The Influence of Meteorological Conditions and Seasons on Surface Ozone in Chonburi, Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Spatial and Temporal Distribution Characteristics of the O3 Concentration
2.4. Statistical Analysis
- is the daily mean ozone concentration for day t (time is indexed by the number of days since the first day of the data), which is an unknown constant (intercept) to be estimated from the data;
- is the mean temperature for day t;
- is the mean daily global solar radiation (GLRD) for day t;
- is the mean relative humidity for day t;
- is the mean NO2 concentration for day t;
- is the random error term. We adopted a working assumption of ∼N () ∼N (), which is a normal, zero mean, homoscedastic distribution of errors;
- is an unknown univariate function of temperature, the form of which needs to be determined from the data. We estimated it using a penalized spline, which regulates smoothness by penalizing the integral of the squared second derivative with respect to temperature. This method allows for potentially non-linear, smooth relationships between O3 and temperature;
- is an unknown univariate function of GLRD to be estimated from the data as a penalized spline;
- is an unknown univariate function of humidity to be estimated from the data as a penalized spline;
- is an unknown univariate function of NO2 to be estimated from the data as a penalized spline;
- is an unknown bivariate function of temperature and GLRD that needs to be estimated from the data using a tensor product penalized spline. This term enables us to explore the potential interaction between temperature and GLRD in affecting the O3 concentration, moving beyond their mere additive effects. Essentially, this effect allows us to investigate how temperature influences the impact of GLRD;
- is an unknown bivariate function of temperature and RH that needs to be estimated from the data using a tensor product penalized spline. This term represents the interaction between temperature and RH in a parsimonious formulation;
- is an unspecified bivariate function of GLRD and RH, which will be estimated from the data using a tensor product penalized spline. This term represents the interaction between GLRD and RH in a parsimonious manner.
2.5. TROPOspheric Monitoring Instrument (TROPOMI)
3. Results
3.1. The Spatial–Temporal Distribution of the O3 Concentration and Seasonal Variations
3.1.1. The Spatial–Temporal Distribution of the O3 Concentration
3.1.2. Diurnal and Seasonal Variations
3.2. Association of O3 with Another Pollutant and Meteorological Parameter
The O3 Correlation with Another Factor
3.3. The Effect of the Interactions of Meteorological Parameters
The Interactions Influencing the Ozone Level
3.4. The Spatial Distribution of the O3 Concentration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
O3 | Ozone |
SO2 | Sulfur dioxide |
NOx | Nitrogen oxides |
HNO3 | Nitric acid |
VOCs | Volatile organic compounds |
T | Temperature |
GLRD | Global solar radiation |
RH | Relative humidity |
WS | Wind speed |
WD | Wind direction |
GAM | Generalized additive models |
References
- Hůnová, I.; Brabec, M.; Malý, M. What are the principal factors affecting ambient ozone concentrations in Czech mountain forests? Front. For. Glob. Chang. 2019, 2, 31. [Google Scholar] [CrossRef]
- Pudasainee, D.; Sapkota, B.; Shrestha, M.; Kaga, A.; Inoue, Y. Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal. Atmos. Environ. 2006, 40, 8081–8087. [Google Scholar] [CrossRef]
- Varotsos, K.; Giannakopoulos, C.; Tombrou, M. Ozone-temperature relationship during the 2003 and 2014 heatwaves in Europe. Reg. Environ. Change 2019, 19, 1653–1665. [Google Scholar] [CrossRef]
- Ban, J.; Lu, K.; Wang, Q.; Li, T. Climate change will amplify the inequitable exposure to compound heatwave and ozone pollution. One Earth 2022, 5, 677–686. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, L.; Shen, L. Meteorology and climate influences on tropospheric ozone: A review of natural sources, chemistry, and transport patterns. Curr. Pollut. Rep. 2019, 5, 238–260. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Karimian, H.; Li, M.; Fan, Q.; Xu, Z. Spatio-temporal variation of ozone pollution risk and its influencing factors in China based on geodetector and geospatial models. Chemosphere 2022, 302, 134843. [Google Scholar] [CrossRef]
- Zheng, D.; Huang, X.; Guo, Y. Spatiotemporal variation of ozone pollution and health effects in China. Environ. Sci. Pollut. Res. 2022, 29, 57808–57822. [Google Scholar] [CrossRef]
- Saithanu, K.; Mekparyup, J. Assessment and prediction of the ground level ozone concentration in the east of Thailand. Indian J. Pure Appl. Math. 2013, 84, 109–121. [Google Scholar] [CrossRef]
- Srirattana, S. Ground-level ozone pollution in upper northern, Thailand: An ArcGIS-Based Approach. Naresuan Univ. Eng. J. 2022, 17, 56–68. [Google Scholar] [CrossRef]
- Choomanee, P.; Bualert, S.; Thongyen, T.; Duangmal, K.; Intaraksa, A.; Rungratanaubon, T.; Szymanski, W. Experimental assessment of Tropical surface ozone related to land utilization in central Thailand. Atmos. Environ. 2021, 11, 100129. [Google Scholar] [CrossRef]
- Pinichka, C.; Bundhamcharoen, K.; Shibuya, K. Diseases burden of chronic obstructive pulmonary disease (COPD) attributable to ground-level ozone in Thailand: Estimates Based on Surface Monitoring Measurements Data. Glob. J. Health Sci. 2024, 8, 1–13. [Google Scholar] [CrossRef]
- Guo, Y.; Li, S.; Tawatsupa, B.; Punnasiri, K.; Jaakkola, J.J.K.; Williams, G. The association between air pollution and mortality in Thailand. Sci. Rep. 2014, 4, 5509. [Google Scholar] [CrossRef]
- Thongphunchung, K.; Charoensuk, P.; U-tapan, S.; Loonsamrong, W.; Phosri, A.; Mahikul, W. Outpatient department visits and mortality with various causes attributable to ambient air pollution in the Eastern Economic Corridor of Thailand. Int. J. Environ. Res. Public Health 2022, 19, 7683. [Google Scholar] [CrossRef]
- Laban, T.L.; Van Zyl, P.G.; Beukes, J.P.; Mikkonen, S.; Santana, L.; Josipovic, M.; Vakkari, V.; Thompson, A.M.; Kulmala, M.; Laakso, L. Statistical analysis of factors driving surface ozone variability over continental South Africa. J. Integ. Environ. Sci. 2020, 17, 1–28. [Google Scholar] [CrossRef]
- Prabamroong, T.; Manomaiphiboon, K.; Limpaseni, W.; Sukhapan, J.; Bonnet, S. Ozone and its potential control strategy for Chon Buri city, Thailand. J. Air Waste Manag. Assoc. 2012, 62, 1411–1422. [Google Scholar] [CrossRef]
- QGIS Geographic Information System. 2023. Available online: https://qgis.org (accessed on 21 October 2024).
- Esri World Topographic Map. 2024. Available online: https://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f&fbclid=IwY2xjawJHg1BleHRuA2FlbQIxMAABHfrpbRug5EJKucXezNaDB2weMFkb5VIWYdp5H_HyxWAz3zniQsLjsM2BUQ_aem_QKXKW_FqSV_wXe5280FF8w (accessed on 8 November 2024).
- Okolie, C.; Iheaturu, C.; Ojegbile, B.; Ndu, C.; Tella, A. Spatio-Temporal variability of air quality and relationship with meteorological parameters in cape town, South Africa. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, 48, 155–160. [Google Scholar] [CrossRef]
- Rajatanavin, N.; Tuangratananon, T.; Suphanchaimat, R.; Tangcharoensathien, V. Responding to the COVID-19 second wave in Thailand by diversifying and adapting lessons from the first wave. BMJ Glob. Health 2021, 6, e006178. [Google Scholar] [CrossRef]
- Assareh, N.; Prabamroong, T.; Manomaiphiboon, K.; Theramongkol, P.; Leungsakul, S.; Mitrjit, N.; Rachiwong, J. Analysis of observed surface ozone in the dry season over Eastern Thailand during 1997–2012. Atmos. Res. 2016, 178–179, 17–30. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Y.; Li, T.; Wei, L.; Guan, Q. Temporal and spatial variation in, and population exposure to, summertime ground-level ozone in Beijing. Int. J. Environ. Res. Public Health 2018, 15, 628. [Google Scholar] [CrossRef]
- Lee, H.M.; Park, R.J. Factors determining the seasonal variation of ozone air quality in South Korea: Regional background versus domestic emission contributions. Environ. Pollut. 2022, 308, 119645. [Google Scholar] [CrossRef]
- Guo, B.; Wu, H.; Pei, L.; Zhu, X.; Zhang, D.; Wang, Y.; Luo, P. Study on the spatiotemporal dynamic of ground-level ozone concentrations on multiple scales across China during the blue sky protection campaign. Environ. Inter. 2022, 170, 107606. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X.; Zeng, F.; Zhang, X. Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol Air Qual. Res. 2011, 11, 128–139. [Google Scholar] [CrossRef]
- Ni, J.; Jin, J.; Wang, Y.; Li, B.; Wu, Q.; Chen, Y.; Du, S.; Li, Y.; He, C. Surface ozone in global cities: A synthesis of basic features, exposure risk, and leading meteorological driving factors. Geogr. Sustain. 2024, 5, 64–76. [Google Scholar] [CrossRef]
- Guan, J.; Geng, Z.; Yang, F.; Zhang, X.; Chen, S.; Guo, Y. Analysis on temporal variation law of ozone pollution and meteorological driving factors in Pudong New Area of Shanghai. Environ. Prog. Sustain. Energy 2023, 42, e14089. [Google Scholar] [CrossRef]
- Lu, J.; Rui, Y.; Fan, S.; Sun, L.; Wu, J.; Wang, C. Characteristics of near-surface O3 pollution and its relationship with meteorological factors in Guangzhou from 2015 to 2021. J. Environ. Sci. 2022, 43, 32–41. [Google Scholar] [CrossRef]
- Awang, N.; Ramli, N.; Shith, S.; Zainordin, N.; Manogaran, H. Transformational characteristics of ground-level ozone during high particulate events in urban area of Malaysia. Air Qual. Atmos. Health 2018, 11, 715–727. [Google Scholar] [CrossRef]
- Wild, O. Modelling the global tropospheric ozone budget: Exploring the variability in current models. Atmos. Chem. Phys. 2007, 7, 2643–2660. [Google Scholar] [CrossRef]
- Jasaitis, D.; Vasiliauskienė, V.; Chadyšienė, R.; Pečiulienė, M. Surface ozone concentration and its relationship with UV radiation, meteorological parameters and radon on the Eastern cast of the Baltic Sea. Atmosphere 2016, 7, 27. [Google Scholar] [CrossRef]
- Kanchana, A.L.; Sagar, V.K.; Pathakoti, M.; Mahalakshmi, D.V.; Mallikarjun, K.; Gharai, B. Ozone variability: Influence by its precursors and meteorological parameters- an investigation. J. Atmos. Sol.-Terr. Phy. 2020, 211, 105468. [Google Scholar] [CrossRef]
- Porter, W.C.; Heald, C.L. The mechanisms and meteorological drivers of the summertime ozone–temperature relationship. Atmos. Chem. Phys. 2019, 19, 13367–13381. [Google Scholar] [CrossRef]
- Liu, J.D.; He, C.; Zhao, S.M.; Zhu, J.; Wang, W.; Wang, L.L.; Wang, Y.S. Variations in ozone concentration in seven regions under different temperature and humidity conditions. Huan Jing Ke Xue 2023, 44, 5392–5399. [Google Scholar] [CrossRef]
- Balogun, A.L.; Tella, A. Modelling and investigating the impacts of climatic variables on ozone concentration in Malaysia using correlation analysis with random forest, decision tree regression, linear regression, and support vector regression. Chemosphere 2022, 299, 134250. [Google Scholar] [CrossRef] [PubMed]
- Belan, B.; Savkin, D.; Tolmachev, G. Air-temperature dependence of the ozone generation rate in the surface air layer. Atmos. Ocean. Opt. 2018, 31, 187–196. [Google Scholar] [CrossRef]
- Zheng, Q.F.; Liang, P.; Duan, Y.S.; Lin, Y.F.; Zhang, S.J.; Xu, W.Z. Characteristics of ozone concentration in Shanghai and its associated atmospheric circulation background during summer half-years from 2006 to 2021. Huan Jing Ke Xue 2024, 45, 645–654. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, J.; Chen, Z.; Yang, M.; Shu, L.; Gai, C.; Jiang, Y. Influence of wind flows on surface O3 variation over a Coastal Province in Southeast China. Atmosphere 2024, 15, 262. [Google Scholar] [CrossRef]
- Chen, J.; Shen, H.; Li, T.; Peng, X.; Cheng, H.; Ma, A.C. Temporal and spatial features of the correlation between PM2.5 and O3 concentrations in China. Int. J. Environ. Res. Public Health 2019, 16, 4824. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.L.; Schneider, I.L.; Artaxo, P.; Oliveira, M.L.S. Spatiotemporal assessment of particulate matter (PM10 and PM2.5) and ozone in a Caribbean urban coastal city. Geosci. Front. 2022, 13, 101168. [Google Scholar] [CrossRef]
- Hoque, M.; Ashraf, Z.; Kabir, M.; Nasrin, S. Meteorological influences on seasonal variations of air pollutants (SO2, NO2, O3, CO, PM2.5 and PM10) in the Dhaka Megacity. Am. J. Pure. Appl. Sci. 2020, 2, 15–23. [Google Scholar] [CrossRef]
- Paraschiv, S.; Barbuta-Misu, N.; Paraschiv, S.L. Influence of NO2, NO and meteorological conditions on the tropospheric O3 concentration at an industrial station. Energy Rep. 2020, 6, 231–236. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, D.; Gao, T.; Wang, Z. Effect of NO2 on O3 using complex network topology analysis. IEEE Trans. Com. Soc. Sys. 2019, 6, 1329–1342. [Google Scholar] [CrossRef]
- He, Z.; He, Y.; Fan, G.; Li, Z.; Liang, Z.; Fang, H.; Zeng, Z.C. Ozone pollution and its response to nitrogen dioxide change from a dense ground-based network in the Yangtze River Delta: Implications for ozone abatement in urban agglomeration. Atmosphere 2022, 13, 1450. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, G.; Guo, X.; Mei, C.; Yang, P. Correlation analysis between ozone and other atmosphere characteristics. Chem. Eng. Trans. 2017, 61, 1747–1752. [Google Scholar] [CrossRef]
- Fadnavis, S.; Beig, G. Decadal solar effects on temperature and ozone in the tropical stratosphere. Ann. Geophys. 2006, 24, 2091–2103. [Google Scholar] [CrossRef]
- Arslan, H. Impacts of meteorological parameters on tropospheric ozone concentrations in Çanakkale. Int. J. Adv. Eng. Pure. Sci. 2023, 35, 10–17. [Google Scholar] [CrossRef]
- Heue, K.P.; Loyola, D.; Romahn, F.; Zimmer, W.; Chabrillat, S.; Errera, Q.; Ziemke, J.; Kramarova, N. Tropospheric ozone retrieval by a combination of TROPOMI/S5P measurements with BASCOE assimilated data. Atmos. Meas. Tech. 2022, 15, 5563–5579. [Google Scholar] [CrossRef]
- Peeters, A.; Zude, M.; Käthner, J.; Ünlü, M.; Kanber, R.; Hetzroni, A.; Gebbers, R.; Ben-Gal, A. Getis–Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Comput. Electron. Agric. 2015, 111, 140–150. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, H. Temporal and spatial distribution of ozone and its influencing factors in China. Sustainability 2023, 15, 10042. [Google Scholar] [CrossRef]
Dry Season | Rainy Season | Winter Season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EDF | Ref.df | F | p-Value | EDF | Ref.df | F | p-Value | EDF | Ref.df | F | p-Value | |
s(NO2) | 6.261 | 7.311 | 70.175 | <0.001 | 8.051 | 8.673 | 67.611 | <0.001 | 5.276 | 6.373 | 145.092 | <0.001 |
s(Temp) | 8.206 | 8.803 | 12.668 | <0.001 | 8.075 | 8.739 | 25.651 | <0.001 | 8.301 | 8.838 | 16.666 | <0.001 |
s(RH) | 7.224 | 8.122 | 38.097 | <0.001 | 8.229 | 8.749 | 50.089 | <0.001 | 8.247 | 8.721 | 111.841 | <0.001 |
s(Glrd) | 8.850 | 8.991 | 45.190 | <0.001 | 6.178 | 7.271 | 53.426 | <0.001 | 8.805 | 8.987 | 47.643 | <0.001 |
s(Ws) | 6.363 | 7.526 | 45.428 | <0.001 | 8.893 | 8.995 | 45.214 | <0.001 | 8.013 | 8.625 | 16.766 | <0.001 |
s(Temp, RH) | 8.529 | 8.882 | 20.788 | <0.001 | 8.087 | 8.735 | 89.947 | <0.001 | 8.151 | 8.722 | 47.142 | <0.001 |
s(Temp, Glrd) | 8.910 | 8.994 | 49.786 | <0.001 | 8.934 | 8.997 | 49.986 | <0.001 | 8.916 | 8.995 | 54.034 | <0.001 |
s(Temp, Ws) | 7.757 | 8.397 | 52.662 | <0.001 | 7.084 | 7.923 | 66.693 | <0.001 | 7.704 | 8.391 | 29.705 | <0.001 |
Deviance explained | 50.9% | 47.9% | 53.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawichai, S.; Kliengchuay, W.; Aung, H.W.; Niampradit, S.; Mingkhwan, R.; Niemmanee, T.; Srimanus, W.; Phonphan, W.; Suwanmanee, S.; Tantrakarnapa, K. The Influence of Meteorological Conditions and Seasons on Surface Ozone in Chonburi, Thailand. Toxics 2025, 13, 226. https://doi.org/10.3390/toxics13030226
Kawichai S, Kliengchuay W, Aung HW, Niampradit S, Mingkhwan R, Niemmanee T, Srimanus W, Phonphan W, Suwanmanee S, Tantrakarnapa K. The Influence of Meteorological Conditions and Seasons on Surface Ozone in Chonburi, Thailand. Toxics. 2025; 13(3):226. https://doi.org/10.3390/toxics13030226
Chicago/Turabian StyleKawichai, Sawaeng, Wissanupong Kliengchuay, Htoo Wai Aung, Sarima Niampradit, Rachaneekorn Mingkhwan, Talisa Niemmanee, Wechapraan Srimanus, Walaiporn Phonphan, San Suwanmanee, and Kraichat Tantrakarnapa. 2025. "The Influence of Meteorological Conditions and Seasons on Surface Ozone in Chonburi, Thailand" Toxics 13, no. 3: 226. https://doi.org/10.3390/toxics13030226
APA StyleKawichai, S., Kliengchuay, W., Aung, H. W., Niampradit, S., Mingkhwan, R., Niemmanee, T., Srimanus, W., Phonphan, W., Suwanmanee, S., & Tantrakarnapa, K. (2025). The Influence of Meteorological Conditions and Seasons on Surface Ozone in Chonburi, Thailand. Toxics, 13(3), 226. https://doi.org/10.3390/toxics13030226