Risk Assessment of Micropollutants for Human and Environmental Health: Alignment with the Urban Wastewater Treatment Directive in Southeastern Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Collection of Samples
2.3. Micropollutants Analysis
2.4. Estimation of Human and Ecological Risk Quotients
2.4.1. Human Risk Quotient
2.4.2. Ecological Risk Quotient
2.4.3. Alternative Approach for Human and Ecological Risk Assessment
2.5. Statistical Analysis and Data Treatment
3. Results and Discussion
3.1. Occurrence of Micropollutants
3.2. Human and Ecological Risk Quotients
3.2.1. Human Risk Quotients
3.2.2. Ecological Risk Quotients
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADI | Acceptable Daily Intake |
AMS | Amisulpride |
BTR | Benzotriazole |
CAN | Candesartan |
CAS | Chemical Abstract Service |
CBZ | Carbamazepine |
CIT | Citalopram |
CLR | Clarithromycin |
DIC | Diclofenac |
DWEL | Drinking Water Equivalent Level |
EC50 | Effective Concentration for 50% of the population |
ECHA | European Chemicals Agency |
ERQ | Ecological Risk Quotient |
GV | Guideline Value |
HCTZ | Hydrochlorothiazide |
HRQ | Human Risk Quotient |
IARC | International Agency for Research on Cancer |
IRB | Irbesartan |
LC50 | Lethal Concentration for 50% of the population |
LOQ | Limit of Quantification |
MBTR | Methylbenzotriazole |
MEC | Measured Environmental Concentration |
MET | Metoprolol |
NOEC | No Observed Effect Concentration |
PNEC | Predicted No-Effect Concentration |
TMP | Trimethoprim |
UWWTD | Urban Wastewater Treatment Directive |
VEN | Venlafaxine |
WWTP | Wastewater Treatment Plant |
References
- Gil-Meseguer, E.; Bernabé-Crespo, M.B.; Gómez-Espín, J.M. Recycled Sewage—A Water Resource for Dry Regions of Southeastern Spain. Water Resour. Manag. 2019, 33, 725–737. [Google Scholar] [CrossRef]
- Ramm, K.; Smol, M. Water Reuse—Analysis of the Possibility of Using Reclaimed Water Depending on the Quality Class in the European Countries. Sustainability 2023, 15, 12781. [Google Scholar] [CrossRef]
- Rout, P.R.; Zhang, T.C.; Bhunia, P.; Surampalli, R.Y. Treatment Technologies for Emerging Contaminants in Wastewater Treatment Plants: A Review. Sci. Total Environ. 2021, 753, 141990. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mentha, S.S.; Misra, Y.; Dwivedi, N. Emerging Pollutants of Severe Environmental Concern in Water and Wastewater: A Comprehensive Review on Current Developments and Future Research. Water-Energy Nexus 2023, 6, 74–95. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; European Union: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX%3A52021DC0400 (accessed on 22 November 2024).
- European Parliament. Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 Concerning Urban Wastewater Treatment (Recast) (Text with EEA Relevance). Off. J. Eur. Union 2024, 19, 1–59. [Google Scholar]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and Hazardous Impact of Pharmaceutical and Personal Care Products and Antibiotics in Environment: A Review on Emerging Contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef]
- Wang, J.; Chu, L.; Wojnárovits, L.; Takács, E. Occurrence and Fate of Antibiotics, Antibiotic Resistant Genes (ARGs) and Antibiotic Resistant Bacteria (ARB) in Municipal Wastewater Treatment Plant: An Overview. Sci. Total Environ. 2020, 744, 140997. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, C.; Wang, N.; Yan, F.; Jiang, Q. Antibiotic Residues of Drinking-Water and Its Human Exposure Risk Assessment in Rural Eastern China. Popul. Med. 2023, 5, 72–73. [Google Scholar] [CrossRef]
- Wojnarowski, K.; Podobiński, P.; Cholewińska, P.; Smoliński, J.; Dorobisz, K. Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals 2021, 11, 2152. [Google Scholar] [CrossRef]
- Kim, H.J.; Koedrith, P.; Seo, Y. Ecotoxicogenomic Approaches for Understanding Molecular Mechanisms of Environmental Chemical Toxicity Using Aquatic Invertebrate, Daphnia Model Organism. Int. J. Mol. Sci. 2015, 16, 12261–12287. [Google Scholar] [CrossRef]
- Petsas, A.S.; Vagi, M.C. Effects on the Photosynthetic Activity of Algae after Exposure to Various Organic and Inorganic Pollutants: Review. In Chlorophyll; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Jiménez-Bambague, E.M.; Madera-Parra, C.A.; Machuca-Martinez, F. The Occurrence of Emerging Compounds in Real Urban Wastewater before and after the COVID-19 Pandemic in Cali, Colombia. Curr. Opin. Environ. Sci. Health 2023, 33, 100457. [Google Scholar] [CrossRef] [PubMed]
- Erhunmwunse, N.O.; Tongo, I.; Ezemonye, L.I. Acute Effects of Acetaminophen on the Developmental, Swimming Performance and Cardiovascular Activities of the African Catfish Embryos/Larvae (Clarias Gariepinus). Ecotoxicol. Environ. Saf. 2021, 208, 111482. [Google Scholar] [CrossRef] [PubMed]
- Flippin, J.L.; Huggett, D.; Foran, C.M. Changes in the Timing of Reproduction Following Chronic Exposure to Ibuprofen in Japanese Medaka, Oryzias latipes. Aquat. Toxicol. 2007, 81, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alcalá, I.; Guillén-Navarro, J.M.; Lahora, A. Occurrence and Fate of Pharmaceuticals in a Wastewater Treatment Plant from Southeast of Spain and Risk Assessment. J. Environ. Manag. 2021, 279, 111565. [Google Scholar] [CrossRef]
- Sharma, B.M.; Bečanová, J.; Scheringer, M.; Sharma, A.; Bharat, G.K.; Whitehead, P.G.; Klánová, J.; Nizzetto, L. Health and Ecological Risk Assessment of Emerging Contaminants (Pharmaceuticals, Personal Care Products, and Artificial Sweeteners) in Surface and Groundwater (Drinking Water) in the Ganges River Basin, India. Sci. Total Environ. 2019, 646, 1459–1467. [Google Scholar] [CrossRef]
- Kondor, A.C.; Molnár, É.; Vancsik, A.; Filep, T.; Szeberényi, J.; Szabó, L.; Maász, G.; Pirger, Z.; Weiperth, A.; Ferincz, Á.; et al. Occurrence and Health Risk Assessment of Pharmaceutically Active Compounds in Riverbank Filtrated Drinking Water. J. Water Process Eng. 2021, 41, 102039. [Google Scholar] [CrossRef]
- Riva, F.; Zuccato, E.; Davoli, E.; Fattore, E.; Castiglioni, S. Risk Assessment of a Mixture of Emerging Contaminants in Surface Water in a Highly Urbanized Area in Italy. J. Hazard. Mater. 2019, 361, 103–110. [Google Scholar] [CrossRef]
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization/International Electrotechnical Committee: Geneva, Switzerland, 2006.
- DIN 38407-47; Bestimmung Ausgewählter Arzneimittelwirkstoffe und Weitere Organischer Stoffe—Verfahren Mittels HPLCMS/MS Oder—HRMS Nach Direktinjektion. Beuth Verlag: Berlin, Germany, 2017.
- Morrissey Donohue, J.; Orme-Zavaleta, J. Toxicological Basis for Drinking Water Risk Assessment. In Drinking Water Regulation and Health; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 131–146. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Toor, G.S.; Wilson, P.C.; Williams, C.F. Micropollutants in Groundwater from Septic Systems: Transformations, Transport Mechanisms, and Human Health Risk Assessment. Water Res. 2017, 123, 258–267. [Google Scholar] [CrossRef]
- Charoo, N.A.; Ali, A.A.; Buha, S.K.; Rahman, Z. Lesson Learnt from Recall of Valsartan and Other Angiotensin II Receptor Blocker Drugs Containing NDMA and NDEA Impurities. AAPS PharmSciTech 2019, 20, 166. [Google Scholar] [CrossRef]
- Silva, L.J.G.; Pereira, A.M.P.T.; Rodrigues, H.; Meisel, L.M.; Lino, C.M.; Pena, A. SSRIs Antidepressants in Marine Mussels from Atlantic Coastal Areas and Human Risk Assessment. Sci. Total Environ. 2017, 603–604, 118–125. [Google Scholar] [CrossRef]
- Bouzas-Monroy, A.; Wilkinson, J.L.; Melling, M.; Boxall, A.B.A. Assessment of the Potential Ecotoxicological Effects of Pharmaceuticals in the World’s Rivers. Environ. Toxicol. Chem. 2022, 41, 2008–2020. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yin, H.; Wu, Q. Occurrence and Health Risk Assessment of Pharmaceutical and Personal Care Products (PPCPs) in Tap Water of Shanghai. Ecotoxicol. Environ. Saf. 2019, 183, 109497. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.-L.; Fu, J.; Ji, X.; Zhang, J.; He, Z.; Yang, G.-P. Comprehensive Analysis of Benzothiazoles (BTHs), Benzotriazoles (BTRs), and Benzotriazole Ultraviolet Absorbers (BUVs) in the Western South China Sea: Spatial Distributions, Migration Tendencies and Ecotoxicological Relevance. Water Res. 2024, 266, 122372. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; He, S.; Lu, S.; Liao, X.; Song, Y.; Chen, Z.-F.; Zhang, G.; Li, R.; Dong, C.; Qi, Z.; et al. Pollution Characteristics, Exposure Assessment and Potential Cardiotoxicities of PM2.5-Bound Benzotriazole and Its Derivatives in Typical Chinese Cities. Sci. Total Environ. 2022, 809, 151132. [Google Scholar] [CrossRef]
- Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D. Environmental Risk Assessment of Pharmaceutical Residues in Wastewater Effluents, Surface Waters and Sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Ma, L.; Han, C.; Ma, L.; Han, C. Water Quality Ecological Risk Assessment with Sedimentological Approach. In Water Quality—Science, Assessments and Policy; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Munné, A.; Solà, C.; Ejarque, E.; Sanchís, J.; Serra, P.; Corbella, I.; Aceves, M.; Galofré, B.; Boleda, M.R.; Paraira, M.; et al. Indirect Potable Water Reuse to Face Drought Events in Barcelona City. Setting a Monitoring Procedure to Protect Aquatic Ecosystems and to Ensure a Safe Drinking Water Supply. Sci. Total Environ. 2023, 866, 161339. [Google Scholar] [CrossRef]
- NRMMC; EPHC; NHMRC. Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 2)—Augmentation of Drinking Water Supplies. In National Water Quality Management Strategy; No. Phase 2; 2008; p. 174. Available online: https://www.nhmrc.gov.au/about-us/publications/australian-guidelines-water-recycling (accessed on 27 May 2024).
- Singh, V.; Suthar, S. Occurrence, Seasonal Variations, and Ecological Risk of Pharmaceuticals and Personal Care Products in River Ganges at Two Holy Cities of India. Chemosphere 2021, 268, 129331. [Google Scholar] [CrossRef]
- Jurado, A.; Labad, F.; Scheiber, L.; Criollo, R.; Nikolenko, O.; Pérez, S.; Ginebreda, A. Occurrence of Pharmaceuticals and Risk Assessment in Urban Groundwater. Adv. Geosci. 2022, 59, 1–7. [Google Scholar] [CrossRef]
- Anand, U.; Adelodun, B.; Cabreros, C.; Kumar, P.; Suresh, S.; Dey, A.; Ballesteros, F.; Bontempi, E. Occurrence, Transformation, Bioaccumulation, Risk and Analysis of Pharmaceutical and Personal Care Products from Wastewater: A Review. Environ. Chem. Lett. 2022, 20, 3883–3904. [Google Scholar] [CrossRef]
- Castro, G.; Rodríguez, I.; Ramil, M.; Cela, R. Selective Determination of Sartan Drugs in Environmental Water Samples by Mixed-Mode Solid-Phase Extraction and Liquid Chromatography Tandem Mass Spectrometry. Chemosphere 2019, 224, 562–571. [Google Scholar] [CrossRef]
- Struk-Sokołowska, J.; Gwoździej-Mazur, J.; Jurczyk, Ł.; Jadwiszczak, P.; Kotowska, U.; Piekutin, J.; Canales, F.A.; Kaźmierczak, B. Environmental Risk Assessment of Low Molecule Benzotriazoles in Urban Road Rainwaters in Poland. Sci. Total Environ. 2022, 839, 156246. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Park, S.; Choi, B.; Oh, J.-E. Occurrence and Removal of Benzotriazole and Benzothiazole in Drinking Water Treatment Plants. Environ. Pollut. 2023, 316, 120563. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.-Q.; Liu, Y.-S.; Xiong, Q.; Cai, W.-W.; Ying, G.-G. Occurrence, Toxicity and Transformation of Six Typical Benzotriazoles in the Environment: A Review. Sci. Total Environ. 2019, 661, 407–421. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, S.; Liu, X.; Tian, L.; Mo, Y.; Yi, X.; Liu, S.; Liu, J.; Li, J.; Zhang, G. Aquatic Environmental Fates and Risks of Benzotriazoles, Benzothiazoles, and p-Phenylenediamines in a Catchment Providing Water to a Megacity of China. Environ. Res. 2023, 216, 114721. [Google Scholar] [CrossRef]
- Bilal, M.; Adeel, M.; Rasheed, T.; Zhao, Y.; Iqbal, H.M.N. Emerging Contaminants of High Concern and Their Enzyme-Assisted Biodegradation—A Review. Environ. Int. 2019, 124, 336–353. [Google Scholar] [CrossRef]
- Díaz-Gamboa, L.; Martínez-López, S.; Ayuso-García, L.M.; Lahora, A.; Martínez-Alcalá, I. Can Lagoons Serve as a Quaternary Treatment for Micropollutants in Wastewater Treatment Plants? Recent Implications for Compliance with the New Urban Wastewater Treatment Directive. Environments 2024, 11, 105. [Google Scholar] [CrossRef]
- Shaliutina-Kolešová, A.; Shaliutina, O.; Nian, R. The Effects of Environmental Antidepressants on Macroinvertebrates: A Mini Review. Water Environ. J. 2020, 34, 153–159. [Google Scholar] [CrossRef]
- Arnold, K.E.; Brown, A.R.; Brown, A.R.; Ankley, G.T.; Sumpter, J.P. Medicating the Environment: Assessing Risks of Pharmaceuticals to Wildlife and Ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130569. [Google Scholar] [CrossRef]
- Mheidli, N.; Malli, A.; Mansour, F.; Al-Hindi, M. Occurrence and Risk Assessment of Pharmaceuticals in Surface Waters of the Middle East and North Africa: A Review. Sci. Total Environ. 2022, 851, 158302. [Google Scholar] [CrossRef]
- Lopez, F.J.; Pitarch, E.; Botero-Coy, A.M.; Fabregat-Safont, D.; Ibáñez, M.; Marin, J.M.; Peruga, A.; Ontañón, N.; Martínez-Morcillo, S.; Olalla, A.; et al. Removal Efficiency for Emerging Contaminants in a WWTP from Madrid (Spain) after Secondary and Tertiary Treatment and Environmental Impact on the Manzanares River. Sci. Total Environ. 2022, 812, 152567. [Google Scholar] [CrossRef]
- Ladhari, A.; La Mura, G.; Di Marino, C.; Di Fabio, G.; Zarrelli, A. Sartans: What They Are for, How They Degrade, Where They Are Found and How They Transform. Sustain. Chem. Pharm. 2021, 20, 100409. [Google Scholar] [CrossRef]
- Ramírez-Morales, D.; Masís-Mora, M.; Montiel-Mora, J.R.; Cambronero-Heinrichs, J.C.; Briceño-Guevara, S.; Rojas-Sánchez, C.E.; Méndez-Rivera, M.; Arias-Mora, V.; Tormo-Budowski, R.; Brenes-Alfaro, L.; et al. Occurrence of Pharmaceuticals, Hazard Assessment and Ecotoxicological Evaluation of Wastewater Treatment Plants in Costa Rica. Sci. Total Environ. 2020, 746, 141200. [Google Scholar] [CrossRef] [PubMed]
- Blair, B.; Nikolaus, A.; Hedman, C.; Klaper, R.; Grundl, T. Evaluating the Degradation, Sorption, and Negative Mass Balances of Pharmaceuticals and Personal Care Products during Wastewater Treatment. Chemosphere 2015, 134, 395–401. [Google Scholar] [CrossRef]
- Afonso-Olivares, C.; Sosa-Ferrera, Z.; Santana-Rodríguez, J.J. Occurrence and Environmental Impact of Pharmaceutical Residues from Conventional and Natural Wastewater Treatment Plants in Gran Canaria (Spain). Sci. Total Environ. 2017, 599–600, 934–943. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, J.-L.; Liu, Y.-S.; Zhang, Q.-Q.; Jiang, Y.-X.; Liu, S.; Liu, W.-R.; Yang, Y.-Y.; Ying, G.-G. Personal Care Products in Wild Fish in Two Main Chinese Rivers: Bioaccumulation Potential and Human Health Risks. Sci. Total Environ. 2018, 621, 1093–1102. [Google Scholar] [CrossRef]
- Feng, L.; Cheng, Y.; Zhang, Y.; Li, Z.; Yu, Y.; Feng, L.; Zhang, S.; Xu, L. Distribution and Human Health Risk Assessment of Antibiotic Residues in Large-Scale Drinking Water Sources in Chongqing Area of the Yangtze River. Environ. Res. 2020, 185, 109386. [Google Scholar] [CrossRef]
- Beltrán de Heredia, I.; González-Gaya, B.; Zuloaga, O.; Garrido, I.; Acosta, T.; Etxebarria, N.; Ruiz-Romera, E. Occurrence of Emerging Contaminants in Three River Basins Impacted by Wastewater Treatment Plant Effluents: Spatio-Seasonal Patterns and Environmental Risk Assessment. Sci. Total Environ. 2024, 946, 174062. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, C.; Zhou, C.; Li, W.; Qian, Y.; Wen, J.; Wang, Y.; Han, B.; Ma, J.; Xu, J.; et al. Benzotriazole Enhances Cell Invasive Potency in Endometrial Carcinoma Through CTBP1-Mediated Epithelial-Mesenchymal Transition. Cell. Physiol. Biochem. 2017, 44, 2357–2367. [Google Scholar] [CrossRef]
- Zhao, M.-L.; Ji, X.; He, Z.; Yang, G.-P. Spatial Distribution, Partitioning, and Ecological Risk Assessment of Benzotriazoles, Benzothiazoles, and Benzotriazole UV Absorbers in the Eastern Shelf Seas of China. Water Res. 2024, 248, 120885. [Google Scholar] [CrossRef]
- Cantwell, M.G.; Sullivan, J.C.; Burgess, R.M. Chapter 16—Benzotriazoles: History, Environmental Distribution, and Potential Ecological Effects. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2015; Volume 67, pp. 513–545. [Google Scholar] [CrossRef]
- Liu, X.; Pei, X.; Li, J.; Wei, Y.; Sun, H.; Wu, Z.; Wang, S.; Chen, J.; Lin, Z.; Yao, Z. Occurrence, Spatial Distribution, and Ecological Risk of Benzotriazole UV Stabilizers (BUVs) in Sediments from Bohai Sea of China. Environ. Res. 2024, 260, 119730. [Google Scholar] [CrossRef]
- Burke, V.; Greskowiak, J.; Grünenbaum, N.; Massmann, G. Redox and Temperature Dependent Attenuation of Twenty Organic Micropollutants—A Systematic Column Study. Water Environ. Res. 2017, 89, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Zhao, J.-L.; Liu, Y.-S.; Yang, Y.-Y.; Liu, W.-R.; Ying, G.-G. Simultaneous Determination of 24 Personal Care Products in Fish Muscle and Liver Tissues Using QuEChERS Extraction Coupled with Ultra Pressure Liquid Chromatography-Tandem Mass Spectrometry and Gas Chromatography-Mass Spectrometer Analyses. Anal. Bioanal. Chem. 2016, 408, 8177–8193. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Lv, Y.-Z.; Zhang, L.-J.; Liu, W.-R.; Zhao, J.-L.; Liu, Y.-S.; Zhang, Q.-Q.; Ying, G.-G. Determination of 24 Personal Care Products in Fish Bile Using Hybrid Solvent Precipitation and Dispersive Solid Phase Extraction Cleanup with Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry and Gas Chromatography-Mass Spectrometry. J. Chromatogr. A 2018, 1551, 29–40. [Google Scholar] [CrossRef]
- Kavitha, V. Global Prevalence and Visible Light Mediated Photodegradation of Pharmaceuticals and Personal Care Products (PPCPs)-a Review. Results Eng. 2022, 14, 100469. [Google Scholar] [CrossRef]
- Wang, K.; Li, K.-Z.; Zhou, Y.-Y.; Liu, Z.-H.; Xue, G.; Gao, P. Adsorption characteristics of typical PPCPs onto river sediments and its influencing factors. Huan Jing Ke Xue = Huanjing Kexue 2015, 36, 847–854. [Google Scholar]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of Environmental Wastes: The Role of Microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, Ecotoxicological Effects and Risk Assessment of Antihypertensive Pharmaceutical Residues in the Aquatic Environment—A Review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef]
- Kim, J.W.; Ishibashi, H.; Yamauchi, R.; Ichikawa, N.; Takao, Y.; Hirano, M.; Koga, M.; Arizono, K. Acute Toxicity of Pharmaceutical and Personal Care Products on Freshwater Crustacean (Thamnocephalus platyurus) and Fish (Oryzias latipes). J. Toxicol. Sci. 2009, 34, 227–232. [Google Scholar] [CrossRef]
- Liwarska-Bizukojc, E. Evaluation of Ecotoxicity of Wastewater from the Full-Scale Treatment Plants. Water 2022, 14, 3345. [Google Scholar] [CrossRef]
- Thompson, W.A.; Vijayan, M.M. Environmental Levels of Venlafaxine Impact Larval Behavioural Performance in Fathead Minnows. Chemosphere 2020, 259, 127437. [Google Scholar] [CrossRef]
- Kayode-Afolayan, S.D.; Ahuekwe, E.F.; Nwinyi, O.C. Impacts of Pharmaceutical Effluents on Aquatic Ecosystems. Sci. African 2022, 17, e01288. [Google Scholar] [CrossRef]
- Martínez-Alcalá, I.; Soto, J.; Lahora, A. Antibióticos Como Contaminantes Emergentes. Riesgo Ecotoxicológico y Control En Aguas Residuales y Depuradas. Ecosistemas 2020, 29, 2070. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Varela Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic Residues in Final Effluents of European Wastewater Treatment Plants and Their Impact on the Aquatic Environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- Wang, K.; Reguyal, F.; Zhuang, T. Risk Assessment and Investigation of Landfill Leachate as a Source of Emerging Organic Contaminants to the Surrounding Environment: A Case Study of the Largest Landfill in Jinan City, China. Environ. Sci. Pollut. Res. 2021, 28, 18368–18381. [Google Scholar] [CrossRef]
- Argaluza, J.; Domingo-Echaburu, S.; Orive, G.; Medrano, J.; Hernandez, R.; Lertxundi, U. Environmental Pollution with Psychiatric Drugs. World J. Psychiatry 2021, 11, 791–804. [Google Scholar] [CrossRef]
- Thompson, W.A.; Shvartsburd, Z.; Vijayan, M.M. Sex-Specific and Long-Term Impacts of Early-Life Venlafaxine Exposure in Zebrafish. Biology 2022, 11, 250. [Google Scholar] [CrossRef]
- Atzei, A.; Jense, I.; Zwart, E.P.; Legradi, J.; Venhuis, B.J.; van der Ven, L.T.M.; Heusinkveld, H.J.; Hessel, E.V.S. Developmental Neurotoxicity of Environmentally Relevant Pharmaceuticals and Mixtures Thereof in a Zebrafish Embryo Behavioural Test. Int. J. Environ. Res. Public Health 2021, 18, 6717. [Google Scholar] [CrossRef]
- Guiloski, I.C.; Stein Piancini, L.D.; Dagostim, A.C.; de Morais Calado, S.L.; Fávaro, L.F.; Boschen, S.L.; Cestari, M.M.; da Cunha, C.; Silva de Assis, H.C. Effects of Environmentally Relevant Concentrations of the Anti-Inflammatory Drug Diclofenac in Freshwater Fish Rhamdia Quelen. Ecotoxicol. Environ. Saf. 2017, 139, 291–300. [Google Scholar] [CrossRef]
- Xie, C.-T.; Tan, M.-L.; Li, Y.-W.; Chen, Q.-L.; Shen, Y.-J.; Liu, Z.-H. Chronic Exposure to Environmentally Relevant Concentrations of Carbamazepine Interferes with Anxiety Response of Adult Female Zebrafish through GABA/5-HT Pathway and HPI Axis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 266, 109574. [Google Scholar] [CrossRef]
- Xie, Z.; Lu, G.; Yan, Z.; Liu, J.; Wang, P.; Wang, Y. Bioaccumulation and Trophic Transfer of Pharmaceuticals in Food Webs from a Large Freshwater Lake. Environ. Pollut. 2017, 222, 356–366. [Google Scholar] [CrossRef]
- Huerta, B.; Rodriguez-Mozaz, S.; Lazorchak, J.; Barcelo, D.; Batt, A.; Wathen, J.; Stahl, L. Presence of Pharmaceuticals in Fish Collected from Urban Rivers in the U.S. EPA 2008–2009 National Rivers and Streams Assessment. Sci. Total Environ. 2018, 634, 542–549. [Google Scholar] [CrossRef] [PubMed]
- Ziylan-Yavas, A.; Santos, D.; Flores, E.M.M.; Ince, N.H. Pharmaceuticals and Personal Care Products (PPCPs): Environmental and Public Health Risks. Environ. Prog. Sustain. Energy 2022, 41, e13821. [Google Scholar] [CrossRef]
- Ojemaye, C.Y.; Petrik, L. Occurrences, Levels and Risk Assessment Studies of Emerging Pollutants (Pharmaceuticals, Perfluoroalkyl and Endocrine Disrupting Compounds) in Fish Samples from Kalk Bay Harbour, South Africa. Environ. Pollut. 2019, 252, 562–572. [Google Scholar] [CrossRef]
- Memmert, U.; Peither, A.; Burri, R.; Weber, K.; Schmidt, T.; Sumpter, J.P.; Hartmann, A. Diclofenac: New Data on Chronic Toxicity and Bioconcentration in Fish. Environ. Toxicol. Chem. 2013, 32, 442–452. [Google Scholar] [CrossRef]
- Mehinto, A.C.; Hill, E.M.; Tyler, C.R. Uptake and Biological Effects of Environmentally Relevant Concentrations of the Nonsteroidal Anti-Inflammatory Pharmaceutical Diclofenac in Rainbow Trout (Oncorhynchus mykiss). Environ. Sci. Technol. 2010, 44, 2176–2182. [Google Scholar] [CrossRef]
- Hong, H.N.; Kim, H.N.; Park, K.S.; Lee, S.-K.; Gu, M.B. Analysis of the Effects Diclofenac Has on Japanese Medaka (Oryzias latipes) Using Real-Time PCR. Chemosphere 2007, 67, 2115–2121. [Google Scholar] [CrossRef]
- Song, X.; Wen, Y.; Wang, Y.; Adeel, M.; Yang, Y. Environmental Risk Assessment of the Emerging EDCs Contaminants from Rural Soil and Aqueous Sources: Analytical and Modelling Approaches. Chemosphere 2018, 198, 546–555. [Google Scholar] [CrossRef]
Category | Compound | CAS N° | ADI µg/(kg bw Day) | DWEL (µg/L) | PNEC (µg/L) | ||||
---|---|---|---|---|---|---|---|---|---|
1–2 Years | 16–21 Years | >21 Years | Fish | Daphnia | Algae | ||||
Category 1 | Amisulpride a | 71675-85-9 | 1020 | 14,436 | 38,466 | 29,943 | - | - | - |
Carbamazepine b | 298-46-4 | 0.340 | 4.812 | 13 | 10 | 35 | 14 | 34 | |
Citalopram de | 59729-33-8 | 0.001 | 0.011 | 0.029 | 0.023 | 9.136 | 3.900 | 1.598 | |
Clarithromycin a | 81103-11-9 | 1230 | 17,408 | 46,385 | 36,108 | 1000 | 8.16 | 0.040 | |
Diclofenac b | 15307-86-5 | 67 | 948 | 2527 | 1967 | 530 | 22 | 15 | |
Hydrochlorothiazide b | 58-93-5 | 25 | 354 | 943 | 734 | 18,680 | 8740 | 2920 | |
Metoprolol a | 51384-51-1 | 1050 | 14,861 | 39,597 | 30,824 | 0.267 | 64 | 73 | |
Venlafaxine ef | 93413-69-5 | 5.401 | 76 | 204 | 159 | 100 | 38 | 4.800 | |
Category 2 | Benzotriazole a | 95-14-7 | 1900 | 26,891 | 71,652 | 55,776 | 46 | 13 | 25 |
Candesartan a | 139481-59-7 | 2000 | 28,306 | 75,423 | 58,712 | - | - | - | |
Irbesartan c | 138402-11-6 | 0.096 | 1.359 | 3.620 | 2.818 | 0.429 | - | - | |
Methylbenzotriazole a | 29385-43-1 | 300 | 4245 | 11,313 | 8806 | - | - | - | |
4-Methylbenzotriazole gh | 29878-31-7 | 30 | 419 | 1116 | 869 | 197 | 109 | 73 | |
5-Methylbenzotriazole ag | 136-85-6 | 262 | 3708 | 9880 | 7691 | 197 | 94 | 73 |
Compound | Reclaimed Water | Surface Water | Groundwater | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FRO (%) | Min–Max (µg/L) | Mean (SD) (µg/L) | SE | FRO (%) | Min–Max (µg/L) | Mean (SD) (µg/L) | SE | FRO (%) | Min–Max (µg/L) | Mean (SD) (µg/L) | SE | |
Amisulpride (AMP) | 17 | 0.004–0.026 | 0.008 (0.008) | 0.002 | 60 | 0.015–0.052 | 0.033 (0.015) | 0.005 | ND | <LOQ | <LOQ | NA |
Carbamazepine (CBZ) | 88 | 0.018–0.170 | 0.132 (0.051) | 0.015 | 50 | 0.006–0.078 | 0.023 (0.020) | 0.007 | ND | <LOQ | <LOQ | NA |
Citalopram (CTP) | 83 | 0.044–0.150 | 0.120 (0.053) | 0.015 | ND | <LOQ | <LOQ | NA | ND | <LOQ | <LOQ | NA |
Clarithromycin (CLA) | 25 | 0.003–0.060 | 0.019 (0.020) | 0.006 | 22 | 0.002–0.020 | 0.006 (0.005) | 0.002 | ND | <LOQ | <LOQ | NA |
Diclofenac (DIC) | 88 | 0.070–0.360 | 0.147 (0.095) | 0.027 | 33 | 0.007–0.080 | 0.024 (0.022) | 0.008 | 13 | 0.003–0.070 | 0.014 (0.023) | 0.006 |
Hydrochlorothiazide (HCTZ) | 100 | 0.060–1.000 | 0.337 (0.316) | 0.091 | 60 | 0.012–0.270 | 0.194 (0.093) | 0.033 | ND | <LOQ | <LOQ | NA |
Metoprolol (MET) | 17 | 0.002–0.020 | 0.008 (0.008) | 0.002 | ND | <LOQ | <LOQ | NA | ND | <LOQ | <LOQ | NA |
Venlafaxine (VEN) | 88 | 0.130–1.300 | 0.349 (0.367) | 0.106 | 56 | 0.011–0.088 | 0.036 (0.027) | 0.010 | ND | <LOQ | <LOQ | NA |
Benzotriazole (BTR) | 100 | 0.900–2.600 | 1.498 (0.654) | 0.189 | 80 | 0.040–0.320 | 0.182 (0.091) | 0.032 | 83 | 0.020–0.080 | 0.074 (0.045) | 0.016 |
Candesartan (CAN) | 100 | 1.300–2.400 | 1.783 (0.398) | 0.141 | 80 | 0.210–2.800 | 1.534 (1.043) | 0.369 | 83 | 0.060–0.210 | 0.191 (0.110) | 0.039 |
Irbesartan (IRB) | 71 | 0.082–1.500 | 0.753 (0.563) | 0.230 | 60 | 0.015–0.640 | 0.348 (0.220) | 0.090 | 17 | 0.021–0.046 | 0.025 (0.009) | 0.004 |
Methylbenzotriazole (MBTR) | 100 | 0.501–1.080 | 0.702 (0.218) | 0.063 | 100 | 0.018–0.260 | 0.192 (0.092) | 0.032 | 17 | 0.003–1.640 | 0.276 (0.601) | 0.193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Gamboa, L.; Lahora, A.; Martínez-López, S.; Ayuso-García, L.M.; Martínez-Alcalá, I. Risk Assessment of Micropollutants for Human and Environmental Health: Alignment with the Urban Wastewater Treatment Directive in Southeastern Spain. Toxics 2025, 13, 275. https://doi.org/10.3390/toxics13040275
Díaz-Gamboa L, Lahora A, Martínez-López S, Ayuso-García LM, Martínez-Alcalá I. Risk Assessment of Micropollutants for Human and Environmental Health: Alignment with the Urban Wastewater Treatment Directive in Southeastern Spain. Toxics. 2025; 13(4):275. https://doi.org/10.3390/toxics13040275
Chicago/Turabian StyleDíaz-Gamboa, Lissette, Agustín Lahora, Sofía Martínez-López, Luis Miguel Ayuso-García, and Isabel Martínez-Alcalá. 2025. "Risk Assessment of Micropollutants for Human and Environmental Health: Alignment with the Urban Wastewater Treatment Directive in Southeastern Spain" Toxics 13, no. 4: 275. https://doi.org/10.3390/toxics13040275
APA StyleDíaz-Gamboa, L., Lahora, A., Martínez-López, S., Ayuso-García, L. M., & Martínez-Alcalá, I. (2025). Risk Assessment of Micropollutants for Human and Environmental Health: Alignment with the Urban Wastewater Treatment Directive in Southeastern Spain. Toxics, 13(4), 275. https://doi.org/10.3390/toxics13040275