Synergistic Toxicity of Fine Particulate Matter and Ozone and Their Underlying Mechanisms
Abstract
1. Introduction
2. Current Status of PM2.5 and Ozone Pollution
3. Epidemiological Investigation on Combined Exposure of PM2.5 and Ozone
3.1. Mortality
3.2. Respiratory System Diseases
3.3. Cardiovascular Diseases
3.4. Neurological Disorders
3.5. Reproductive System Diseases
4. Toxicological Effects of PM2.5 and Ozone Combination on Animal Models
4.1. Respiratory Toxicity
4.2. Toxic Effects on the Cardiovascular and Cerebrovascular System
5. Mechanism of PM2.5 and Ozone-Induced Damage
5.1. Impact of Ozone on the Physicochemical Properties of PM2.5
5.2. Damage to Biological Barrier Induced by the Interaction Between PM2.5 and Ozone
5.3. Inflammatory Response Induced by the Combination of PM2.5 and Ozone
5.4. Oxidative Stress Induced by the Combination of PM2.5 and Ozone
6. Conclusions
7. Implications and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Lavigne, E.; Correa, P.M.; Ortega, N.V.; Achilleos, S.; et al. Interactive Effects of Ambient Fine Particulate Matter and Ozone on Daily Mortality in 372 Cities: Two Stage Time Series Analysis. BMJ-Brit. Med. J. 2023, 383, e075203. [Google Scholar] [CrossRef]
- Three-Year Action Plan for Winning the Blue Sky Defense Battle. Available online: https://www.gov.cn/zhengce/content/2018-07/03/content_5303158.html (accessed on 11 December 2024).
- Ten Rules for the Atmosphere. Available online: https://www.gov.cn/zhengce/202312/content_6920039.html (accessed on 1 January 2025).
- Xiang, W.; Wang, W.; Du, L.; Zhao, B.; Liu, X.; Zhang, X.; Yao, L.; Ge, M. Toxicological Effects of Secondary Air Pollutants. Chem. Res. Chin. Univ. 2023, 39, 326–341. [Google Scholar] [CrossRef]
- Ran, Z.; Wang, X.; Yin, X.; Liu, Y.; Han, M.; Cheng, Y.; Han, J.; Jin, T. Comparison of PM2.5 Components and Secondary Formation during the Heavily Polluted Period of Two Megacities in China. Int. J. Environ. Sci. Technol. 2024, 21, 885–894. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Clemitshaw, K.C. Ozone and Other Secondary Photochemical Pollutants: Chemical Processes Governing Their Formation in the Planetary Boundary Layer. Atmos. Environ. 2000, 34, 2499–2527. [Google Scholar] [CrossRef]
- Doherty, R.M. Ozone Pollution from near and Far. Nat. Geosci. 2015, 8, 664–665. [Google Scholar] [CrossRef]
- Thangavel, P.; Park, D.; Lee, Y.-C. Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [CrossRef]
- Huibin, D.; Jia, Z.; Hong, L.; Jiandong, L.; Muxue, L.; Yang, Y.; Yue, X. Co-occurrence of ozone and PM2.5 pollution in the Yangtze River Delta over 2013–2019: Spatiotemporal distribution and meteorological conditions. Atmos. Res. 2021, 249, 105363. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Liu, X.; Shi, J. Enhancement of Atmospheric Oxidation Capacity Induced Co-Pollution of the O3 and PM2.5 in Lanzhou, Northwest China. Environ. Pollut. 2024, 341, 122951. [Google Scholar] [CrossRef]
- Ma, X.; Yin, Z.; Cao, B.; Wang, H. Meteorological Influences on Co-Occurrence of O3 and PM2.5 Pollution and Implication for Emission Reductions in Beijing-Tianjin-Hebei. Sci. China Earth Sci. 2023, 66, 1258–1267. [Google Scholar] [CrossRef]
- Gao, L.; Yue, X.; Meng, X.; Du, L.; Lei, Y.; Tian, C.; Qiu, L. Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and Background Sites in China. Adv. Atmos. Sci. 2020, 37, 1297–1309. [Google Scholar] [CrossRef]
- Shao, M.; Yang, J.; Wang, J.; Chen, P.; Liu, B.; Dai, Q. Co-Occurrence of Surface O3, PM2.5 Pollution, and Tropical Cyclones in China. J. Geophys. Res. Atmos. 2022, 127, e2021JD036310. [Google Scholar] [CrossRef]
- Vicedo-Cabrera, A.M.; Sera, F.; Liu, C.; Armstrong, B.; Milojevic, A.; Guo, Y.; Tong, S.; Lavigne, E.; Kyselý, J.; Urban, A.; et al. Short Term Association between Ozone and Mortality: Global Two Stage Time Series Study in 406 Locations in 20 Countries. BMJ 2020, 368, m108. [Google Scholar] [CrossRef] [PubMed]
- Monks, P.S.; Archibald, A.T.; Colette, A.; Cooper, O.; Coyle, M.; Derwent, R.; Fowler, D.; Granier, C.; Law, K.S.; Mills, G.E.; et al. Tropospheric Ozone and Its Precursors from the Urban to the Global Scale from Air Quality to Short-Lived Climate Forcer. Atmos. Chem. Phys. 2015, 15, 8889–8973. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Zhu, J.; Shah, V.; Shen, L.; Bates, K.H.; Zhang, Q.; Zhai, S. A Two-Pollutant Strategy for Improving Ozone and Particulate Air Quality in China. Nat. Geosci. 2019, 12, 906–910. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, H.; Gao, J.; Li, H. Formation Mechanism and Management Strategy of Cooperative Control of PM2.5 and O3. Res. Environ. Sci. 2022, 35, 611–620. (In Chinese) [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Wei, J.; Shu, L.; Jin, J.; Fu, T.-M.; Yang, X.; Zhu, L. Short-Term Exposure to Fine Particulate Matter and Ozone: Source Impacts and Attributable Mortalities. Environ. Sci. Technol. 2024, 58, 11256–11267. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Final Reconsideration of the National Ambient Air Quality Standards for Particulate Matter (PM); EPA: Washington, DC, USA, 2024.
- Ministry of Ecology and Environment of the People’s Republic of China. The 2023 report on the State of the Ecology and Environment in China; Ministry of Ecology and Environment, People’s Republic of China: Beijing, China, 2024.
- WHO. WHO Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003566-9. [Google Scholar]
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- He, C.; Liu, J.; Zhou, Y.; Zhou, J.; Zhang, L.; Wang, Y.; Liu, L.; Peng, S. Synergistic PM2.5 and O3 control to address the emerging global PM2.5-O3 compound pollution challenges. EEH 2024, 3, 325–337. [Google Scholar] [CrossRef]
- American Lung Association 2024 ‘State of the Air’ Report Reveals Most ‘Hazardous’ Air Quality Days in 25 Years. Available online: https://www.lung.org/media/press-releases/sota-2024 (accessed on 21 January 2025).
- Lyu, Y.; Wu, H.; Liu, X.; Han, F.; Lv, F.; Pang, X.; Chen, J. Co-Occurring Extremes of Fine Particulate Matter (PM2.5) and Ground-Level Ozone in the Summer of Southern China. Geophys. Res. Lett. 2024, 51, e2023GL106527. [Google Scholar] [CrossRef]
- Aishan, T.; Sun, Y.; Halik, Ü.; Betz, F.; Yusup, A.; Rezhake, R. Spatiotemporal Changes in Fine Particulate Matter and Ozone in the Oasis City of Korla, Northeastern Tarim Basin of China. Sci. Rep. 2024, 14, 12904. [Google Scholar] [CrossRef]
- Andersson, T.; Alfredsson, L.; Källberg, H.; Zdravkovic, S.; Ahlbom, A. Calculating Measures of Biological Interaction. Eur. J. Epidemiol. 2005, 20, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhou, J.; Han, R.; Wang, Y.; Lian, X.; Tang, Z.; Ye, J.; He, X.; Yu, H.; Huang, S.; et al. Association of Short-Term Co-Exposure to Particulate Matter and Ozone with Mortality Risk. Environ. Sci. Technol. 2023, 57, 15825–15834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yin, Z.; Li, S.; Zhang, J.; Sun, H.Z.; Liu, K.; Shirai, K.; Hu, K.; Qiu, C.; Liu, X.; et al. Ambient PM2.5, Ozone and Mortality in Chinese Older Adults: A Nationwide Cohort Analysis (2005–2018). J. Hazard. Mater. 2023, 454, 131539. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, S.; Dales, R.E.; Vidal, C.B. Air Pollution and Mortality in Chile: Susceptibility among the Elderly. Environ. Health Perspect. 2007, 115, 524–527. [Google Scholar] [CrossRef]
- Jung, E.-J.; Na, W.; Lee, K.-E.; Jang, J.-Y. Elderly Mortality and Exposure to Fine Particulate Matter and Ozone. J. Korean Med. Sci. 2019, 34, e311. [Google Scholar] [CrossRef]
- Samoli, E.; Dimakopoulou, K.; Evangelopoulos, D.; Rodopoulou, S.; Karakatsani, A.; Veneti, L.; Sionidou, M.; Tsolakoglou, I.; Krasanaki, I.; Grivas, G.; et al. Is Daily Exposure to Ozone Associated with Respiratory Morbidity and Lung Function in a Representative Sample of Schoolchildren? Results from a Panel Study in Greece. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 346–351. [Google Scholar] [CrossRef]
- Cui, Y.; Xi, Y.; Li, L.; Lei, Y.; Wu, S.; Wang, Z.; Chen, J. Risk Assessment of PM2.5 from Fossil Energy Consumption on the Respiratory Health of the Elderly. Sci. Total Environ. 2024, 955, 176798. [Google Scholar] [CrossRef]
- Holm, S.M.; Balmes, J.R. Systematic Review of Ozone Effects on Human Lung Function, 2013 Through 2020. CHEST 2022, 161, 190–201. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, E.; Kim, W.J. Health Effects of Ozone on Respiratory Diseases. Tuberc. Respir. Dis. 2020, 83, S6–S11. [Google Scholar] [CrossRef]
- Strosnider, H.M.; Chang, H.H.; Darrow, L.A.; Liu, Y.; Vaidyanathan, A.; Strickland, M.J. Age-Specific Associations of Ozone and Fine Particulate Matter with Respiratory Emergency Department Visits in the United States. Am. J. Respir. Crit. Care Med. 2019, 199, 882–890. [Google Scholar] [CrossRef]
- Chen, C.-H.; Chan, C.-C.; Chen, B.-Y.; Cheng, T.-J.; Leon Guo, Y. Effects of Particulate Air Pollution and Ozone on Lung Function in Non-Asthmatic Children. Environ. Res. 2015, 137, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Rhee, J.; Dominici, F.; Zanobetti, A.; Schwartz, J.; Wang, Y.; Di, Q.; Balmes, J.; Christiani, D.C. Impact of Long-Term Exposures to Ambient PM2.5 and Ozone on ARDS Risk for Older Adults in the United States. Chest 2019, 156, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shi, Y.; Chen, G.; Guo, Y.; Tang, W.; Wu, C.; Liang, S.; Huang, Z.; He, G.; Dong, X.; et al. Joint Effects of Long-Term Exposure to Ambient Fine Particulate Matter and Ozone on Asthmatic Symptoms: Prospective Cohort Study. JMIR Public Health Surveill. 2023, 9, e47403. [Google Scholar] [CrossRef]
- Cakmak, S.; Hebbern, C.; Pinault, L.; Lavigne, E.; Vanos, J.; Crouse, D.L.; Tjepkema, M. Associations between Long-Term PM2.5 and Ozone Exposure and Mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by Spatial Synoptic Classification Zone. Environ. Int. 2018, 111, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Breitner, S.; Cascio, W.E.; Devlin, R.B.; Neas, L.M.; Diaz-Sanchez, D.; Kraus, W.E.; Schwartz, J.; Hauser, E.R.; Peters, A.; et al. Short-Term Effects of Fine Particulate Matter and Ozone on the Cardiac Conduction System in Patients Undergoing Cardiac Catheterization. Part. Fibre Toxicol. 2018, 15, 38. [Google Scholar] [CrossRef]
- Jerrett, M.; Burnett, R.T.; Pope, C.A.; Ito, K.; Thurston, G.; Krewski, D.; Shi, Y.; Calle, E.; Thun, M. Long-Term Ozone Exposure and Mortality. N. Engl. J. Med. 2009, 360, 1085–1095. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, S.; Xin, T.; Huang, C.; Pu, Y.; Ma, J.; Zhang, C.; Liu, Y.; Lynch, I.; Liu, S. Passage of Exogeneous Fine Particles from the Lung into the Brain in Humans and Animals. Proc. Natl. Acad. Sci. USA 2022, 119, e2117083119. [Google Scholar] [CrossRef]
- Qiu, J.; Ma, J.; Dong, Z.; Ren, Q.; Shan, Q.; Liu, J.; Gao, M.; Liu, G.; Zhang, S.; Qu, G.; et al. Lung Megakaryocytes Engulf Inhaled Airborne Particles to Promote Intrapulmonary Inflammation and Extrapulmonary Distribution. Nat. Commun. 2024, 15, 7396. [Google Scholar] [CrossRef]
- Hong, Y.-C.; Lee, J.-T.; Kim, H.; Ha, E.-H.; Schwartz, J.; Christiani, D.C. Effects of Air Pollutants on Acute Stroke Mortality. Environ. Health Perspect. 2002, 110, 187–191. [Google Scholar] [CrossRef]
- Jung, C.-R.; Lin, Y.-T.; Hwang, B.-F. Ozone, Particulate Matter, and Newly Diagnosed Alzheimer’s Disease: A Population-Based Cohort Study in Taiwan. J. Alzheimer’s Dis. 2015, 44, 573–584. [Google Scholar] [CrossRef]
- Kwag, Y.; Kim, M.; Oh, J.; Shah, S.; Ye, S.; Ha, E.-H. Effect of Heat Waves and Fine Particulate Matter on Preterm Births in Korea from 2010 to 2016. Environ. Int. 2021, 147, 106239. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, J.; Wei, J.; Liu, Y.; Zhu, H.; Li, X.; Wang, J.; Chen, R. Individual Ambient Ozone Exposure during Pregnancy and Adverse Birth Outcomes: Exploration of the Potentially Vulnerable Windows. J. Hazard. Mater. 2024, 464, 132945. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Du, S.; Liu, H.; Lin, S.; Zhao, X.; Wang, Z.; Wang, Z. The Causal and Independent Effect of Ozone Exposure during Pregnancy on the Risk of Preterm Birth: Evidence from Northern China. Environ. Res. 2022, 214, 113879. [Google Scholar] [CrossRef]
- Siddika, N.; Rantala, A.K.; Antikainen, H.; Balogun, H.; Amegah, A.K.; Ryti, N.R.; Kukkonen, J.; Sofiev, M.; Jaakkola, M.S.; Jaakkola, J.J. Synergistic Effects of Prenatal Exposure to Fine Particulate Matter (PM2.5) and Ozone (O3) on the Risk of Preterm Birth: A Population-Based Cohort Study. Environ. Res. 2019, 176, 108549. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Yan, H.; Ma, Z.; Zhang, Y.; Luo, H.; Yang, X. Association of Exposure to Ozone and Fine Particulate Matter with Ovarian Reserve among Women with Infertility. Environ. Pollut. 2024, 340, 122845. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, H.; Wang, D.; Zhu, Y.; Yang, C.; Shen, Y.; Yu, J.; Li, Y.; Xu, S.; Zhang, S.; et al. Chronic Exposure to PM2.5 Nitrate, Sulfate, and Ammonium Causes Respiratory System Impairments in Mice. Environ. Sci. Technol. 2021, 55, 3081–3090. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.-D.; Wang, Q.-M.; Tie, C.; Jin, H.-T.; Han, Y.-X.; Zhang, J.-L.; Yu, X.-M.; Hou, Q.; Zhang, P.-P.; Wang, A.-P.; et al. Polydatin Protects the Respiratory System from PM2.5 Exposure. Sci. Rep. 2017, 7, 40030. [Google Scholar] [CrossRef] [PubMed]
- Hill, W.; Lim, E.L.; Weeden, C.E.; Lee, C.; Augustine, M.; Chen, K.; Kuan, F.-C.; Marongiu, F.; Evans, E.J.; Moore, D.A.; et al. Lung Adenocarcinoma Promotion by Air Pollutants. Nature 2023, 616, 159–167. [Google Scholar] [CrossRef]
- Wang, T.; Huang, K.; Chen, C.; Chang, Y.; Chen, H.; Hsueh, C.; Liu, Y.; Yang, S.; Yang, P.; Chen, C. PM2.5 Promotes Lung Cancer Progression through Activation of the AhR-TMPRSS2-IL18 Pathway. EMBO Mol. Med. 2023, 15, e17014. [Google Scholar] [CrossRef]
- Li, Y.; Lin, B.; Hao, D.; Du, Z.; Wang, Q.; Song, Z.; Li, X.; Li, K.; Wang, J.; Zhang, Q.; et al. Short-Term PM2.5 Exposure Induces Transient Lung Injury and Repair. J. Hazard. Mater. 2023, 459, 132227. [Google Scholar] [CrossRef]
- Yang, L.; Li, C.; Tang, X. The Impact of PM2.5 on the Host Defense of Respiratory System. Front. Cell Dev. Biol. 2020, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Michaudel, C.; Mackowiak, C.; Maillet, I.; Fauconnier, L.; Akdis, C.A.; Sokolowska, M.; Dreher, A.; Tan, H.-T.T.; Quesniaux, V.F.; Ryffel, B.; et al. Ozone Exposure Induces Respiratory Barrier Biphasic Injury and Inflammation Controlled by IL-33. J. Allergy Clin. Immun. 2018, 142, 942–958. [Google Scholar] [CrossRef]
- Sokolowska, M.; Quesniaux, V.F.J.; Akdis, C.A.; Chung, K.F.; Ryffel, B.; Togbe, D. Acute Respiratory Barrier Disruption by Ozone Exposure in Mice. Front. Immunol. 2019, 10, 2169. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wei, H.; Wang, N.; Chen, J.; Zhang, Y.; An, Z.; Song, J.; Niu, T.; Wu, W. Ozone-Induced Lung Injury Are Mediated Via PPAR-Mediated Ferroptosis in Mice. Biol. Trace Elem. Res. 2024, 202, 1–11. [Google Scholar] [CrossRef]
- Tian, L.; Li, N.; Li, K.; Tan, Y.; Han, J.; Lin, B.; Lai, W.; Liu, H.; Shi, Y.; Xi, Z.; et al. Ambient Ozone Exposure Induces ROS Related-Mitophagy and Pyroptosis via NLRP3 Inflammasome Activation in Rat Lung Cells. Ecotoxicol. Environ. Saf. 2022, 240, 113663. [Google Scholar] [CrossRef]
- Wang, G. Mechanisms and Effects of Ozone and Fine Particulate Matter on Cardiopulmonary System in Rats; Fudan University: Shanghai, China, 2015. (In Chinese) [Google Scholar]
- Farraj, A.K.; Walsh, L.; Haykal-Coates, N.; Malik, F.; McGee, J.; Winsett, D.; Duvall, R.; Kovalcik, K.; Cascio, W.E.; Higuchi, M.; et al. Cardiac Effects of Seasonal Ambient Particulate Matter and Ozone Co-Exposure in Rats. Part. Fibre Toxicol. 2015, 12, 12. [Google Scholar] [CrossRef]
- Sun, L.; Liu, C.; Xu, X.; Ying, Z.; Maiseyeu, A.; Wang, A.; Allen, K.; Lewandowski, R.P.; Bramble, L.A.; Morishita, M.; et al. Ambient Fine Particulate Matter and Ozone Exposures Induce Inflammation in Epicardial and Perirenal Adipose Tissues in Rats Fed a High Fructose Diet. Part. Fibre Toxicol. 2013, 10, 43. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, R.; Zhao, Z.; Song, W. Effects of Ozone and Fine Particulate Matter (PM2.5) on Rat System Inflammation and Cardiac Function. Toxicol. Lett. 2013, 217, 23–33. [Google Scholar] [CrossRef]
- Tao, C.; Zhang, Q.; Huo, S.; Ren, Y.; Han, S.; Wang, Q.; Wang, W. PM2.5 Pollution Modulates the Response of Ozone Formation to VOC Emitted from Various Sources: Insights from Machine Learning. Sci. Total Environ. 2024, 916, 170009. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, W.; Wang, S.; Song, T.; Gong, Z.; Ji, D.; Wang, L.; Liu, Z.; Tang, G.; Huo, Y.; et al. Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. Natl. Sci. Rev. 2020, 7, 1331–1339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, W.; Zhao, B.; Wang, S.; Hao, J. Ozone and Secondary Organic Aerosol Formation Potential from Anthropogenic Volatile Organic Compounds Emissions in China. J. Environ. Sci. 2017, 53, 224–237. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, T.; Wu, H.; Shu, L.; Li, M.; Chen, P.; Zhao, M.; Li, S.; Xie, M.; Zhuang, B.; et al. Vertical Structure and Interaction of Ozone and Fine Particulate Matter in Spring at Nanjing, China: The Role of Aerosol’s Radiation Feedback. Atmos. Environ. 2020, 222, 117162. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of Urban Fine Particulate Matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Cheng, D.; Tang, Y.; Fan, Y.; Li, Q.; He, C.; Zhao, Z.; Xu, T. Investigation of Oxidative Potential of Fresh and O3 -Aging PM2.5 from Various Emission Sources across Urban and Rural Regions. J. Environ. Sci. 2025, 151, 608–615. [Google Scholar] [CrossRef]
- Li, Q.; Shang, J.; Zhu, T. Physicochemical Characteristics and Toxic Effects of Ozone-Oxidized Black Carbon Particles. Atmos. Environ. 2013, 81, 68–75. [Google Scholar] [CrossRef]
- Kasumba, J.; Holmén, B.A. Heterogeneous Ozonation Reactions of PAHs and Fatty Acid Methyl Esters in Biodiesel Particulate Matter. Atmos. Environ. 2018, 175, 15–24. [Google Scholar] [CrossRef]
- Song, H.; Shang, J.; Zhu, T.; Zhao, L.; Ye, J.-H. Heterogeneous Oxidation of SO2 by Ozone on the Surface of Black Carbon Particles. Chem. J. Chin. Univ. 2012, 33, 2295–2302. (In Chinese) [Google Scholar]
- An, J.; Zhou, Q.; Wu, M.; Wang, L.; Zhong, Y.; Feng, J.; Shang, Y.; Chen, Y. Interactions between Oxidative Stress, Autophagy and Apoptosis in A549 Cells Treated with Aged Black Carbon. Toxicol. Vitr. 2019, 54, 67–74. [Google Scholar] [CrossRef]
- Cui, Y.; Xiao, Q.; Yuan, Y.; Zhuang, Y.; Hao, W.; Jiang, J.; Meng, Q.; Wei, X. Ozone-Oxidized Black Carbon Particles Change Macrophage Fate: Crosstalk between Necroptosis and Macrophage Extracellular Traps. Environ. Pollut. 2023, 329, 121655. [Google Scholar] [CrossRef]
- Majumder, N.; Goldsmith, W.T.; Kodali, V.K.; Velayutham, M.; Friend, S.A.; Khramtsov, V.V.; Nurkiewicz, T.R.; Erdely, A.; Zeidler-Erdely, P.C.; Castranova, V.; et al. Oxidant-Induced Epithelial Alarmin Pathway Mediates Lung Inflammation and Functional Decline Following Ultrafine Carbon and Ozone Inhalation Co-Exposure. Redox Biol. 2021, 46, 102092. [Google Scholar] [CrossRef]
- Caceres, L.; Abogunloko, T.; Malchow, S.; Ehret, F.; Merz, J.; Li, X.; Sol Mitre, L.; Magnani, N.; Tasat, D.; Mwinyella, T.; et al. Molecular Mechanisms Underlying NLRP3 Inflammasome Activation and IL-1β Production in Air Pollution Fine Particulate Matter (PM2.5)-Primed Macrophages. Environ. Pollut. 2024, 341, 122997. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Zhang, H.; Cui, S.; Han, B.; Zhou, L.; Zhang, N.; Su, X.; Niu, Y.; Chen, W.; Chen, R.; et al. Ambient PM2.5 Caused Depressive-like Responses through Nrf2/NLRP3 Signaling Pathway Modulating Inflammation. J. Hazard. Mater. 2019, 369, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.; Chen, M.; Zhang, X.; Liang, S.; Qin, X.; Qiu, L.; Cao, Q.; Peng, R.; Tao, S.; Li, Z.; et al. Hypothalamic-Pituitary-Adrenal Axis Mediates Ambient PM2.5 Exposure-Induced Pulmonary Inflammation. Ecotoxicol. Environ. Saf. 2021, 208, 111464. [Google Scholar] [CrossRef]
- Ferrara, F.; Pambianchi, E.; Pecorelli, A.; Woodby, B.; Messano, N.; Therrien, J.-P.; Lila, M.A.; Valacchi, G. Redox Regulation of Cutaneous Inflammasome by Ozone Exposure. Free Radic. Biol. Med. 2020, 152, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.G.; Barkauskas, C.E.; Vose, A.; Lewandowski, R.P.; Harkema, J.R.; Tighe, R.M. Repetitive Ozone Exposures and Evaluation of Pulmonary Inflammation and Remodeling in Diabetic Mouse Strains. Environ. Health Perspect. 2020, 128, 117009. [Google Scholar] [CrossRef]
- Mumby, S.; Chung, K.F.; Adcock, I.M. Transcriptional Effects of Ozone and Impact on Airway Inflammation. Front. Immunol. 2019, 10, 1610. [Google Scholar] [CrossRef]
- Ferrara, F.; Cordone, V.; Pecorelli, A.; Benedusi, M.; Pambianchi, E.; Guiotto, A.; Vallese, A.; Cervellati, F.; Valacchi, G. Ubiquitination as a Key Regulatory Mechanism for O3-Induced Cutaneous Redox Inflammasome Activation. Redox Biol. 2022, 56, 102440. [Google Scholar] [CrossRef]
- Ivarsson, J.; Ferrara, F.; Vallese, A.; Guiotto, A.; Colella, S.; Pecorelli, A.; Valacchi, G. Comparison of Pollutant Effects on Cutaneous Inflammasomes Activation. Int. J. Mol. Sci. 2023, 24, 16674. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, J.; Jiang, R.; Song, W. Rat Lung Response to Ozone and Fine Particulate Matter (PM2.5) Exposures. Environ. Toxicol. 2015, 30, 343–356. [Google Scholar] [CrossRef]
- Lian, Z.; Qi, H.; Liu, X.; Zhang, Y.; Xu, R.; Yang, X.; Zeng, Y.; Li, J. Ambient Ozone, and Urban PM2.5 Co-Exposure, Aggravate Allergic Asthma via Transient Receptor Potential Vanilloid 1-Mediated Neurogenic Inflammation. Ecotoxicol. Environ. Saf. 2022, 243, 114000. [Google Scholar] [CrossRef]
- Jiang, X.; Han, Y.; Qiu, X.; Wang, Y.; Liu, J.; Cheng, Z.; Tian, Y.; Xu, Y.; Chen, X.; Fan, Y.; et al. Ozone Enhances the Inflammation Effects of PM2.5 Components Based on an Exposomic Approach in a Panel Study. Environ. Sci. Technol. Lett. 2024, 11, 818–824. [Google Scholar] [CrossRef]
- Kurai, J.; Onuma, K.; Sano, H.; Okada, F.; Watanabe, M. Ozone Augments Interleukin-8 Production Induced by Ambient Particulate Matter. Gene Environ. 2018, 40, 14. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Marchini, T. Redox and Inflammatory Mechanisms Linking Air Pollution Particulate Matter with Cardiometabolic Derangements. Free. Radic. Biol. Med. 2023, 209, 320–341. [Google Scholar] [CrossRef]
- Cervellati, F.; Woodby, B.; Benedusi, M.; Ferrara, F.; Guiotto, A.; Valacchi, G. Evaluation of Oxidative Damage and Nrf2 Activation by Combined Pollution Exposure in Lung Epithelial Cells. Environ. Sci. Pollut. Res. 2020, 27, 31841–31853. [Google Scholar] [CrossRef]
- He, L.; Cui, X.; Li, Z.; Teng, Y.; Barkjohn, K.K.; Norris, C.; Fang, L.; Lin, L.; Wang, Q.; Zhou, X.; et al. Malondialdehyde in Nasal Fluid: A Biomarker for Monitoring Asthma Control in Relation to Air Pollution Exposure. Environ. Sci. Technol. 2020, 54, 11405–11413. [Google Scholar] [CrossRef]
Source of Particulate Matter | Changes in Physical and Chemical Properties | Mechanism | References |
---|---|---|---|
PM2.5 | OPs; hygroscopicity | Ozone affects the properties and toxicity of PM2.5 by modifying the reactive organic compounds in it. | [71] |
BC | pH values; hygroscopicity, oxygen-containing functional groups; water-soluble organic matter; free radicals. | Ozone changes the physicochemical properties of BC through oxidation, thereby increasing its toxicity. | [72] |
Biodiesel particulate matter | All PAHs | Ozone reacts with PAH in Biodiesel particulate matter, where the C=C double bond may provide a reactive site for ozone attack. | [73] |
Research Object | Exposure Mode | Toxic Effect | References |
---|---|---|---|
A549 cell | OBC: Co-incubation (5, 10, 20, and 40 µg/mL) | OBC exposure significantly increased ROS levels, altered mitochondrial permeability, and disrupted mitochondrial membrane integrity in A549 cells. | [75] |
RAW264.7 cell | OBC: Co-incubation (50 and 100 mg/L) | Exposure to OBC exacerbates cell membrane rupture by significantly upregulating reactive oxygen species (ROS) and cytoplasmic calcium ion levels. | [76] |
C57BL/6J male mice | CB: Inhalation (10 mg/m3) Ozone: Inhalation (2 ppm) | Combined CB and ozone exposure mediates disruption of the lung–blood barrier via epithelial alertin. | [77] |
Wistar rats | PM2.5: tracheal drip (0, 0.2, 0.8, and 3.2 mg/Rat) Ozone: inhalation (0.8 ppm) | Ozone enhances PM2.5-induced inflammatory responses. | [86] |
Balb/c mice | PM2.5: tracheal drip (0.5 mg/mL) Ozone: inhalation (0.5 ppm) | Combined exposure to PM2.5 and ozone has a synergistic effect on allergic inflammation. | [87] |
Human | 108 non-smokers aged 50–65 years old | Synergistic enhancement of PM2.5-induced inflammation by ozone | [88] |
THP1 cell | PM2.5: co-incubation (10 µg/mL) Ozone: co-incubation (0.12 and 0.24 ppm) | Significant synergistic effects of ozone and PM2.5 on IL-8 production | [89] |
A549 cell | PM2.5: co-incubation (1 µg/mL) Ozone: co-incubation (0.1 ppm) | Combined ozone and PM exposures act synergistically in enhancing oxidative stress-induced cellular damage. | [93] |
Human | inhalation through the respiratory tract | PM2.5 and ozone exposure increase nasal oxidative stress marker MDA concentrations | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Wang, T.; Li, H.; Zhou, Y.; Liu, Y.; Xu, A. Synergistic Toxicity of Fine Particulate Matter and Ozone and Their Underlying Mechanisms. Toxics 2025, 13, 236. https://doi.org/10.3390/toxics13040236
He J, Wang T, Li H, Zhou Y, Liu Y, Xu A. Synergistic Toxicity of Fine Particulate Matter and Ozone and Their Underlying Mechanisms. Toxics. 2025; 13(4):236. https://doi.org/10.3390/toxics13040236
Chicago/Turabian StyleHe, Jing, Tong Wang, Han Li, Yemian Zhou, Yun Liu, and An Xu. 2025. "Synergistic Toxicity of Fine Particulate Matter and Ozone and Their Underlying Mechanisms" Toxics 13, no. 4: 236. https://doi.org/10.3390/toxics13040236
APA StyleHe, J., Wang, T., Li, H., Zhou, Y., Liu, Y., & Xu, A. (2025). Synergistic Toxicity of Fine Particulate Matter and Ozone and Their Underlying Mechanisms. Toxics, 13(4), 236. https://doi.org/10.3390/toxics13040236