Mesoplastics: A Review of Contamination Status, Analytical Methods, Pollution Sources, Potential Risks, and Future Perspectives of an Emerging Global Environmental Pollutant
Abstract
1. Introduction
2. Methodology
3. Results and Discussion
3.1. Trends in Published Research on Mesoplastics
3.1.1. Location of Study Area
3.1.2. Year of Publication
3.2. Mesoplastics in Different Ecosystems
3.3. Phenomena Affecting the Prevalence of Mesoplastics
3.4. Types of Mesoplastics Based on Shape, Color, and Polymer Composition
3.5. Association of Mesoplastics with Macro-, Micro- and Nanoplastics
3.6. Analytical Methods Used in Mesoplastic Studies
3.6.1. Collection Method
3.6.2. Digestion
3.6.3. Density Separation
3.6.4. Identification
3.6.5. Units of Measurement Used
3.7. Index Tools That Are Used to Determine Mesoplastic Contamination
3.8. Mesoplastics as Vectors of Inorganic and Organic Chemicals
3.9. Mesoplastics Affecting Organisms
3.10. Mesoplastics as a Habitat of Microorganisms
3.11. Utilization of Various Organisms for Plastic Monitoring and Degradation
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kibria, G. Contamination of coastal and marine bird species with plastics: Global analysis and synthesis. Mar. Pollut. Bull. 2024, 206, 116687. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Ren, S.; Wang, K.; Zhang, J.; Li, J.; Zhang, H.; Qi, R.; Xu, W.; Yan, C.; Liu, X.; Zhang, F.; et al. Potential sources and occurrence of macro-plastics and microplastics pollution in farmland soils: A typical case of China. Crit. Rev. Environ. Sci. Technol. 2024, 54, 533–556. [Google Scholar] [CrossRef]
- Andrady, A.L. The Plastic in Microplastics: A Review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef]
- Pegado, T.; Andrades, R.; Noleto-Filho, E.; Franceschini, S.; Chelazzi, D.; Russo, T.; Martellini, T.; Barone, A.; Cincinelli, A.; Giarrizzo, T. Meso- and microplastic composition, distribution patterns and drivers: A snapshot of plastic pollution on Brazilian beaches. Sci. Total Environ. 2024, 907, 167769. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Browne, M.A.; Underwood, A.J.; van Franeker, J.A.; Thompson, R.C.; Amaral-Zettler, L.A. The Ecological Impacts of Marine Debris: Unraveling the Demonstrated Evidence from What Is Perceived. Ecology 2016, 97, 302–312. [Google Scholar] [CrossRef]
- MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65. [Google Scholar] [CrossRef]
- Weber, C.J.; Opp, C. Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes. Environ. Pollut. 2020, 267, 115390. [Google Scholar] [CrossRef]
- Sajorne, R.E.; Bacosa, H.P.; Cayabo, G.D.B.; Ardines, L.B.; Sumeldan, J.D.C.; Omar, J.M.; Creencia, L.A. Plastic litter pollution along sandy beaches in Puerto Princesa, Palawan Island, Philippines. Mar. Pollut. Bull. 2021, 169, 112520. [Google Scholar] [CrossRef]
- Requiron, J.C.M.; Bacosa, H.P. Macroplastic transport and deposition in the environs of Palauan river, Dapitan city, Philippines. Philipp. J. Sci. 2022, 151, 1211–1220. [Google Scholar] [CrossRef]
- Abukasim, S.M.; Zuhria, F.; Saing, Z. Alternative management of plastic waste. J. Phys. Conf. Ser. 2020, 1517, 012041. [Google Scholar] [CrossRef]
- Jabeen, K.; Su, L.; Li, J.; Yang, D.; Tong, C.; Mu, J.; Shi, H. Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environ. Pollut. 2017, 221, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Bacosa, H.P.; Perpetua, Z.D.; Aron, J.B.; Bondaug, J.C.S.; Cui, V.T.; Imperial, J.E.; Monera, C.M.M.; Villariaz, J.; Gabriel, A.D.; Mayol, A.P.; et al. First documented evidence of mesoplastic pollution in the Philippines: The case of the sandy beaches in Iligan city. Reg. Stud. Mar. Sci. 2024, 75, 103574. [Google Scholar] [CrossRef]
- Akarsu, C.; Sönmez, V.Z.; Altay, M.C.; Pehlivan, T.; Sivri, N. The spatial and temporal changes of beach litter on Istanbul (Turkey) beaches as measured by the clean-coast index. Mar. Pollut. Bull. 2022, 176, 113407. [Google Scholar] [CrossRef]
- Arturo, I.A.; Corcoran, P.L. Categorization of plastic debris on sixty-six beaches of the Laurentian Great Lakes, North America. Environ. Res. Lett. 2022, 17, 045008. [Google Scholar] [CrossRef]
- Vox, G.; Loisi, R.V.; Blanco, I.; Mugnozza, G.S.; Schettini, E. Mapping of agriculture plastic waste. Agric. Agric. Sci. Procedia 2016, 8, 583–591. [Google Scholar] [CrossRef]
- Qian, H.; Zhang, M.; Liu, G.; Lu, T.; Qu, Q.; Du, B.; Pan, X. Effects of soil residual plastic film on soil microbial community structure and fertility. Water Air Soil. Pollut. 2018, 229, 261. [Google Scholar] [CrossRef]
- Liu, T.; Zhao, Y.; Zhu, M.; Liang, J.; Zheng, S.; Sun, X. Seasonal variation of micro- and meso-plastics in the seawater of Jiaozhou Bay, the Yellow Sea. Mar. Pollut. Bull. 2020, 152, 110922. [Google Scholar] [CrossRef]
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic films for agricultural applications. J. Plast. Film Sheeting 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Hurley, R.R.; Nizzetto, L. Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Curr. Opin. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Liu, M.; Lu, S.; Song, Y.; Lei, L.; Hu, J.; Lv, W.; Zhou, W.; Cao, C.; Shi, H.; Yang, X.; et al. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut. 2018, 242, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; He, D.; Zhang, X.; Li, X.; Chen, Y.; Wei, G.; Zhang, Y.; Ok, Y.S.; Luo, Y. National-scale distribution of micro(meso)plastics in farmland soils across China: Implications for environmental impacts. J. Hazard. Mater. 2022, 424, 127283. [Google Scholar] [CrossRef]
- Lau, W.W.Y.; Shiran, Y.; Bailey, R.M.; Cook, E.; Stuchtey, M.R.; Koskella, J.; Velis, C.A.; Godfrey, L.; Boucher, J.; Murphy, M.B.; et al. Evaluating scenarios toward zero plastic pollution. Science 2020, 369, 1455–1461. [Google Scholar] [CrossRef]
- Kim, H.; Ilyas, S. Laws, regulations or policy tools to govern macroplastics, mesoplastics, microplastics and nanoplastics. Microplastics 2022, 31–74. [Google Scholar] [CrossRef]
- Marchetto, D.; de Ferri, L.; Latella, A.; Pojana, G. Micro- and mesoplastics in sea surface water from a Northern Adriatic coastal area. Environ. Sci. Pollut. Res. 2022, 29, 37471–37497. [Google Scholar] [CrossRef]
- Lim, E.V.; Nilamani, N.; Razalli, N.M.; Zhang, S.; Li, H.; Haron, M.L.; Abdullah, A.L.; Yasin, Z.; Zanuri, N.M.; Tan Shau Hwai, A. Abundance and distribution of macro- and mesoplastic debris on selected beaches in the northern strait of Malacca. J. Mar. Sci. Eng. 2023, 11, 1057. [Google Scholar] [CrossRef]
- Martin, C.; Young, C.A.; Valluzzi, L.; Duarte, C.M. Ocean sediments as the global sink for marine micro- and mesoplastics. Limnol. Ocean. Lett. 2022, 7, 235–243. [Google Scholar] [CrossRef]
- Fatema, K.; Sumon, K.A.; Moon, S.M.; Alam, M.J.; Hasan, S.J.; Uddin, M.H.; Arakawa, H.; Rashid, H. Microplastics and mesoplastics in surface water, beach sediment, and crude salt from the Northern Bay of Bengal, Bangladesh Coast. J. Sediment. Environ. 2023, 8, 231–246. [Google Scholar] [CrossRef]
- Porras-Rojas, M.A.; Charry-Vargas, C.; Muñoz-Yustres, J.L.; Martínez-Silva, P.; Gómez-Méndez, L.D. Characterization of microplastics and mesoplastics and presence of biofilms, collected in the Gualí Wetland Cundinamarca, Colombia. Microplastics 2023, 2, 255–267. [Google Scholar] [CrossRef]
- Paduani, M.; Ross, M.; Odom, G. Mangrove forests of Biscayne Bay, Fl, USA may act as sinks for plastic debris. Wetlands 2024, 44, 32. [Google Scholar] [CrossRef]
- Jarabe, J.G.P.; Torres, A.G.; Guihawan, J.Q.; Bacosa, H.P. Occurrence of COVID-19-related personal protective equipment (PPE) litter in mangroves and beaches in Davao City, Philippines. Water Air Soil Pollut. 2023, 234, 395. [Google Scholar] [CrossRef]
- Navarro, C.K.P.; Arcadio, C.G.L.A.; Similatan, K.M.; Inocente, S.A.T.; Banda, M.H.T.; Capangpangan, R.Y.; Torres, A.G.; Bacosa, H.P. Unraveling microplastic pollution in mangrove sediments of Butuan Bay, Philippines. Sustainability 2022, 14, 14469. [Google Scholar] [CrossRef]
- Abdelkader, N.; Ben Ismail, S.; Zakhama-Sraieb, R. Macro-, meso- and microplastic debris in three sandy beaches of North-Eastern Tunisian Coasts. Reg. Stud. Mar. Sci. 2023, 67, 103229. [Google Scholar] [CrossRef]
- Basurko, O.C.; Beldarrain, B.; Larreta, J.; Kukul, D.; Rubio, A.; Ruiz, I.; Granado, I.; Cózar, A.; Galli, M.; Martin, I.; et al. From coastal to oceanic micro-meso and macroplastics in the SE Bay of Biscay. In Fate and Impact of Microplastics: Knowledge, Actions and Solutions; 2021; pp. 94–95. [Google Scholar]
- Dimante-Deimantovica, I.; Bebrite, A.; Skudra, M.; Retike, I.; Viška, M.; Bikše, J.; Barone, M.; Prokopovica, A.; Svipsta, S.; Aigars, J. The baseline for micro- and mesoplastic pollution in Open Baltic Sea and Gulf of Riga Beach. Front. Mar. Sci. 2023, 10, 1251068. [Google Scholar] [CrossRef]
- Grini, H.; Metallaoui, S.; González-Fernández, D.; Bensouilah, M. First evidence of plastic pollution in beach sediments of the Skikda Coast (Northeast of Algeria). Mar. Pollut. Bull. 2022, 181, 113831. [Google Scholar] [CrossRef] [PubMed]
- Retike, I.; Dimante-Deimantovica, I.; Bebrite, A.; Skudra, M.; Viška, M.; Bikše, J.; Barone, M.; Prokopovica, A.; Svipsta, S.; Aigars, J. Micro-and mesoplastic pollution along the beaches in the Open Baltic Sea and Gulf of Riga. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. No. EGU24-7586, Copernicus Meetings. [Google Scholar] [CrossRef]
- Han, L.H.; Xu, L.; Li, Q.L.; Lu, A.X.; Yin, J.W.; Tian, J.Y. Levels, characteristics, and potential source of micro(meso)plastic pollution of soil in Liaohe River Basin. Huan Jing Ke Xue 2021, 42, 1781–1790. [Google Scholar] [CrossRef]
- Ghorbaninejad Fard Shirazi, M.M.; Shekoohiyan, S.; Moussavi, G.; Heidari, M. Frequency and ecological risk of microplastics and mesoplastics in the soil of residential areas near Tehran landfill in 2021. Iran. J. Health Environ. 2022, 15, 49–72. [Google Scholar]
- Cordova, M.R.; Riani, E. Micro- and mesoplastics release from the Indonesian municipal solid waste landfill leachate to the aquatic environment: Case study in Galuga landfill area, Indonesia. Mar. Pollut. Bull. 2021, 163, 111986. [Google Scholar] [CrossRef]
- Berenstein, G.; Córdoba, P.; Díaz, Y.B.; González, N.; Ponce, M.B.; Montserrat, J.M. Macro, meso, micro and nanoplastics in horticultural soils in Argentina: Abundance, size distribution and fragmentation mechanism. Sci. Total Environ. 2024, 906, 167672. [Google Scholar] [CrossRef]
- Gonzales, C.; Shiu, R.-F.; Bacosa, H.P. Mesoplastic and microplastic pollution in the soil of small-scale agricultural areas in Iligan, Mindanao, Philippines. Soil Sediment Contam. 2024, 1–17. [Google Scholar] [CrossRef]
- Xue, Y.; Li, J.; Jin, T.; Liu, D.; Zou, G.; Li, F.; Wang, K.; Xu, L. Meso- and microplastic contamination in mulching cultivated soil at a national scale, China. J. Clean. Prod. 2023, 418, 138215. [Google Scholar] [CrossRef]
- Salehi, Z.; Hashemi, S.H.; Flury, M. Micro- and mesoplastics in farmlands with different irrigation water sources. Water Air Soil Pollut. 2023, 234, 1–14. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, J.; Wang, G.; Deng, S.; Bao, R.; Zhang, C.; Syed, T.N.; Wang, B.; Zhou, R.; et al. Plastic pollution in agriculture as a threat to food security, the ecosystem, and the environment: An overview. Agronomy 2024, 14, 548. [Google Scholar] [CrossRef]
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Khan, K.; Nazir, S. Plastic waste as a significant threat to environment-a systematic literature review. Rev. Environ. Health 2018, 33, 383–406. [Google Scholar] [CrossRef]
- Hossain, S.; Rahman, M.A.; Chowdhury, M.A.; Mohonta, S.K. Plastic pollution in bangladesh: A review on current status emphasizing the impacts on environment and public health. Environ. Eng. Res. 2021, 26, 200535. [Google Scholar] [CrossRef]
- Lebreton, L.; Andrady, A. Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 2019, 5, 6. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land into the ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- De-la-Torre, G.E.; Pizarro-Ortega, C.I.; Dioses-Salinas, D.C.; Ribeiro, V.V.; Urizar Garfias Reyes, D.F.; Ben-Haddad, M.; Rakib, M.R.J.; Dobaradaran, S. Micro- and mesoplastic pollution along the coast of Peru. Environ. Sci. Pollut. Res. 2023, 30, 71396–71408. [Google Scholar] [CrossRef]
- Castro, R.O.; da Silva, M.L.; Marques, M.R.; de Araújo, F.V. Spatio-temporal evaluation of macro, meso and microplastics in surface waters, bottom and beach sediments of two embayments in Niterói, RJ, Brazil. Mar. Pollut. Bull. 2020, 160, 111537. [Google Scholar] [CrossRef]
- Iwasaki, S.; Isobe, A.; Kako, S.; Uchida, K.; Tokai, T. Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan. Mar. Pollut. Bull. 2017, 121, 85–96. [Google Scholar] [CrossRef]
- Isobe, A.; Kubo, K.; Tamura, Y.; Kako, S.; Nakashima, E.; Fujii, N. Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 2014, 89, 324–330. [Google Scholar] [CrossRef]
- Ramilo-Henry, M.; Umbelina, B.; Matilde, E.; Duncan, E.M. Plastic pollution on remote islands: A baseline study of Príncipe, Gulf of Guinea. Mar. Environ. Res. 2023, 191, 106181. [Google Scholar] [CrossRef] [PubMed]
- Carretero, O.; Gago, J.; Filgueiras, A.V.; Viñas, L. The seasonal cycle of micro and meso-plastics in surface waters in a coastal environment (Ría de Vigo, NW Spain). Sci. Total Environ. 2022, 803, 150021. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, C.; Fossatti, M.; Carrizo, D.; Sánchez-García, L.; Teixeira de Mello, F.; Weinstein, F.; Lozoya, J.P. Mesoplastics and large microplastics along a use gradient on the Uruguay Atlantic Coast: Types, sources, fates, and chemical loads. Sci. Total Environ. 2020, 721, 137734. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef]
- Nakajima, R.; Miyama, T.; Kitahashi, T.; Isobe, N.; Nagano, Y.; Ikuta, T.; Oguri, K.; Tsuchiya, M.; Yoshida, T.; Aoki, K.; et al. Plastic after an extreme storm: The typhoon-induced response of micro- and mesoplastics in coastal waters. Front. Mar. Sci. 2022, 8, 806952. [Google Scholar] [CrossRef]
- Browne, M.A.; Chapman, M.G.; Thompson, R.C.; Amaral Zettler, L.A.; Jambeck, J.; Mallos, N.J. Spatial and temporal patterns of stranded intertidal marine debris: Is there a picture of global change? Environ. Sci. Technol. 2015, 49, 7082–7094. [Google Scholar] [CrossRef]
- Bodor, A.; Feigl, G.; Kolossa, B.; Mészáros, E.; Laczi, K.; Kovács, E.; Perei, K.; Rákhely, G. Soils in distress: The impacts and ecological risks of (micro)plastic pollution in the terrestrial environment. Ecotoxicol. Environ. Saf. 2024, 269, 115807. [Google Scholar] [CrossRef]
- Kusui, T.; Noda, M. International survey on the distribution of stranded and buried litter on beaches along the Sea of Japan. Mar. Pollut. Bull. 2003, 47, 175–179. [Google Scholar] [CrossRef]
- Ryan, P.G.; Perold, V.; Osborne, A.; Moloney, C.L. Consistent patterns of debris on South African beaches indicate that industrial pellets and other mesoplastic items mostly derive from local sources. Environ. Pollut. 2018, 238, 1008–1016. [Google Scholar] [CrossRef]
- Young, A.M.; Elliott, J.A. Characterization of microplastic and mesoplastic debris in sediments from Kamilo Beach and Kahuku Beach, Hawai’i. Mar. Pollut. Bull. 2016, 113, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in freshwater sediment: A review on methods, occurrence, and sources. Sci. Total Environ. 2021, 754, 141948. [Google Scholar] [CrossRef]
- Rozenstein, O.; Puckrin, E.; Adamowski, J. Development of a new approach based on midwave infrared spectroscopy for post-consumer black plastic waste sorting in the recycling industry. J. Waste Manag. 2017, 68, 38–44. [Google Scholar] [CrossRef]
- Mitchell, C.; Quaglino, M.C.; Posner, V.M.; Arranz, S.E.; Sciara, A.A. Quantification and composition analysis of plastic pollution in riverine beaches of the lower Paraná River, Argentina. Environ. Sci. Pollut. Res. 2021, 28, 16140–16151. [Google Scholar] [CrossRef]
- Ghatge, S.; Yang, Y.; Ahn, J.H.; Hur, H.G. Biodegradation of polyethylene: A brief review. Appl. Biol. Chem. 2020, 63, 1–14. [Google Scholar] [CrossRef]
- Maddah, H.A. Polypropylene as a promising plastic: A review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- UNEP. Single-Use Plastics, a Roadmap for Sustainability; United Nations Environment Programme: Nairobi, Kenya, 2018. [Google Scholar]
- Sogancioglu, M.; Yel, E.; Ahmetli, G. Pyrolysis of waste high density polyethylene (HDPE) and low-density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars. J. Clean. Prod. 2017, 165, 369–381. [Google Scholar] [CrossRef]
- Gewert, B.; Plassmann, M.M.; MacLeod, M. Pathways for Degradation of Plastic Polymers Floating in the Marine Environment. Environ. Sci. Process. Impacts 2015, 17, 1513–1521. [Google Scholar] [CrossRef]
- Ali, S.S.; Elsamahy, T.; Al-Tohamy, R.; Zhu, D.; Mahmoud, Y.A.-G.; Koutra, E.; Metwally, M.A.; Kornaros, M.; Sun, J. Plastic Wastes Biodegradation: Mechanisms, Challenges and Future Prospects. Sci. Total Environ. 2021, 780, 146590. [Google Scholar] [CrossRef]
- Webb, H.K.; Arnott, J.; Crawford, R.J.; Ivanova, E.P. Plastic degradation and its environmental implications with special reference to poly (ethylene terephthalate). Polymers 2012, 5, 1–18. [Google Scholar] [CrossRef]
- Lusher, A. Microplastics in the marine environment: Distribution, interactions and effects. In Marine Anthropogenic Litter; Springer International Publishing: Cham, Switzerland, 2015; pp. 245–307. [Google Scholar] [CrossRef]
- Shi, H.; Frias, J.; El-Din, H.; Sayed, A.; De-la-Torre, G.E.; Jong, M.-C.; Uddin, S.A.; Rajaram, R.; Chavanich, S.; Najii, A.; et al. Small plastic fragments: A bridge between large plastic debris and micro- & nano-plastics. TrAC Trends Anal. Chem. 2023, 168, 117308. [Google Scholar] [CrossRef]
- Nihei, Y.; Ota, H.; Tanaka, M.; Kataoka, T.; Kashiwada, J. Comparison of concentration, shape, and polymer composition between microplastics and mesoplastics in Japanese river waters. Water Res. 2024, 249, 120979. [Google Scholar] [CrossRef]
- Gallitelli, L.; Scalici, M. Riverine macroplastic gradient along watercourses: A global overview. Front. Environ. Sci. 2022, 10, 937944. [Google Scholar] [CrossRef]
- Sultana, S.; Anisuzzaman, M.; Hossain, M.K.; Rana, M.S.; Paray, B.A.; Arai, T.; Yu, J.; Hossain, M.B. Ecological risk assessment of microplastics and mesoplastics in six common fishes from the Bay of Bengal Coast. Mar. Pollut. Bull. 2024, 204, 116544. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Vriend, P.; Hidayat, H.; van Leeuwen, J.; Cordova, M.R.; Purba, N.P.; Löhr, A.J.; Faizal, I.; Ningsih, N.S.; Agustina, K.; Husrin, S.; et al. Plastic pollution research in Indonesia: State of science and future research directions to reduce impacts. Front. Environ. Sci. 2021, 9, 692907. [Google Scholar] [CrossRef]
- Paray, B.A.; Yu, J.; Sultana, S.; Banik, P.; Nur, A.A.U.; Haque, M.R.; Rahman, M.M.; Arai, T.; Yan, L.; Hossain, M.B. Contamination, morphological and chemical characterization, and hazard risk analyses of microplastics in drinking water sourced from groundwater in a developing nation. Front. Environ. Sci. 2024, 12, 1379311. [Google Scholar] [CrossRef]
- Ogbeibu, A.E.; Omoigberale, M.O.; Ezenwa, I.M.; Eziza, J.O.; Igwe, J.O. Using pollution load index and geoaccumulation index for the assessment of heavy metal pollution and sediment quality of the Benin river, Nigeria. J. Nat. Environ. 2014, 2, 1–9. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef]
- Dauvalter, V.; Rognerud, S. Heavy metal pollution in sediments of the Pasvik river drainage. Chemosphere 2001, 42, 9–18. [Google Scholar] [CrossRef]
- Peng, G.; Xu, P.; Zhu, B.; Bai, M.; Li, D. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environ. Pollut. 2018, 234, 448–456. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Rouillon, C.; Bussiere, P.O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.L. Is carbonyl index a quantitative probe to monitor polypropylene photodegradation? Polym. Degrad. Stab. 2016, 128, 200–208. [Google Scholar] [CrossRef]
- Fernandino, G.; Elliff, C.I.; Silva, I.R.; Bittencourtc, A.C.S.P. How many pellets are too many? The pellet pollution index as a tool to assess beach pollution by plastic resin pellets in Salvador, Bahia, Brazil. J. Integr. Coast. Zone Manag. 2015, 15, 325–332. [Google Scholar] [CrossRef]
- Alkalay, R.; Pasternak, G.; Zask, A. Clean-coast index—A new approach for beach cleanliness assessment. Ocean. Coast. Manag. 2007, 50, 352–362. [Google Scholar] [CrossRef]
- Ghorbaninejad Fard Shirazi, M.M.; Shekoohiyan, S.; Moussavi, G.; Heidari, M. Microplastics and mesoplastics as emerging contaminants in Tehran landfill soils: The distribution and induced-ecological risk. Environ. Pollut. 2023, 324, 121368. [Google Scholar] [CrossRef]
- Jachimowicz, P.; Klik, B.; Osińska, A.D. Plastic pollution in paradise: Analyzing plastic litter on Malta’s beaches and assessing the release of potentially toxic elements. Toxics 2024, 12, 568. [Google Scholar] [CrossRef]
- Fred-Ahmadu, O.H.; Ayejuyo, O.O.; Tenebe, I.T.; Benson, N.U. Occurrence and distribution of micro(meso)plastic-sorbed heavy metals and metalloids in sediments, Gulf of Guinea Coast (SE Atlantic). Sci. Total Environ. 2022, 813, 152650. [Google Scholar] [CrossRef]
- Gong, W.; Xing, Y.; Han, L.; Lu, A.; Qu, H.; Xu, L. Occurrence and distribution of micro- and mesoplastics in the high-latitude nature reserve, Northern China. Front. Environ. Sci. Eng. 2022, 16, 113. [Google Scholar] [CrossRef]
- Jeyasanta, K.I.; Sathish, N.; Patterson, J.; Edward, J.K.P. Macro-, meso- and microplastic debris in the beaches of Tuticorin District, Southeast Coast of India. Mar. Pollut. Bull. 2020, 154, 111055. [Google Scholar] [CrossRef]
- Manullang, C.Y.; Soamole, A.; Rehalat, I.; Barends, W.; Sudin, A.M. Debris from plastic products in the beaches around Northern Ambon Island. IOP Conf. Ser. Earth Environ. Sci. 2023, 1163, 012006. [Google Scholar] [CrossRef]
- Hermabessiere, L.; Dehaut, A.; Paul-Pont, I.; Lacroix, C.; Jezequel, R.; Soudant, P.; Duflos, G. Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere 2017, 182, 781–793. [Google Scholar] [CrossRef] [PubMed]
- Enyoh, C.E.; Qingyue, W.; Verla, A.W.; Chowdhury, T. Index models for ecological and health risks assessment of environmental micro-and nano-sized plastics. AIMS Environ. Sci. 2022, 9, 51–65. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Hong, S.; Hong, S.H.; Shim, W.J.; Eo, S. Characteristics of meso-sized plastic marine debris on 20 beaches in Korea. Mar. Pollut. Bull. 2017, 123, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Harpah, N.; Syafira, D.; Perdana, Z.; Khair, H.; Suryati, I.; Nurfahasdi, M. A preliminary analysis of heavy metals consentration on existing mesoplastic in a tropical river: Study cases in Deli River. E3S Web Conf. 2024, 519, 03019. [Google Scholar] [CrossRef]
- Prunier, J.; Maurice, L.; Perez, E.; Gigault, J.; Pierson Wickmann, A.-C.; Davranche, M.; Ter Halle, A. Trace metals in polyethylene debris from the North Atlantic Subtropical Gyre. Environ. Pollut. 2019, 245, 371–379. [Google Scholar] [CrossRef]
- Chen, Q.; Allgeier, A.; Yin, D.; Hollert, H. Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environ. Int. 2019, 130, 104938. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, Y.; Kajiwara, T.; Matsukami, H.; Kuramochi, H.; Osako, M.; Suzuki, G. Identification and quantification of additive-derived chemicals in beached micro–mesoplastics and macroplastics. Mar. Pollut. Bull. 2023, 186, 114438. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, M.; Wang, T.; Morales-Caselles, C.; Callejas, S.; Eljarrat, E.; Porte, C. Comparative toxicity of beach mesoplastics from South Spain: An in vitro approach. Chemosphere 2024, 352, 141494. [Google Scholar] [CrossRef]
- Goswami, P.; Ohura, T.; Subasinghe, S.; Wickrama-Arachchige, A.U.-K.; Takeuchi, S.; Imaki, M.; Niizuma, Y.; Watanabe, M.; Guruge, K.S. Voyaging of halogenated polycyclic aromatic hydrocarbons, an emerging group of pollutants, on micro-mesoplastics in the marine environment. J. Hazard. Mater. 2023, 460, 132502. [Google Scholar] [CrossRef]
- Esiukova, E.; Lobchuk, O.; Fetisov, S.; Bocherikova, I.; Kantakov, G.; Chubarenko, I. Baltic plastic soup recipe: Presence of paraffin increases micro- and mesoplastic contamination. Reg. Stud. Mar. Sci. 2024, 74, 103554. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Liu, G. Sorption behaviors of phenanthrene, nitrobenzene, and naphthalene on mesoplastics and microplastics. Environ. Sci. Pollut. Res. 2019, 26, 12563–12573. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, L.; Arulmani, S.R.B.; Yan, J.; Wu, L.; Wu, T.; Zhang, H.; Xiao, T. Adsorption of different pollutants by using microplastic with different influencing factors and mechanisms in wastewater: A review. Nanomaterials 2022, 12, 2256. [Google Scholar] [CrossRef]
- Martinho, S.D.; Fernandes, V.C.; Figueiredo, S.A.; Vilarinho, R.; Moreira, J.A.; Delerue-Matos, C. Laboratory studies about microplastic aging and its effects on the adsorption of chlorpyrifos. Polymers 2023, 15, 3468. [Google Scholar] [CrossRef]
- Chagnon, C.; Thiel, M.; Antunes, J.; Ferreira, J.L.; Sobral, P.; Ory, N.C. Plastic ingestion and trophic transfer between easter island flying fish (Cheilopogon rapanouiensis) and yellowfin tuna (Thunnus albacares) from Rapa Nui (Easter Island). Environ. Pollut. 2018, 243, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Karuppasamy, P.K.; Ravi, A.; Vasudevan, L.; Elangovan, M.P.; Dyana Mary, P.; Vincent, S.G.T.; Palanisami, T. Baseline survey of micro and mesoplastics in the gastro-intestinal tract of commercial fish from Southeast Coast of the Bay of Bengal. Mar. Pollut. Bull. 2020, 153, 110974. [Google Scholar] [CrossRef]
- Jimenez-Cárdenas, V.; Luna-Acosta, A.; Gómez-Méndez, L.D. Differential presence of microplastics and mesoplastics in coral reef and mangrove fishes in Isla Grande, Colombia. Microplastics 2022, 1, 477–493. [Google Scholar] [CrossRef]
- Fossi, M.C.; Romeo, T.; Baini, M.; Panti, C.; Marsili, L.; Campani, T.; Canese, S.; Galgani, F.; Druon, J.-N.; Airoldi, S.; et al. Plastic debris occurrence, convergence areas and fin whales feeding ground in the mediterranean marine protected area Pelagos sanctuary: A modeling approach. Front. Mar. Sci. 2017, 4, 167. [Google Scholar] [CrossRef]
- Puskic, P.S.; Coghlan, A.R. Minimal meso-plastics detected in Australian coastal reef fish. Mar. Pollut. Bull. 2021, 173, 113074. [Google Scholar] [CrossRef]
- Salazar-Pérez, C.; Amezcua, F.; Rosales-Valencia, A.; Green, L.; Pollorena-Melendrez, J.E.; Sarmiento-Martínez, M.A.; Tomita Ramírez, I.; Gil-Manrique, B.D.; Hernandez-Lozano, M.Y.; Muro-Torres, V.M.; et al. First insight into plastics ingestion by fish in the Gulf of California, Mexico. Mar. Pollut. Bull. 2021, 171, 112705. [Google Scholar] [CrossRef]
- Giani, D.; Andolina, C.; Baini, M.; Panti, C.; Sciandra, M.; Vizzini, S.; Fossi, M.C. Trophic niche influences ingestion of micro- and mesoplastics in pelagic and demersal fish from the Western Mediterranean Sea. Environ. Pollut. 2023, 328, 121632. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, A.R. An Examination of the Micro and Mesoplastics in Commercial Fish’s Intestines and Gills (Oreochromis Niloticus) from Ambattur, Korattur and Madhavaram Lake; Elsevier: New York, NY, USA, 2024. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Larat, V.; Karbalaei, S.; Salamatinia, B. Microplastic and mesoplastic contamination in canned sardines and sprats. Sci. Total Environ. 2018, 612, 1380–1386. [Google Scholar] [CrossRef]
- Li, Q.; Su, L.; Ma, C.; Feng, Z.; Shi, H. Plastic debris in coastal macroalgae. Environ. Res. 2022, 205, 112464. [Google Scholar] [CrossRef]
- Rice, N.; Hirama, S.; Witherington, B. High frequency of micro- and meso-plastics ingestion in a sample of neonate sea turtles from a major rookery. Mar. Pollut. Bull. 2021, 167, 112363. [Google Scholar] [CrossRef]
- Correia, L.L.; Ribeiro-Brasil, D.R.G.; Garcia, M.G.; de Melo E Silva, D.; Alencastre-Santos, A.B.; Vieira, T.B. The first record of ingestion and inhalation of micro- and mesoplastics by neotropical bats from the Brazilian Amazon. Acta Chiropt. 2024, 25, 371–383. [Google Scholar] [CrossRef]
- Blesa Marco, Z.E.; Sáez, J.A.; Pedraza Torres, A.M.; Martínez Sabater, E.; Orden, L.; Andreu-Rodríguez, F.J.; Bustamante, M.A.; Marhuenda-Egea, F.C.; López, M.J.; Suárez-Estrella, F.; et al. Effect of agricultural microplastic and mesoplastic in the vermicomposting process: Response of Eisenia fetida and quality of the vermicomposts obtained. Environ. Pollut. 2023, 333, 122027. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.C.M.; Boots, B.; Ings, T.C.; Green, D.S. Above- and below-ground field study on the impacts of conventional and alternative mesoplastics on Hordeum vulgare growth and soil invertebrate communities. Chemosphere 2024, 365, 143393. [Google Scholar] [CrossRef] [PubMed]
- Li, W.C.; Tse, H.F.; Fok, L. Plastic waste in the marine environment: A review of sources, occurrence and effects. Sci. Total Environ. 2016, 566–567, 333–349. [Google Scholar] [CrossRef]
- Pasqualini, V.; Garrido, M.; Cecchi, P.; Connès, C.; Couté, A.; El Rakwe, M.; Henry, M.; Hervio-Heath, D.; Quilichini, Y.; Simonnet, J.; et al. Harmful algae and pathogens on plastics in three mediterranean coastal lagoons. Heliyon 2023, 9, e13654. [Google Scholar] [CrossRef]
- Metcalf, R.; Quilliam, R.; Oliver, D.; Matallana-Surget, S. The Survival, Persistence, and Ecology of Microbial Pathogens on the Surfaces of Environmental Plastic Pollution. Ph.D. Thesis, University of Stirling, Stirling, Scotland, 2024. [Google Scholar]
- Lacerda, A.L.D.F.; Rodrigues, L.D.S.; Van Sebille, E.; Rodrigues, F.L.; Ribeiro, L.; Secchi, E.R.; Kessler, F.; Proietti, M.C. Plastics in sea surface waters around the Antarctic Peninsula. Sci. Rep. 2019, 9, 3977. [Google Scholar] [CrossRef]
- Lacerda, A.L.; Taylor, J.D.; dS Rodrigues, L.; Kessler, F.; Secchi, E.; Proietti, M.C. Floating plastics and their associated biota in the Western South Atlantic. Sci. Total Environ. 2022, 805, 150186. [Google Scholar] [CrossRef] [PubMed]
- Singleton, S.L.; Davis, E.W.; Arnold, H.K.; Daniels, A.M.Y.; Brander, S.M.; Parsons, R.J.; Sharpton, T.J.; Giovannoni, S.J. Identification of rare microbial colonizers of plastic materials incubated in a coral reef environment. Front. Microbiol. 2023, 14, 1259014. [Google Scholar] [CrossRef] [PubMed]
- Carrieri, V.; Varela, Z.; Aboal, J.R.; De Nicola, F.; Fernández, J.A. Suitability of aquatic mosses for biomonitoring micro/meso plastics in freshwater ecosystems. Environ. Sci. Eur. 2022, 34, 1–10. [Google Scholar] [CrossRef]
- Dey, S.; Veerendra, G.T.N.; Babu, P.S.S.A.; Manoj, A.V.P.; Nagarjuna, K. Degradation of plastics waste and its effects on biological ecosystems: A scientific analysis and comprehensive review. J. Biomed. Mater. Devices 2024, 2, 70–112. [Google Scholar] [CrossRef]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological degradation of plastics and microplastics: A recent perspective on associated mechanisms and influencing factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef] [PubMed]
- Immerschitt, I.; Martens, A. Ejection, ingestion and fragmentation of mesoplastic fibres to microplastics by anax imperator larvae (Odonata: Aeshnidae). Odonatologica 2021, 49, 57–66. [Google Scholar] [CrossRef]
- Chae, Y.; An, Y.-J. Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. Environ. Pollut. 2018, 240, 387–395. [Google Scholar] [CrossRef]
Region | Number of Studies | Percentage |
---|---|---|
East Asia | 17 | 15.6 |
South America | 11 | 10.1 |
Southern Europe | 11 | 10.1 |
West Asia | 8 | 7.3 |
Southeast Asia | 7 | 6.4 |
North America | 6 | 5.5 |
South Asia | 6 | 5.5 |
Southwestern Europe | 6 | 5.5 |
Central Europe | 3 | 2.8 |
Northeast Asia | 3 | 2.8 |
North Africa | 2 | 1.8 |
Northern Europe | 2 | 1.8 |
Northwestern Europe | 2 | 1.8 |
South Africa | 2 | 1.8 |
Australia | 1 | 0.9 |
East Africa | 1 | 0.9 |
Northeastern Africa | 1 | 0.9 |
Northwest South America | 1 | 0.9 |
Oceania | 1 | 0.9 |
West Africa | 1 | 0.9 |
Phenomena | References |
---|---|
Oceanographic factors, including hydrodynamics and Stokes drift terminal velocity, dependent on fragment size and current | [37,50,51,52,53] |
weather conditions | [18,51] |
Anthropic influence, including community presence, industrial activities, and the occupation of coastal areas | [51,54,55] |
Seasonal variability | [18,28,55,56,57] |
Sampling stations | [55] |
Upwelling/downwelling ocean periods | [55] |
Storm | [58] |
Beach location | [54] |
Type of Environment | Method of Collection | Percentage |
---|---|---|
Marine surface water | Manta trawl | 42.90% |
Neuston net | 21.40% | |
Net | 14.30% | |
Pump | 7.10% | |
Modelling | 7.10% | |
Water sample collection through the use of buckets | 7.10% | |
Marine beach and sediments | Transect line | 90.0% |
Random sampling | 5.0% | |
Quadrat | 5.0% | |
Marine biota | Purchased | 50.0% |
Direct collection | 50.0% | |
Freshwater beach and sediments | Transect line | 87.5% |
Non-randomized sampling | 12.5% | |
Freshwater surface water | Stow net vessel | 25.0% |
Plankton net | 50.0% | |
Collection of water sample | 25.0% | |
Freshwater biota | Direct catch | 100.0% |
Terrestrial biota | Direct catch | 100.0% |
Soil | Direct collection | 80.0% |
Quadrat | 20.0% |
Index | Description | Reference |
---|---|---|
Polymer hazard index (PHI) | A metric designed to assess both the environmental and health risks posed by different types of polymers based on their chemical constituents. | [81] |
Pollution load index (PLI) | A tool that is used to assess the presence of heavy metal pollution, such as the presence of heavy metals in plastics. | [82,83] |
Potential contamination index (PCI) | A tool that measures ecological risk due to metal concentrations in sediments. | [84] |
Ecological risk index (ERI) | Metric used to assess the potential ecological risks of sediments. Takes into account both the environmental impact of various pollutants in an environment and the combined effects of multiple pollutants | [85,86] |
Carbonyl index (CI) | It measures the chemical oxidation of polyolefins and generally indicates the degradation of plastic polymers’ mechanical properties. | [87] |
Pellets pollution index (PPI) | A standardized method for assessing plastic pellet pollution and the risks it causes on the surface of sandy beaches. Aids in the monitoring of the beach’s environmental quality. | [88] |
Clean coast index (CCI) | A pollution index utilized to assess the cleanliness of a beach based on plastic litter data. | [89] |
Beach cleanliness index (BCI) | A descriptive statistic that considers the frequency of beach cleaning (BC), availability of waste bins (AB), anthropogenic activities (AA), and natural factors (NF). | [26] |
Chemical Pollutants Identified | Type of Compounds | Reference |
---|---|---|
Endocrine-disrupting chemicals (EDCs) | Organic | [101] |
Antioxidants, phthalates, ultraviolet stabilizers, hindered amine light stabilizers, flame retardants, Irgafos 168 | Organic | [102] |
Paraffin, organic matter | Organic | [105] |
Polycyclic aromatic hydrocarbons (PAHs), Chlorinated polycyclic aromatic hydrocarbons (ClPAHs), Brominated polycyclic aromatic hydrocarbons (BrPAHs) | Organic | [56,104] |
Organophosphate esters, Phthalates, and Phthalate alternatives | Organic | [103] |
Polychlorinated biphenyls (PCBs), Organochlorine | Organic | [56] |
Mg, Pb, Zn, Cu, Fe, Mn, Ti, K, P, Al | Inorganic | [50,56,92] |
Lead and cadmium | Inorganic | [99] |
Potentially toxic elements (PTEs) (Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe) | Inorganic | [91] |
Trace metals | Inorganic | [100] |
Naphthalene and benzene | Organic | [106] |
Microorganisms Identified | Study Area | Reference |
---|---|---|
| Antarctic Peninsula | [126] |
| Continental Shelf Off the Coast of South Brazil | [127] |
| French Mediterranean Coastal Lagoons | [124] |
| Firth of Forth, Scotland | [125] |
| Bermuda Platform, Ferry Reach | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellos, D.M.C.; Chien, M.-F.; Inoue, C.; Nakano, H.; Isobe, A.; Onda, D.F.L.; Watanabe, K.; Bacosa, H.P. Mesoplastics: A Review of Contamination Status, Analytical Methods, Pollution Sources, Potential Risks, and Future Perspectives of an Emerging Global Environmental Pollutant. Toxics 2025, 13, 227. https://doi.org/10.3390/toxics13030227
Ellos DMC, Chien M-F, Inoue C, Nakano H, Isobe A, Onda DFL, Watanabe K, Bacosa HP. Mesoplastics: A Review of Contamination Status, Analytical Methods, Pollution Sources, Potential Risks, and Future Perspectives of an Emerging Global Environmental Pollutant. Toxics. 2025; 13(3):227. https://doi.org/10.3390/toxics13030227
Chicago/Turabian StyleEllos, Dioniela Mae C., Mei-Fang Chien, Chihiro Inoue, Haruka Nakano, Atsuhiko Isobe, Deo Florence L. Onda, Kozo Watanabe, and Hernando P. Bacosa. 2025. "Mesoplastics: A Review of Contamination Status, Analytical Methods, Pollution Sources, Potential Risks, and Future Perspectives of an Emerging Global Environmental Pollutant" Toxics 13, no. 3: 227. https://doi.org/10.3390/toxics13030227
APA StyleEllos, D. M. C., Chien, M.-F., Inoue, C., Nakano, H., Isobe, A., Onda, D. F. L., Watanabe, K., & Bacosa, H. P. (2025). Mesoplastics: A Review of Contamination Status, Analytical Methods, Pollution Sources, Potential Risks, and Future Perspectives of an Emerging Global Environmental Pollutant. Toxics, 13(3), 227. https://doi.org/10.3390/toxics13030227