef]
- Singh, K.; Garcia-Gomar, M.G.; Bianciardi, M. Probabilistic Atlas of the Mesencephalic Reticular Formation, Isthmic Reticular Formation, Microcellular Tegmental Nucleus, Ventral Tegmental Area Nucleus Complex, and Caudal-Rostral Linear Raphe Nucleus Complex in Living Humans from 7 Tesla Magnetic Resonance Imaging. Brain 2021, 11, 613–623. [Google Scholar] [CrossRef]
- Garcia-Gomar, M.G.; Strong, C.; Toschi, N.; Singh, K.; Rosen, B.R.; Wald, L.L.; Bianciardi, M. In Vivo Probabilistic Structural Atlas of the Inferior and Superior Colliculi, Medial and Lateral Geniculate Nuclei, and Superior Olivary Complex in Humans Based on 7 Tesla MRI. Front. Neurosci. 2019, 13, 764. [Google Scholar] [CrossRef]
- Grimaldi, S.; Guye, M.; Bianciardi, M.; Eusebio, A. Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review. Brain Sci. 2023, 13, 1398. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gomar, M.G.; Videnovic, A.; Singh, K.; Rosen, B.R.; Wald, L.L.; Bianciardi, M. Disruption of Brainstem Structural Connectivity in REM Sleep Behavior Disorder Using 7 Tesla Magnetic Resonance Imaging. Mov. Disord. 2022, 37, 847–853. [Google Scholar] [CrossRef]
- Reimann, G.M.; Kuppers, V.; Camilleri, J.A.; Hoffstaedter, F.; Langner, R.; Laird, A.R.; Fox, P.T.; Spiegelhalder, K.; Eickhoff, S.B.; Tahmasian, M. Convergent Abnormality in the Subgenual Anterior Cingulate Cortex in Insomnia Disorder: A Revisited Neuroimaging Meta-Analysis of 39 Studies. Sleep Med. Rev. 2023, 71, 101821. [Google Scholar] [CrossRef]
- Kragel, P.A.; Bianciardi, M.; Hartley, L.; Matthewson, G.; Choi, J.-K.; Quigley, K.S.; Wald, L.L.; Wager, T.D.; Barrett, L.F.; Satpute, A.B. Functional Involvement of Human Periaqueductal Gray and Other Midbrain Nuclei in Cognitive Control. J. Neurosci. 2019, 39, 6180–6189. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Cejudo-Ruiz, F.R.; Stommel, E.W.; González-Maciel, A.; Reynoso-Robles, R.; Torres-Jardón, R.; Tehuacanero-Cuapa, S.; Rodríguez-Gómez, A.; Bautista, F.; Goguitchaichvili, A.; et al. Single-Domain Magnetic Particles with Motion Behavior under Electromagnetic AC and DC Fields Are a Fatal Cargo in Metropolitan Mexico City Pediatric and Young Adult Early Alzheimer, Parkinson, Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis and in ALS Patients. Front. Hum. Neurosci. 2024, 18, 1411849. [Google Scholar] [CrossRef]
- Minigaliyeva, I.A.; Klinova, S.V.; Stunkova, M.P.; Ryabova, Y.V.; Valamina, I.E.; Shelomentsev, I.G.; Shtin, T.N.; Bushueva, T.V.; Protsenko, Y.L.; Balakin, A.A.; et al. On the Mechanisms of the Cardiotoxic Effect of Lead Oxide Nanoparticles. Cardiovasc. Toxicol. 2024, 24, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Yarjanli, Z.; Ghaedi, K.; Esmaeili, A.; Rahgozar, S.; Zarrabi, A. Iron Oxide Nanoparticles May Damage the Neural Tissue through Iron Accumulation, Oxidative Stress, and Protein Aggregation. BMC Neurosci. 2017, 18, 51. [Google Scholar] [CrossRef]
- Gutiérrez, L.; de la Cueva, L.; Moros, M.; Mazarío, E.; de Bernardo, S.; de la Fuente, J.M.; Morales, M.d.P.; Salas, G. Aggregation Effects on the Magnetic Properties of Iron Oxide Colloids. Nanotechnology 2019, 30, 112001. [Google Scholar] [CrossRef]
- Molina, L.T.; Madronich, S.; Gaffney, J.S.; Apel, E.; de Foy, B.; Fast, J.; Ferrare, R.; Herndon, S.; Jimenez, J.L.; Lamb, B.; et al. An Overview of the MILAGRO 2006 Campaign: Mexico City Emissions and Their Transport and Transformation. Atmos. Chem. Phys. 2010, 10, 8697–8760. [Google Scholar]
- Bautista-Hernández, D.A.; Bautista, F.; Goguitchaichvili, A. Street Dust Pollution by Heavy Metals: A Geographically Weighted Regression Approach in Mexico City. Int. J. Environ. Sci. Technol. 2023, 20, 9795–9822. [Google Scholar]
- Secretaría del Medio Ambiente de la Ciudad de México. Inventario de Emisiones de la Zona Metropolitana del Valle de México 2020; Dirección General de Calidad del Aire, Dirección de Proyectos de Calidad del Aire: Mexico City, Mexico, 2023.
- Delgado, C.; Bautista, F.; Gogichaishvili, A.; Cortés, J.L.; Quintana, P.; Aguilar, D.; Cejudo, R. Identificación de las Zonas Contaminadas con Metales Pesados en el Polvo Urbano de la Ciudad de México. Rev. Int. Contam. Ambiental 2019, 35, 81–100. [Google Scholar] [CrossRef]
- Cejudo, R.; Goguitchaichvili, A.; Bautista, F.; Cervantes-Solano, M.Á.; Mendiola López, F.; Cortés Esquivel, J.L.; Morales, J.J.; Pelcastre Sicardo, J.P. El Polvo Urbano de las Vialidades de la Ciudad de México: Un Análisis Espacialmente Lineal de los Elementos Potencialmente Tóxicos, Propiedades Magnéticas y Tamaño de Partículas. Rev. Int. Contam. Ambien. 2022, 38, 351–371. [Google Scholar] [CrossRef]
- Lee, P.K.; Yu, S.; Chang, H.; Cho, H.Y.; Kang, M.-J.; Chae, B.-G. Lead Chromate Detected as a Source of Atmospheric Pb and Cr(VI) Pollution. Sci. Rep. 2016, 6, 36088. [Google Scholar] [CrossRef]
- Crosby, C.J.; Fullen, M.A.; Booth, C.A.; Searle, D.E. A Dynamic Approach to Urban Road Deposited Sediment Pollution Monitoring (Marylebone Road, London, UK). J. Appl. Geophys. 2014, 105, 10–20. [Google Scholar]
- Yang, Y.; Vance, M.; Tou, F.; Tiwari, A.; Liu, M.; Hochella, M.F. Nanoparticles in Road Dust from Impervious Urban Surfaces: Distribution, Identification, and Environmental Implications. Environ. Sci. Nano 2016, 3, 534–544. [Google Scholar] [CrossRef]
- Vasquez, C.A.; Sapienza, F.F.; Somacal Fazzito, S.Y. Anhysteretic Remanent Magnetization: Model of Grain Size Distribution of Spherical Magnetite Grains. Stud. Geophys. Geod. 2018, 62, 339–351. [Google Scholar] [CrossRef]
- Evans, M.; Heller, F. Environmental Magnetism: Principles and Applications of Enviromagnetics; Academic Press: Cambridge, MA, USA, 2013; Available online: https://api.semanticscholar.org/CorpusID:261863166 (accessed on 5 January 2025).
- Li, Q.; Kartikowati, C.W.; Horie, S.; Ogi, T.; Iwaki, T.; Okuyama, K. Correlation between Particle Size/Domain Structure and Magnetic Properties of Highly Crystalline Fe3O4 Nanoparticles. Sci. Rep. 2017, 7, 9894. [Google Scholar] [CrossRef]
- Ma, Z.; Mohapatra, J.; Wei, K.; Liu, P.; Sun, S. Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. Chem. Rev. 2023, 123, 3904–3943. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswamy, V.; Al-Omari, I.A.; Kamzin, A.S.; Khurshid, H.; Khaleel, A.; Issa, B.; Obaidat, I.M. Coercivity and Exchange Bias in Ti-Doped Maghemite Nanoparticles. Magnetochemistry 2022, 8, 165. [Google Scholar] [CrossRef]
- Mohapatra, J.; Mitra, A.; Bahadur, D.; Aslam, M. Surface-Controlled Synthesis of MFe2O4 (M = Mn, Fe, Co, Ni and Zn) Nanoparticles and Their Magnetic Characteristics. CrystEngComm 2013, 15, 524–532. [Google Scholar] [CrossRef]
- Bermejo, L.; Gil-Alana, L.A.; Del Rio, M. Time Trends and Persistence in PM2.5 in 20 Megacities: Evidence for the Time Period 2018–2020. Environ. Sci. Pollut. Res. Int. 2023, 30, 5603–5620. [Google Scholar] [CrossRef]
- Pengo, M.F.; Iodice, S.; Parati, G.; Meriggi, P.; Bollati, V.; Lombardi, C. Fine Particulate Matter and Sleep-Disordered Breathing Severity in a Large Italian Cohort. Sleep Breath. 2024, 28, 371–375. [Google Scholar] [CrossRef]
- Savin, K.L.; Carlson, J.A.; Patel, S.R.; Jankowska, M.M.; Allison, M.A.; Sotres-Alvarez, D.; Sallis, J.F.; Talavera, G.A.; Roesch, S.C.; Malcarne, V.L.; et al. Social and Built Neighborhood Environments and Sleep Health: The Hispanic Community Health Study/Study of Latinos Community and Surrounding Areas and Sueño Ancillary Studies. Sleep 2024, 47, zsad260. [Google Scholar] [CrossRef]
- Leng, S.; Jin, Y.; Vitiello, M.V.; Zhang, Y.; Ren, R.; Lu, L.; Shi, J.; Tang, X. The Association between Polluted Fuel Use and Self-Reported Insomnia Symptoms among Middle-Aged and Elderly Indian Adults: A Cross-Sectional Study Based on LASI, Wave 1. BMC Public Health 2023, 23, 1953. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, F.D.; Groner, J.A.; Ramirez, J.L.; McEvoy, C.T.; Owens, J.A.; McCulloch, C.E.; Cabana, M.D.; Abuabara, K. Prenatal and Childhood Tobacco Smoke Exposure Are Associated with Sleep-Disordered Breathing Throughout Early Childhood. Acad. Pediatr. 2021, 21, 654–662. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W.; Xie, L.; Jia, S.; Feng, T.; Yu, H.; Huang, J.; Qian, B. Effects of Atmospheric Particulate Matter Pollution on Sleep Disorders and Sleep Duration: A Cross-Sectional Study in the UK Biobank. Sleep Med. 2020, 74, 152–164. [Google Scholar] [CrossRef]
- Sanchez, T.; Gozal, D.; Smith, D.L.; Foncea, C.; Betancur, C.; Brockmann, P.E. Association between Air Pollution and Sleep Disordered Breathing in Children. Pediatr. Pulmonol. 2019, 54, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Franco-Lira, M.; Rodriguez-Diaz, J.; D’Angiulli, A.; Blaurock-Busch, E.; Busch, Y.; Chao, C.; Thompson, C.; Mukherjee, P.S.; Torres-Jardón, R.T.; et al. Mexico City Normal Weight Children Exposed to High Concentrations of Ambient PM2.5 Show High Blood Leptin and Endothelin-1, Vitamin D Deficiency, and Food Reward Hormone Dysregulation versus Low Pollution Controls. Relevance for Obesity and Alzheimer Disease. Environ. Res. 2015, 140, 579–592. [Google Scholar]
- Calderón-Garcidueñas, L.; Jewells, V.; Galaz-Montoya, C.; van Zundert, B.; Pérez-Calatayud, A.; Ascencio-Ferrel, E.; Valencia-Salazar, G.; Sandoval-Cano, M.; Carlos, E.; Solorio, E.; et al. Interactive and Additive Influences of Gender, BMI and Apolipoprotein 4 on Cognition in Children Chronically Exposed to High Concentrations of PM2.5 and Ozone. APOE 4 Females Are at Highest Risk in Mexico City. Environ. Res. 2016, 150, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Ruzycka-Ayoush, M.; Sobczak, K.; Grudzinski, I.P. Comparative Studies on the Cytotoxic Effects Induced by Iron Oxide Nanoparticles in Cancerous and Noncancerous Human Lung Cells Subjected to an Alternating Magnetic Field. Toxicol. Vitr. 2024, 95, 105760. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lee, K.; Park, C.Y. Effect of Magnetic Microparticles on Cultivated Human Corneal Endothelial Cells. Transl. Vis. Sci. Technol. 2023, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.A.; Valverde, T.M.; Machado, V.O.; da Silva, E.D.N.; Fagundes, D.A.; Oliveira, F.d.P.; Freitas, E.T.F.; Ardisson, J.D.; Ferreira, J.M.d.F.; Oliveira, J.A.d.C.; et al. Heating Capacity and Biocompatibility of Hybrid Nanoparticles for Magnetic Hyperthermia Treatment. Int. J. Mol. Sci. 2023, 25, 493. [Google Scholar] [CrossRef] [PubMed]
- Dan, M.; Bae, Y.; Pittman, T.A.; Yokel, R.A. Alternating Magnetic Field-Induced Hyperthermia Increases Iron Oxide Nanoparticle Cell Association/Uptake and Flux in Blood–Brain Barrier Models. Pharm. Res. 2015, 32, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.Z.; Lantz-McPeak, S.M.; Cuevas, E.; Rosas-Hernandez, H.; Liachenko, S.; Zhang, Y.; Sarkar, S.; Ramu, J.; Robinson, B.L.; Jones, Y.; et al. Iron Oxide Nanoparticles Induce Dopaminergic Damage: In Vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Mol. Neurobiol. 2015, 52, 913–926. [Google Scholar] [CrossRef]
- Shin, T.H.; Lee, G. Reduced Lysosomal Activity and Increased Amyloid Beta Accumulation in Silica-Coated Magnetic Nanoparticles-Treated Microglia. Arch. Toxicol. 2024, 98, 121–134. [Google Scholar] [CrossRef]
- Gárate-Vélez, L.; Escudero-Lourdes, C.; Salado-Leza, D.; González-Sánchez, A.; Alvarado-Morales, I.; Bahena, D.; Labrada-Delgado, G.J.; Rodríguez-López, J.L. Anthropogenic Iron Oxide Nanoparticles Induce Damage to Brain Microvascular Endothelial Cells Forming the Blood–Brain Barrier. J. Alzheimers Dis. 2020, 76, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Badman, R.P.; Moore, S.L.; Killian, J.L.; Feng, T.; Cleland, T.A.; Hu, F.; Wang, M.D. Dextran-Coated Iron Oxide Nanoparticle-Induced Nanotoxicity in Neuron Cultures. Sci. Rep. 2020, 10, 11239. [Google Scholar] [CrossRef]
- Han, M. Intrinsic High Frequency Permeability of Magnetic Nanocomposites: Uncertainty Principle. Nanotechnology 2024, 35, 175701. [Google Scholar] [CrossRef]
- Moya Betancourt, S.N.; Cámara, C.I.; Juarez, A.V.; Riva, J.S. Magnetically Controlled Insertion of Magnetic Nanoparticles into Membrane Model. Biochim. Biophys. Acta Biomembr. 2024, 1866, 184293. [Google Scholar] [CrossRef]
- Ramos Docampo, M.A.; Hovorka, O.; Städler, B. Magnetic Micromotors Crossing Lipid Membranes. Nanoscale 2024, 16, 2432–2443. [Google Scholar] [CrossRef] [PubMed]
- Baričić, M.; Maltoni, P.; Barucca, G.; Yaacoub, N.; Omelyanchik, A.; Canepa, F.; Mathieu, R.; Peddis, D. Chemical Engineering of Cationic Distribution in Spinel Ferrite Nanoparticles: The Effect on the Magnetic Properties. Phys. Chem. Chem. Phys. 2024, 26, 6325–6334. [Google Scholar] [CrossRef] [PubMed]
- Ayansiji, A.O.; Dighe, A.V.; Linninger, A.A.; Singh, M.R. Constitutive Relationship and Governing Physical Properties for Magnetophoresis. Proc. Natl. Acad. Sci. USA 2020, 117, 30208–30214. [Google Scholar] [CrossRef]
- Ryu, C.; Lee, H.; Kim, H.; Hwang, S.; Hadadian, Y.; Mohanty, A.; Park, I.-K.; Cho, B.; Yoon, J.; Lee, J.Y. Highly Optimized Iron Oxide Embedded Poly (Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity. Int. J. Nanomedicine 2022, 17, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Pacakova, B.; Kubickova, S.; Salas, G.; Mantlikova, A.R.; Marciello, M.; Morales, M.P.; Niznansky, D.; Vejpravova, J. The Internal Structure of Magnetic Nanoparticles Determines the Magnetic Response. Nanoscale 2017, 9, 5129–5140. [Google Scholar] [CrossRef]
- Kim, Y.; Ko, S.M.; Nam, J.M. Protein–Nanoparticle Interaction-Induced Changes in Protein Structure and Aggregation. Chem. Asian J. 2016, 11, 1869–1877. [Google Scholar] [CrossRef]
- Iliasov, A.R.; Nizamov, T.R.; Naumenko, V.A.; Garanina, A.; Vodopyanov, S.; Nikitin, A.; Pershina, A.; Chernysheva, A.; Kan, Y.; Mogilnikov, P.; et al. Non-Magnetic Shell Coating of Magnetic Nanoparticles as Key Factor of Toxicity for Cancer Cells in a Low-Frequency Alternating Magnetic Field. Colloids Surf. B Biointerfaces 2021, 206, 111931. [Google Scholar] [CrossRef]
- Tyumentseva, A.; Khilazheva, E.; Petrova, V.; Stolyar, S. Effects of Iron Oxide Nanoparticles on the Gene Expression Profiles of Cerebral Endotheliocytes and Astrocytes. Toxicol. Vitr. 2024, 98, 105829. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Reynoso-Robles, R.; Rodríguez-López, J.L.; Silva-Pereyra, H.G.; Labrada-Delgado, G.J.; Pérez-Guillé, B.; Soriano-Rosales, R.E.; Jiménez-Bravo Luna, M.A.; Brito-Aguilar, R.; et al. Environmental Fe, Ti, Al, Cu, Hg, Bi, and Si Nanoparticles in the Atrioventricular Conduction Axis and the Associated Ultrastructural Damage in Young Urbanites: Cardiac Arrhythmias Caused by Anthropogenic, Industrial, E-Waste, and Indoor Nanoparticles. Environ. Sci. Technol. 2021, 55, 8203–8214. [Google Scholar] [CrossRef]
- Li, Y.; Lv, C.; Li, Z.; Chen, C.; Cheng, Y. Magnetic Modulation of Lysosomes for Cancer Therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024, 16, e1947. [Google Scholar] [CrossRef]
- Redmayne, M.; Maisch, D.R. ICNIRP Guidelines’ Exposure Assessment Method for 5G Millimetre Wave Radiation May Trigger Adverse Effects. Int. J. Environ. Res. Public Health 2023, 20, 5267. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, E.; Kuster, N. Systematic Derivation of Safety Limits for Time-Varying 5G Radiofrequency Exposure Based on Analytical Models and Thermal Dose. Health Phys. 2018, 115, 705–711. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). ICNIRP Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [CrossRef] [PubMed]
- Varga, K.; Keller, J.; Robinson, S.D.; Serranova, T.; Nepozitek, J.; Zogala, D.; Trnka, J.; Ruzicka, E.; Sonka, K.; Dusek, P. Whole Brain Pattern of Iron Accumulation in REM Sleep Behavior Disorder. Hum. Brain Mapp. 2024, 45, e26675. [Google Scholar] [CrossRef]
- Dhana, K.; Beck, T.; Desai, P.; Wilson, R.S.; Evans, D.A.; Rajan, K.B. Prevalence of Alzheimer’s Disease Dementia in the 50 US States and 3142 Counties: A Population Estimate Using the 2020 Bridged-Race Postcensal from the National Center for Health Statistics. Alzheimers Dement. 2023, 19, 4388–4395. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, A.; Parra, M.A.; Butler, C.; Latin America and the Caribbean Consortium on Dementia (LAC-CD). The Latin America and the Caribbean Consortium on Dementia (LAC-CD): From Networking to Research to Implementation Science. J. Alzheimers Dis. 2021, 82, S379–S394. [Google Scholar] [CrossRef]
- Wu, F.; Malek, A.M.; Buchanich, J.M.; Arena, V.C.; Rager, J.R.; Sharma, R.K.; Vena, J.E.; Bear, T.; Talbott, E.O. Exposure to Ambient Air Toxicants and the Risk of Amyotrophic Lateral Sclerosis (ALS): A Matched Case-Control Study. Environ. Res. 2024, 242, 117719. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Raymond, J.; Zhang, Y.; Punjani, R.; Han, M.; Larson, T.; Muravov, O.; Lyles, R.H.; Horton, D.K. Prevalence of Amyotrophic Lateral Sclerosis in the United States, 2018. Amyotroph. Lateral Scler. Front. Degener. 2023, 24, 702–708. [Google Scholar] [CrossRef]
- Young, J.J.; Lavakumar, M.; Tampi, D.; Balachandran, S.; Tampi, R.R. Frontotemporal Dementia: Latest Evidence and Clinical Implications. Ther. Adv. Psychopharmacol. 2018, 8, 33–48. [Google Scholar] [CrossRef]
- Kakara, R.S.; Lee, R.; Eckstrom, E.N. Cause-Specific Mortality Among Adults Aged ≥65 Years in the United States, 1999 Through 2020. Public Health Rep. 2024, 139, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, S.; Ranson, J.M.; Peetoom, K.; Lourida, I.; Tai, X.Y.; de Vugt, M.; Llewellyn, D.J.; Köhler, S. Risk Factors for Young-Onset Dementia in the UK Biobank. JAMA Neurol. 2024, 81, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Krzyzanowski, B.; Nielsen, S.S.; Turner, J.R.; Racette, B.A. Fine Particulate Matter and Parkinson Disease Risk Among Medicare Beneficiaries. Neurology 2023, 101, e2058–e2067. [Google Scholar] [CrossRef]
- Zhang, B.; Weuve, J.; Langa, K.M.; D’souza, J.; Szpiro, A.; Faul, J.; de Leon, C.M.; Gao, J.; Kaufman, J.D.; Sheppard, L.; et al. Comparison of Particulate Air Pollution from Different Emission Sources and Incident Dementia in the U.S. S. JAMA Intern. Med. 2023, 183, 1080–1089. [Google Scholar]
- Jones, A.; Ali, M.U.; Kenny, M.; Mayhew, A.; Mokashi, V.; He, H.; Lin, S.; Yavari, E.; Paik, K.; Subramanian, D.; et al. Potentially Modifiable Risk Factors for Dementia and Mild Cognitive Impairment: An Umbrella Review and Meta-Analysis. Dement. Geriatr. Cogn. Disord. 2024, 53, 91–106. [Google Scholar] [CrossRef]
- Oh, J.Y.; Walsh, C.M.; Ranasinghe, K.; Mladinov, M.; Pereira, F.L.; Petersen, C.; Falgàs, N.; Yack, L.; Lamore, T.; Nasar, R.; et al. Subcortical Neuronal Correlates of Sleep in Neurodegenerative Diseases. JAMA Neurol. 2022, 79, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Ortiz, M.; Tellez-Rojo, M.M.; Rothenberg, S.J.; Gutiérrez-Avila, I.; Just, A.C.; Kloog, I.; Texcalac-Sangrador, J.L.; Romero-Martinez, M.; Bautista-Arredondo, L.F.; Schwartz, J.; et al. Exposure to PM2.5 and Obesity Prevalence in the Greater Mexico City Area. Int. J. Environ. Res. Public Health 2021, 18, 2301. [Google Scholar] [CrossRef] [PubMed]
- De Ruyter, T.; Martens, D.S.; Bijnens, E.M.; De Henauw, S.; Nawrot, T.S.; Michels, N. Exploring the Impact of Lifestyle and Environmental Exposures on Appetite Hormone Levels in Children and Adolescents: An Observational Study. Environ. Res. 2024, 252 Pt 1, 118846. [Google Scholar] [CrossRef]
- López-Gil, J.F.; Chen, S.; Smith, L.; Gutiérrez-Espinoza, H.; Victoria-Montesinos, D.; Iglesias, J.N.; Tárraga-López, P.J.; Mesas, A.E. What Is the Role of Particulate Matter 2.5 (PM2.5) on Excess Weight? A Cross-Sectional Study in Young Spanish People Aged 2–14 Years. Environ. Res. 2023, 216 Pt 2, 114561. [Google Scholar] [CrossRef] [PubMed]
- Paz-Aparicio, V.M.; Tapia, V.; Vasquez-Apestegui, B.V.; Steenland, K.; Gonzales, G.F. Intrauterine and Extrauterine Environmental PM2.5 Exposure Is Associated with Overweight/Obesity (O/O) in Children Aged 6 to 59 Months from Lima, Peru: A Case-Control Study. Toxics 2022, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Parasin, N.; Amnuaylojaroen, T.; Saokaew, S. Effect of Air Pollution on Obesity in Children: A Systematic Review and Meta-Analysis. Children 2021, 8, 327. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Tian, L.; Ma, D.; Wu, P.; Tang, Y.; Cui, X.; Xu, Z. Autonomic nervous function and low-grade inflammation in children with sleep-disordered breathing. Pediatr. Res. 2022, 91, 1834–1840. [Google Scholar]
- Jagadish, S.; Singer, W.; Kotagal, S. Autonomic Dysfunction in Childhood Hypersomnia Disorders. Sleep Med. 2021, 78, 43–48. [Google Scholar]
- Riganello, F.; Prada, V.; Soddu, A.; di Perri, C.; Sannita, W.G. Circadian Rhythms and Measures of CNS/Autonomic Interaction. Int. J. Environ. Res. Public Health 2019, 16, 2336. [Google Scholar] [CrossRef]
- Mansbach, P.; Fadden, J.S.P.; McGovern, L. Registry and Survey of Circadian Rhythm Sleep-Wake Disorder Patients. Sleep Med. X 2023, 21, 100100. [Google Scholar] [CrossRef]
- Liu, H.; Wang, G.; Zhang, J.; Lu, B.; Li, D.; Chen, J. Inhalation of Diesel Exhaust Particulate Matter Accelerates Weight Gain via Regulation of Hypothalamic Appetite-Related Genes and Gut Microbiota Metabolism. J. Hazard. Mater. 2024, 466, 133570. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, Y.; He, L.; Niu, Y.; Yan, N. The Association Between Trouble Sleeping and Obesity Among the U.S. Elderly from NHANES 2011–2014: A Moderated Mediation Model of Depressive Symptoms and Cognitive Function. J. Affect. Disord. 2024, 350, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Koshko, L.; Scofield, S.; Mor, G.; Sadagurski, M. Prenatal Pollutant Exposures and Hypothalamic Development: Early Life Disruption of Metabolic Programming. Front. Endocrinol. 2022, 13, 938094. [Google Scholar] [CrossRef]
- Sarimov, R.M.; Serov, D.A.; Gudkov, S.V. Biological Effects of Magnetic Storms and ELF Magnetic Fields. Biology 2023, 12, 1506. [Google Scholar] [CrossRef]
n | Average Age | Weigh | ARM50 | SIRM | IRM-300 | S300 | |
---|---|---|---|---|---|---|---|
μAm2/kg | μAm2/kg | μAm2/kg | AD * | ||||
All samples | 164 | 31.1 ± 20.5 | 0.7 ± 0.3 | 0.59 ± 2.80 | 30.7 ± 63.4 | 32.9 ± 89.0 | 1.0 ± 0.5 |
All adult samples | 109 | 40.9 ± 18.3 | 0.7 ± 0.3 | 0.68 ± 3.50 | 30.7 ± 88.6 | 31.9 ± 97.8 | 1.0 ± 0.5 |
All children samples | 55 | 12.0 ± 6.5 | 0.7 ± 0.4 | 0.41 ± 0.70 | 30.6 ± 44.4 | 35.0 ± 71.2 | 1.0 ± 0.1 |
Cortical adults | 47 | 43.9 ± 18.5 | 0.9 ± 0.3 | 0.18 ± 0.14 | 15.0 ± 13.7 | 14.6 ± 13.6 | 1.0 ± 0.1 |
Cortical children | 18 | 12.8 ± 6.2 | 0.8 ± 0.5 | 0.24 ± 0.26 | 18.7 ± 15.7 | 21.7 ± 24.0 | 1.0 ± 0.1 |
Subcortical adults | 60 | 38.8 ± 18.0 | 0.6 ± 0.3 | 1.08 ± 4.70 | 43.5 ± 117.0 | 43.5 ± 117.0 | 1.0 ± 0.1 |
Subcortical children | 35 | 11.7 ± 6.7 | 0.6 ± 0.3 | 0.51 ± 0.85 | 37.3 ± 53.0 | 42.4 ± 86.6 | 1.0 ± 0.1 |
T1 Motion adults | 119 | 45.2 ± 20.7 | NA | 0.64 ± 3.30 | 29.0 ± 75.0 | 28.5 ± 74.0 | 1.0 ± 0.1 |
T1 Motion children | 47 | 12.0 ± 6.6 | NA | 0.33 ± 0.37 | 26.0 ± 28.5 | 25.5 ± 28.0 | 1.0 ± 0.1 |
T2 Motion adults | 6 | 50.8 ± 27.3 | NA | 1.35 ± 2.80 | 96.5 ± 184.0 | 127.0 ± 262.0 | 0.9 ± 0.1 |
T2 Motion children | 4 | 8.5 ± 7.7 | NA | 0.37 ± 0.19 | 30.0 ± 18.3 | 23.4 ± 8.5 | 0.9 ± 0.1 |
T3 Motion adults | 3 | 25.0 ± 1.7 | NA | 0.35 ± 0.14 | 87.0 ± 113.0 | 40.4 ± 30.0 | 0.9 ± 0.1 |
T3 Motion children | 5 | 15.2 ± 1.09 | NA | 1.22 ± 1.90 | 86.8 ± 113.0 | 133.3 ± 217 | 0.9 ± 0.1 |
Frontal adults | 14 | 42.0 ± 19.6 | 0.9 ± 0.3 | 0.15 ± 0.10 | 13.8 ± 13.0 | 13.5 ± 12.7 | 1.0 ± 0.1 |
Frontal children | 9 | 12.6 ± 6.3 | 1.0 ± 0.4 | 0.26 ± 0.33 | 16.8 ± 19.0 | 15.8 ± 18.3 | 0.9 ± 0.1 |
Temporal adults | 21 | 42.6 ± 18.2 | 0.9 ± 0.3 | 0.23 ± 0.16 | 17.5 ± 16.6 | 17.0 ± 16.4 | 1.0 ± 0.1 |
Temporal children | 7 | 11.6 ± 6.7 | 0.7 ± 0.3 | 0.18 ± 0.08 | 20.2 ± 10.6 | 29.7 ± 31.8 | 1.0 ± 0.1 |
Cingulate anterior adults | 11 | 42.5 ± 18.5 | 0.8 ± 0.2 | 0.13 ± 0.06 | 10.5 ± 4.2 | 9.9 ± 4.3 | 0.9 ± 0.1 |
Cingulate ant children | 2 | 17 | 0.8 ± 0.2 | 0.15 ± 0.10 | 10.5 ± 6.0 | 10.2 ± 5.7 | 1.0 ± 0.1 |
Hippocampus adults | 3 | 59.6 ± 30.0 | 1.0 ± 0.3 | 0.12 ± 0.03 | 9.7 ± 3.8 | 8.3 ± 1.9 | 0.9 ± 0.1 |
Hippocampus children | 4 | 11.7 ± 7.3 | 0.4 ± 0.2 | 0.40 ± 0.25 | 40.9 ± 30.0 | 35.2 ± 27.3 | 0.9 ± 0.1 |
Thalamus/Hypothalamus adults | 5 | 29.0 ± 6.2 | 0.6 ± 0.4 | 0.34 ± 0.27 | 29.4 ± 32.2 | 26.8 ± 26.7 | 1.0 ± 0.1 |
Thalamus/Hypothalamus children | 3 | 15.6 ± 1.5 | 0.7 ± 0.3 | 1.8 ± 2.76 | 105.0 ± 161.0 | 180 ± 291 | 1.0 ± 0.1 |
Motor cortex adults | 13 | 38.2 ± 15.0 | 0.8 ± 0.3 | 0.18 ± 0.11 | 15.5 ± 14.2 | 15.2 ± 13.8 | 1.0 ± 0.1 |
Motor cortex children | 5 | 13.2 ± 6.9 | 0.7 ± 0.4 | 0.51 ± 0.60 | 35.3 ± 49.4 | 33.7 ± 48.3 | 0.9 ± 0.1 |
Brainstem sleep hubs adults | 12 | 37.0 ± 21.0 | 0.5 ± 0.2 | 0.2 ± 0.09 | 16.5 ± 8.2 | 16.5 ± 8.9 | 1 |
Brainstem sleep hubs children | 5 | 5.2 ± 6.0 | 0.4 ± 0.3 | 0.65 ± 0.60 | 49.3 ± 48.0 | 49.0 ± 48.0 | 1 |
Caudate adults | 12 | 36.5 ± 15.0 | 0.6 ± 0.1 | 3.5 ± 10.30 | 93.5 ± 223.0 | 92.0 ± 220.0 | 1.0 ± 0.1 |
Caudate children | 5 | 11.0 ± 8.2 | 0.6 ± 0.2 | 0.97 ± 0.71 | 74.7 ± 57.0 | 73.4 ± 56.0 | 1 |
Putamen adults | 12 | 40.8 ± 17.2 | 0.7 ± 0.2 | 0.43 ± 0.95 | 26.0 ± 47.4 | 25.4 ± 47.2 | 1.0 ± 0.1 |
Putamen children | 6 | 14.8 ± 5.8 | 0.6 ± 0.2 | 0.25 ± 0.23 | 21.3 ± 19.3 | 21.1 ± 19 | 1.0 ± 0.1 |
Cerebellum adults | 13 | 37.6 ± 17.4 | 0.8 ± 0.3 | 0.23 ± 0.16 | 20.2 ± 24.6 | 19.9 ± 24 | 1.0 ± 0.1 |
Cerebellum children | 9 | 12.8 ± 6.4 | 0.8 ± 0.3 | 0.17 ± 0.08 | 12.9 ± 6.2 | 12.5 ± 6.2 | 1.0 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calderón-Garcidueñas, L.; Cejudo-Ruiz, F.R.; Stommel, E.W.; González-Maciel, A.; Reynoso-Robles, R.; Silva-Pereyra, H.G.; Pérez-Guille, B.E.; Soriano-Rosales, R.E.; Torres-Jardón, R. Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites. Toxics 2025, 13, 284. https://doi.org/10.3390/toxics13040284
Calderón-Garcidueñas L, Cejudo-Ruiz FR, Stommel EW, González-Maciel A, Reynoso-Robles R, Silva-Pereyra HG, Pérez-Guille BE, Soriano-Rosales RE, Torres-Jardón R. Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites. Toxics. 2025; 13(4):284. https://doi.org/10.3390/toxics13040284
Chicago/Turabian StyleCalderón-Garcidueñas, Lilian, Fredy Rubén Cejudo-Ruiz, Elijah W. Stommel, Angélica González-Maciel, Rafael Reynoso-Robles, Héctor G. Silva-Pereyra, Beatriz E. Pérez-Guille, Rosa Eugenia Soriano-Rosales, and Ricardo Torres-Jardón. 2025. "Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites" Toxics 13, no. 4: 284. https://doi.org/10.3390/toxics13040284
APA StyleCalderón-Garcidueñas, L., Cejudo-Ruiz, F. R., Stommel, E. W., González-Maciel, A., Reynoso-Robles, R., Silva-Pereyra, H. G., Pérez-Guille, B. E., Soriano-Rosales, R. E., & Torres-Jardón, R. (2025). Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites. Toxics, 13(4), 284. https://doi.org/10.3390/toxics13040284