Contamination and Health Risk Assessment of Potentially Toxic Elements in Household Dust Across the Haze Season in Upper Northern Thailand
Highlights
- Five PTEs (Cr, Mo, Ni, Pb, Zn) were significantly elevated during the haze season with corresponding increases in contamination indices.
- Children faced unacceptable non-carcinogenic risks (HI = 2.51, increasing to 2.79 during the haze season, a 16% increase), primarily through ingestion.
- Approximately 1.3 in 10,000 children and 4.5 in 10,000 adults may develop cancer from lifetime exposure to household dust PTEs, increasing 45–51% during the haze season, primarily from Cr inhalation.
- Principal components increased from five to six during the haze season, indicating more diverse pollution sources.
- These findings highlight the urgent need for pollution control strategies in biomass-burning regions, especially for vulnerable populations.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Household Dust Samples and Data Collection
2.3. Elemental Analysis
2.4. Dust Pollution Assessment
2.4.1. Enrichment Factor (EF)
2.4.2. Contamination Factor (CF)
2.4.3. Pollution Load Index (PLI)
2.4.4. Index of Geo-Accumulation (Igeo)
2.5. Health Risk Assessment
2.5.1. Exposure Assessment
2.5.2. Non-Carcinogenic Risk Assessment
2.5.3. Carcinogenic Risk Assessment
2.6. Statistical Analysis
3. Results and Discussion
3.1. Potentially Toxic Element Concentrations in Indoor Household Dust
| Country (n) | Potentially Toxic Element Concentrations (mg/kg) in Indoor Household Dust | Ref. | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Al | As | B | Ba | Cd | Co | Cr | Cu | Mn | Mo | Ni | Pb | Sb | V | Zn | ||
| 35 Countries (2265) a | 25.3 | 4.7 | 128 | 264 | 333 | 77.6 | 224 | 1470 | [5] | |||||||
| 35 Countries (2265) b | 13.3 | 0.8 | 86 | 176 | 257 | 39 | 94 | 1110 | [5] | |||||||
| Canada (125) a | 16,000 | 13 | 11 | 5.4 | 92 | 1900 | 250 | 8.3 | 60 | 4500 | 36 | 15 | 14,000 | [41] | ||
| Canada (125) b | 21,000 | 8.6 | 2.2 | 5.4 | 72 | 460 | 270 | 4.3 | 48 | 450 | 12 | 23 | 3100 | [41] | ||
| China (3392) b | 15.6 | 2.7 | 86 | 136 | 40.7 | 161 | 603 | [9] | ||||||||
| Australia (224) a | 20.2 | 99.8 | 298 | 247 | 56.7 | 364 | 2437 | [33] | ||||||||
| Japan (100) b | 15,700 | 208 | 1.0 | 4.7 | 67.8 | 304 | 226 | 2.1 | 59.6 | 57.9 | 10.1 | 24.7 | 920 | [40] | ||
| Thailand, Sukhothai (16) a | 9 | 2 | 226 | 1051 | [44] | |||||||||||
| Thailand, Ubon Ratchathani | [46] | |||||||||||||||
| E–Waste (46) b | 1.5 | 1.2 | 6.9 | |||||||||||||
| Non–E–Waste (46) b | 0.9 | 0.8 | 0.9 | |||||||||||||
| Thailand, Phitsanulok | [45] | |||||||||||||||
| Main street (12) a | 21.3 | 89.9 | 128.7 | 519 | ||||||||||||
| Secondary street (12) a | 24.7 | 67.7 | 62.3 | 322 | ||||||||||||
| Thailand, Chiang Mai and Lamphun (100) b | 10.3 | 0.9 | 32.4 | 82.5 | 541 | 28.9 | 44.8 | 353 | [20] | |||||||
| Thailand, Lampang b | 11.1 | 1.2 | 55.2 | 117.1 | 422 | 50.5 | 41.8 | 24.7 | 357 | [21] | ||||||
| Thailand Soil Contamination | 6 | 67 | 17.5 * | 2920 | 1710 | 436.5 | 400 | [47] | ||||||||
| Thailand, UNT, Indoor a | 19,596 | 10.5 | 29.6 | 212 | 1.9 | 2.4 | 37.4 | 98.0 | 485 | 1.5 | 31.2 | 56.6 | 5.3 | 31.1 | 448 | This study |
| Thailand, UNT, Indoor b | 18,826 | 8.8 | 26.5 | 194 | 1.0 | 1.9 | 31.4 | 74.4 | 429 | 1.3 | 26.8 | 42.6 | 3.3 | 29.8 | 374 | |
3.2. Dust Pollution Assessment
3.2.1. Enrichment Factor
3.2.2. Contamination Factor and Pollution Load Index
3.2.3. Index of Geo-Accumulation
3.2.4. Contamination of PTEs in Household Dust During Air Pollution Seasons
3.3. Sources Analysis of Potentially Toxic Elements
3.4. Health Risk Assessment
3.4.1. Non-Carcinogenic Risk Assessment
3.4.2. Non-Carcinogenic Risk Assessment During Haze and Non-Haze Seasons
3.4.3. Carcinogenic Risk Assessment
3.4.4. Carcinogenic Risk Assessment During the Haze and Non-Haze Seasons
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cholowsky, N.L.; Chen, M.J.; Selouani, G.; Pett, S.C.; Pearson, D.D.; Danforth, J.M.; Fenton, S.; Rydz, E.; Diteljan, M.J.; Peters, C.E.; et al. Consequences of changing Canadian activity patterns since the COVID-19 pandemic include increased residential radon gas exposure for younger people. Sci. Rep. 2023, 13, 5735. [Google Scholar] [CrossRef]
- US EPA. The Inside Story: A Guide to Indoor Air Quality [Internet]. Available online: https://www.epa.gov/indoor-air-quality-iaq/inside-story-guide-indoor-air-quality (accessed on 23 May 2025).
- Zhang, Y.; Liu, X.; Meng, Q.; Li, B.; Caneparo, L. Physical environment research of the family ward for a healthy residential environment. Front. Public Health 2022, 10, 1015718. [Google Scholar] [CrossRef]
- World Health Organization. Household Air Pollution and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health (accessed on 28 August 2022).
- Isley, C.F.; Fry, K.L.; Liu, X.; Filippelli, G.M.; Entwistle, J.A.; Martin, A.P.; Kah, M.; Meza-Figueroa, D.; Shukle, J.T.; Jabeen, K.; et al. International Analysis of Sources and Human Health Risk Associated with Trace Metal Contaminants in Residential Indoor Dust. Environ. Sci. Technol. 2022, 56, 1053–1068. [Google Scholar] [CrossRef] [PubMed]
- Ivaneev, A.I.; Brzhezinskiy, A.S.; Karandashev, V.K.; Ermolin, M.S.; Fedotov, P.S. Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere 2023, 321, 138142. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, P.E.; Kubwabo, C.; Gardner, H.D.; Levesque, C.; Beauchemin, S. Relationships between House Characteristics and Exposures to Metal(loid)s and Synthetic Organic Contaminants Evaluated Using Settled Indoor Dust. Int. J. Environ. Res. Public Health 2022, 19, 10329. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Levesque, C.; Chénier, M.; Gardner, H.D.; Jones-Otazo, H.; Petrovic, S. Canadian House Dust Study: Population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Sci. Total Environ. 2013, 443, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Lv, Y.; Lv, X.; Wang, Q.; Li, Y.; Lu, P.; Yu, H.; Wei, P.; Cao, Z.; An, T. Distribution, sources and health risks of heavy metals in indoor dust across China. Chemosphere 2023, 313, 137595. [Google Scholar] [CrossRef]
- Huang, L.; Pu, Z.; Li, M.; Sundell, J. Characterizing the Indoor-Outdoor Relationship of Fine Particulate Matter in Non-Heating Season for Urban Residences in Beijing. PLoS ONE 2015, 10, e0138559. [Google Scholar] [CrossRef]
- Rožanec, J.; Galičič, A.; Kukec, A. The Impact of Outdoor Environmental Factors on Indoor Air Quality in Education Settings: A Systematic Review. Atmosphere 2024, 15, 1403. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Niampradit, S.; Sahanavin, N.; Mueller, W.; Steinle, S.; Loh, M.; Johnston, H.J.; Vardoulakis, S.; Suwanmanee, S.; Phonphan, W.; et al. Seasonal analysis of indoor and outdoor ratios of PM2.5 and PM10 in Bangkok and Chiang Mai: A comparative study of haze and non-haze episodes. Heliyon 2025, 11, e42261. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Levesque, C.; Chénier, M.; Gardner, H.D. Contribution of metals in resuspended dust to indoor and personal inhalation exposures: Relationships between PM10 and settled dust. Build. Environ. 2018, 143, 513–522. [Google Scholar] [CrossRef]
- Deering, K.; Spiegel, E.; Quaisser, C.; Nowak, D.; Schierl, R.; Bose-O’Reilly, S.; Garí, M. Monitoring of arsenic, mercury and organic pesticides in particulate matter, ambient air and settled dust in natural history collections taking the example of the Museum für Naturkunde, Berlin. Environ. Monit. Assess. 2019, 191, 375. [Google Scholar] [CrossRef]
- Pollution Control Department (PCD). Thailand’s Air Quality and Situation Reports (in Thai); Pollution Control Department: Bangkok, Thailand, 2023; pp. 7–16. Available online: http://air4thai.com/tagoV2/tago_file/books/book_file/eef68f0fe6195accf1e101ff3c204fe0.pdf (accessed on 23 August 2025).
- Saksakulkrai, S.; Chantara, S.; Kraisitnitikul, P.; Srivastava, D.; Shi, Z. Unveiling the origins of Northern Thailand’s haze: Comprehensive chemical characterization and source apportionment of PM2.5 using targeted molecular markers. J. Environ. Sci. 2025, 159, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Kraisitnitikul, P.; Thepnuan, D.; Chansuebsri, S.; Yabueng, N.; Wiriya, W.; Saksakulkrai, S.; Shi, Z.; Chantara, S. Contrasting compositions of PM2.5 in Northern Thailand during La Niña (2017) and El Niño (2019) years. J. Environ. Sci. 2024, 135, 585–599. [Google Scholar] [CrossRef]
- Corsini, E.; Marinovich, M.; Vecchi, R. Ultrafine Particles from Residential Biomass Combustion: A Review on Experimental Data and Toxicological Response. Int. J. Mol. Sci. 2019, 20, 4992. [Google Scholar] [CrossRef]
- Somsunun, K.; Prapamontol, T.; Pothirat, C.; Liwsrisakun, C.; Pongnikorn, D.; Fongmoon, D.; Chantara, S.; Wongpoomchai, R.; Naksen, W.; Autsavapromporn, N.; et al. Estimation of lung cancer deaths attributable to indoor radon exposure in upper northern Thailand. Sci. Rep. 2022, 12, 5169. [Google Scholar] [CrossRef] [PubMed]
- Somsunun, K.; Prapamontol, T.; Kuanpan, T.; Santijitpakdee, T.; Kohsuwan, K.; Jeytawan, N.; Thongjan, N. Health Risk Assessment of Heavy Metals in Indoor Household Dust in Urban and Rural Areas of Chiang Mai and Lamphun Provinces, Thailand. Toxics 2023, 11, 1018. [Google Scholar] [CrossRef]
- Bootdee, S.; Sillapapiromsuk, S.; Kawichai, S. Trace Elements in Indoor Dust Exposure from Child Development Centers and Health Risk Assessment in Haze and Industrial Areas, Thailand. Toxics 2025, 13, 547. [Google Scholar] [CrossRef]
- EPA, US. US EPA Regional Screening Levels (RSL) Calculator. Available online: https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search (accessed on 1 July 2025).
- US EPA. Exposure Factors Handbook 2011 Edition (Final Report); U.S. Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Falciani, R.; Novaro, E.; Marchesini, M.; Gucciardi, M. Multi-element analysis of soil and sediment by ICP-MS after a microwave assisted digestion method. J. Anal. At. Spectrom. 2000, 15, 561–565. [Google Scholar] [CrossRef]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 2014, 476–477, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution. Geol. Mag. 1985, 122, 673–674. [Google Scholar] [CrossRef]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosystems 2001, 2, 1021–1024. [Google Scholar] [CrossRef]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 1–4. [Google Scholar] [CrossRef]
- Rinklebe, J.; Antoniadis, V.; Shaheen, S.M.; Rosche, O.; Altermann, M. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ. Int. 2019, 126, 76–88. [Google Scholar] [CrossRef]
- Tomczyk, P.; Wdowczyk, A.; Wiatkowska, B.; Szymańska-Pulikowska, A. Assessment of heavy metal contamination of agricultural soils in Poland using contamination indicators. Ecol. Indic. 2023, 156, 111161. [Google Scholar] [CrossRef]
- Chen, L.; Fang, L.; Yang, X.; Luo, X.; Qiu, T.; Zeng, Y.; Huang, F.; Dong, F.; White, J.C.; Bolan, N.; et al. Sources and human health risks associated with potentially toxic elements (PTEs) in urban dust: A global perspective. Environ. Int. 2024, 187, 108708. [Google Scholar] [CrossRef]
- Zhang, J.; Peng, W.; Lin, M.; Liu, C.; Chen, S.; Wang, X.; Gui, H. Environmental geochemical baseline determination and pollution assessment of heavy metals in farmland soil of typical coal-based cities: A case study of Suzhou City in Anhui Province, China. Heliyon 2023, 9, e14841. [Google Scholar] [CrossRef]
- Doyi, I.N.Y.; Isley, C.F.; Soltani, N.S.; Taylor, M.P. Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environ. Int. 2019, 133, 105125. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- Wignall, J.A.; Muratov, E.; Sedykh, A.; Guyton, K.Z.; Tropsha, A.; Rusyn, I.; Chiu, W.A. Conditional Toxicity Value (CTV) Predictor: An In Silico Approach for Generating Quantitative Risk Estimates for Chemicals. Environ. Health Perspect. 2018, 126, 057008. [Google Scholar] [CrossRef]
- Office of Environmental Health Hazard Assessment (OEHHA). Technical Support Document for Cancer Potency Factors 2009. Available online: https://oehha.ca.gov/air/crnr/technical-support-document-cancer-potency-factors-2009 (accessed on 20 April 2023).
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Eizadi-Mood, N.; Hassanian-Moghaddam, H.; Etemad, L.; Moshiri, M.; Vahabzadeh, M.; Sadeghi, M. Recent advances in the clinical management of intoxication by five heavy metals: Mercury, lead, chromium, cadmium and arsenic. Heliyon 2025, 11, e42696. [Google Scholar] [CrossRef]
- Shrestha, N. Factor Analysis as a Tool for Survey Analysis. Am. J. Appl. Math. Stat. 2021, 9, 4–11. [Google Scholar] [CrossRef]
- Yoshinaga, J.; Yamasaki, K.; Yonemura, A.; Ishibashi, Y.; Kaido, T.; Mizuno, K.; Takagi, M.; Tanaka, A. Lead and other elements in house dust of Japanese residences—Source of lead and health risks due to metal exposure. Environ. Pollut. 2014, 189, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Dingle, J.H.; Kohl, L.; Khan, N.; Meng, M.; Shi, Y.A.; Pedroza-Brambila, M.; Chow, C.-W.; Chan, A.W.H. Sources and composition of metals in indoor house dust in a mid-size Canadian city. Environ. Pollut. 2021, 289, 117867. [Google Scholar] [CrossRef]
- Klinčić, D.; Tariba Lovaković, B.; Jagić, K.; Dvoršćak, M. Polybrominated diphenyl ethers and the multi-element profile of house dust in Croatia: Indoor sources, influencing factors of their accumulation and health risk assessment for humans. Sci. Total Environ. 2021, 800, 149430. [Google Scholar] [CrossRef]
- Naccarato, A.; Tassone, A.; Cavaliere, F.; Elliani, R.; Pirrone, N.; Sprovieri, F.; Tagarelli, A.; Giglio, A. Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Sci. Total Environ. 2020, 749, 141438. [Google Scholar] [CrossRef] [PubMed]
- Srithawirat, T.; Chimjan, O. Contamination assessment of heavy metals in dust deposited on residential building walls in agricultural areas of Sukhothai. J. Environ. Manag. 2017, 13, 20–33. [Google Scholar] [CrossRef]
- Srithawirat, T.; Latif, M.T. Concentration of selected heavy metals in the surface dust of residential buildings in Phitsanulok, Thailand. Environ. Earth Sci. 2015, 74, 2701–2706. [Google Scholar] [CrossRef]
- Kuntawee, C.; Tantrakarnapa, K.; Limpanont, Y.; Lawpoolsri, S.; Phetrak, A.; Mingkhwan, R.; Worakhunpiset, S. Exposure to Heavy Metals in Electronic Waste Recycling in Thailand. Int. J. Environ. Res. Public Health 2020, 17, 2996. [Google Scholar] [CrossRef]
- National Environment Board; Pollution Control Department. Notification of the National Environment Board on Soil Quality Standards for Residential Areas, B.E. 2564 (2021). R. Thai Gov. Gaz. 2021 2021, 138 (Special Section 38a), 1–4. [Google Scholar]
- Martin, A.P.; Turnbull, R.E.; Rissmann, C.W.; Rieger, P. Heavy metal and metalloid concentrations in soils under pasture of southern New Zealand. Geoderma Reg. 2017, 11, 18–27. [Google Scholar] [CrossRef]
- Yokel, J.; Delistraty, D.A. Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA). Environ. Toxicol. 2003, 18, 104–114. [Google Scholar] [CrossRef]
- Stern, A.H.; Yu, C.H.; Black, K.; Lin, L.; Lioy, P.J.; Gochfeld, M.; Fan, Z.H. Hexavalent chromium in house dust—A comparison between an area with historic contamination from chromate production and background locations. Sci. Total Environ. 2010, 408, 4993–4998. [Google Scholar] [CrossRef][Green Version]
- Leśniewska, B.; Gontarska, M.; Godlewska-Żyłkiewicz, B. Selective Separation of Chromium Species from Soils by Single-Step Extraction Methods: A Critical Appraisal. Water Air Soil Pollut. 2017, 228, 274. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Huang, D.; Wu, J.; Zhu, Q.; Zhu, H. Horizontal and Vertical Distributions of Chromium in a Chromate Production District of South Central China. Int. J. Environ. Res. Public Health 2018, 15, 571. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, X.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Liu, G.; Shen, M.; Liu, Y. Potential ecological and health risks of heavy metals for indoor and corresponding outdoor dust in Hefei, Central China. Chemosphere 2022, 302, 134864. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, L.-J.; Li, H.-H.; Lin, J.-Q.; Yang, Z.-B.; Yang, Y.-X.; Xu, X.-X.; Xian, J.-R.; Shao, J.-R.; Zhu, X.-M. Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu, China. Sci. Total Environ. 2018, 619–620, 621–629. [Google Scholar] [CrossRef]
- Gul, H.K.; Gullu, G.; Babaei, P.; Nikravan, A.; Kurt-Karakus, P.B.; Salihoglu, G. Assessment of house dust trace elements and human exposure in Ankara, Turkey. Environ. Sci. Pollut. Res. 2023, 30, 7718–7735. [Google Scholar] [CrossRef]
- Davis, H.T.; Marjorie Aelion, C.; McDermott, S.; Lawson, A.B. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ. Pollut. 2009, 157, 2378–2385. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Wang, D.; Tao, Y.; Qiao, F.; Lei, L.; Huang, J.; Ting, Z. Characteristics, source apportionment and health risk assessment of heavy metals exposure via household dust from six cities in China. Sci. Total Environ. 2021, 762, 143126. [Google Scholar] [CrossRef]
- Shi, T.; Wang, Y. Heavy metals in indoor dust: Spatial distribution, influencing factors, and potential health risks. Sci. Total Environ. 2021, 755, 142367. [Google Scholar] [CrossRef]
- Marín-Sanleandro, P.; Delgado-Iniesta, M.J.; Sáenz-Segovia, A.F.; Sánchez-Navarro, A. Spatial Identification and Hotspots of Ecological Risk from Heavy Metals in Urban Dust in the City of Cartagena, SE Spain. Sustainability 2024, 16, 307. [Google Scholar] [CrossRef]
- Okoro, H.K.; Orosun, M.M.; Agboola, A.F.; Emenike, E.C.; Nanduri, S.; Kedia, N.; Kariem, M.; Priya, A.; Rab, S.O. Health risk assessments of heavy metals in dust samples collected from classrooms in Ilorin, Nigeria and its impact on public health. Heliyon 2025, 11, e42769. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, S.; Qiu, X.; Li, K.; Li, J.; Ren, Y.; Zhu, C.; Zhang, X. Characteristics and Health Risks of PM2.5-bound Metals in a Central City of Northern China: A One-year Observation Study. Aerosol Air Qual. Res. 2024, 24, 230165. [Google Scholar] [CrossRef]
- Ahmad, M.; Thaveevong, P.; Aman, N.; Ngamsritrakul, T.; Panyametheekul, S. The PM2.5-bound metals in the metropolitan area of Bangkok, Thailand: Temporal trends, sources, and human health challenges. Environ. Chall. 2025, 18, 101092. [Google Scholar] [CrossRef]
- Xie, J.; Jin, L.; Cui, J.; Luo, X.; Li, J.; Zhang, G.; Li, X. Health risk-oriented source apportionment of PM2.5-associated trace metals. Environ. Pollut. 2020, 262, 114655. [Google Scholar] [CrossRef] [PubMed]
- Kayee, J.; Sompongchaiyakul, P.; Sanwlani, N.; Bureekul, S.; Wang, X.; Das, R. Metal Concentrations and Source Apportionment of PM2.5 in Chiang Rai and Bangkok, Thailand during a Biomass Burning Season. ACS Earth Space Chem. 2020, 4, 1213–1226. [Google Scholar] [CrossRef]
- Megertu, D.G.; Bayissa, L.D. Heavy metal contents of selected commercially available oil-based house paints intended for residential use in Ethiopia. Environ. Sci. Pollut. Res. 2020, 27, 17175–17183. [Google Scholar] [CrossRef]
- Suh, M.; Thompson, C.M.; Brorby, G.P.; Mittal, L.; Proctor, D.M. Inhalation cancer risk assessment of cobalt metal. Regul. Toxicol. Pharmacol. 2016, 79, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Pi, L.; Hu, W.; Chen, M.; Luo, Y.; Li, Z.; Su, S.; Gan, Z.; Ding, S. Concentrations and health risk assessment of metal(loid)s in indoor dust from two typical cities of China. Environ. Sci. Pollut. Res. 2016, 23, 9082–9092. [Google Scholar] [CrossRef]
- Marx, S.K.; Rashid, S.; Stromsoe, N. Global-scale patterns in anthropogenic Pb contamination reconstructed from natural archives. Environ. Pollut. 2016, 213, 283–298. [Google Scholar] [CrossRef]
- Agarwal, M.; Goyal, I.; Lakhani, A. Interplay between oxidative potential and health risk of PM2.5-bound metals at a site of the Indo-Gangetic Plain—Exploring the influence of biomass burning. Environ. Sci. Process. Impacts 2025, 27, 3440–3456. [Google Scholar] [CrossRef]
- Brehmer, C.; Lai, A.; Clark, S.; Shan, M.; Ni, K.; Ezzati, M.; Yang, X.; Baumgartner, J.; Schauer, J.J.; Carter, E. The Oxidative Potential of Personal and Household PM2.5 in a Rural Setting in Southwestern China. Environ. Sci. Technol. 2019, 53, 2788–2798. [Google Scholar] [CrossRef] [PubMed]
- Luiza Fernandes Seares, A.; de Oliveira Souza, M.; Lionel-Mateus, V.; De Almeida, C.M.S. Optimization of operational ICP OES parameters and application to PM10 monitoring associated to sugarcane burning. Microchem. J. 2021, 163, 105917. [Google Scholar] [CrossRef]
- Stamatelopoulou, A.; Dasopoulou, M.; Bairachtari, K.; Karavoltsos, S.; Sakellari, A.; Maggos, T. Contamination and Potential Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) and Heavy Metals in House Settled Dust Collected from Residences of Young Children. Appl. Sci. 2021, 11, 1479. [Google Scholar] [CrossRef]
- Safa, M.; O’Carroll, D.; Mansouri, N.; Robinson, B.; Curline, G. Investigating arsenic impact of ACC treated timbers in compost production (A case study in Christchurch, New Zealand). Environ. Pollut. 2020, 262, 114218. [Google Scholar] [CrossRef]
- McIntyre, J.K.; Winters, N.; Rozmyn, L.; Haskins, T.; Stark, J.D. Metals leaching from common residential and commercial roofing materials across four years of weathering and implications for environmental loading. Environ. Pollut. 2019, 255, 113262. [Google Scholar] [CrossRef]
- Mohammed, M.O.A. Multivariate Analysis for Characterization of Air Pollution Sources: Part 1 Prior Data Screening and Underlying Assumptions. Pol. J. Environ. Stud. 2024, 33, 4257–4271. [Google Scholar] [CrossRef]
- Bui, T.H.; Nguyen, T.P.M. Source identification and health risk assessment of PM2.5 in urban districts of Hanoi using PCA/APCS and UNMIX. Environ. Sci. Pollut. Res. 2024, 31, 11815–11831. [Google Scholar] [CrossRef]
- Yaparla, D.; Nagendra, S.M.S.; Gummadi, S.N. Characterization and health risk assessment of indoor dust in biomass and LPG-based households of rural Telangana, India. J. Air Waste Manag. Assoc. 2019, 69, 1438–1451. [Google Scholar] [CrossRef]
- Cao, S.; Wen, D.; Chen, X.; Duan, X.; Zhang, L.; Wang, B.; Qin, N.; Wei, F. Source identification of pollution and health risks to metals in household indoor and outdoor dust: A cross-sectional study in a typical mining town, China. Environ. Pollut. 2022, 293, 118551. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qian, X.; Wang, Q.g. Heavy Metals in Atmospheric Particulate Matter: A Comprehensive Understanding Is Needed for Monitoring and Risk Mitigation. Environ. Sci. Technol. 2013, 47, 13210–13211. [Google Scholar] [CrossRef] [PubMed]
- Lim, X.Y.; Lye, T.F.; Tay, J.H. Metal Contamination in Household Dust and Their Health Risk Assessment: A Study in Two Malaysian Cities. Appl. Environ. Res. 2024, 46. [Google Scholar] [CrossRef]
- Min, G.; Kim, D.; Shin, J.; Choe, Y.; Lee, S.; Lee, J.; Choi, K.; Sung, K.; Yang, W. Health risk assessment and source tracking of heavy metal exposure from indoor settled dust in an environmentally vulnerable area of the Republic of Korea. Sci. Rep. 2025, 15, 39611. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zheng, X.; Lin, Y.; Lin, C.; Guo, Y.; Huo, X. Assessment of dust trace elements in an e-waste recycling area and related children’s health risks. Sci. Total Environ. 2021, 791, 148154. [Google Scholar] [CrossRef]
- Janta, R.; Tala, W.; Kaeway, K.; Sumrajgij, U.; Muenrew, J.; Yabueng, N.; Chantara, S. Diurnal health risk assessment of potentially toxic elements in PM2.5 for children and adults in upper Southeast Asia during the smoke haze period. J. Hazard. Mater. Adv. 2025, 19, 100807. [Google Scholar] [CrossRef]
- Sinitkul, R.; Wongrathanandha, C.; Sirirattanapruk, S.; Plitponkarnpim, A.; Maude, R.J.; Marczylo, E.L. Children’s Environmental Health in Thailand: Past, Present, and Future. Ann. Glob. Health 2018, 84, 306–329. [Google Scholar] [CrossRef]
- Suriyawong, P.; Chuetor, S.; Samae, H.; Piriyakarnsakul, S.; Amin, M.; Furuuchi, M.; Hata, M.; Inerb, M.; Phairuang, W. Airborne particulate matter from biomass burning in Thailand: Recent issues, challenges, and options. Heliyon 2023, 9, e14261. [Google Scholar] [CrossRef]



| PTEs | Concentration (mg kg−1) | ||||||
|---|---|---|---|---|---|---|---|
| n | Mean | SD | Median | IQR | Min. | Max. | |
| Al | 210 | 19,596 | 7249 | 18,826 | 6841 | 2161 | 75,634 |
| As | 207 | 10.54 | 7.13 | 8.75 | 6.18 | 2.23 | 62.13 |
| B | 209 | 29.62 | 21.02 | 26.47 | 9.78 | 8.70 | 184.20 |
| Ba | 207 | 211.64 | 109.26 | 194.04 | 71.47 | 20.71 | 996.45 |
| Cd | 194 | 1.93 | 3.17 | 0.95 | 1.25 | 0.21 | 20.24 |
| Co | 206 | 2.41 | 2.06 | 1.94 | 1.63 | 0.42 | 17.05 |
| Cr | 210 | 37.39 | 34.23 | 31.41 | 16.69 | 3.02 | 465.47 |
| Cu | 205 | 97.99 | 72.37 | 74.41 | 51.69 | 13.72 | 438.75 |
| Mn | 210 | 485.25 | 228.99 | 428.88 | 238.27 | 30.07 | 2041 |
| Mo | 201 | 1.45 | 0.83 | 1.27 | 0.75 | 0.60 | 8.55 |
| Ni | 210 | 31.21 | 20.00 | 26.83 | 14.19 | 2.24 | 146.24 |
| Pb | 208 | 56.56 | 43.78 | 42.62 | 31.23 | 4.21 | 302.61 |
| Sb | 203 | 5.31 | 5.22 | 3.32 | 3.10 | 0.77 | 34.79 |
| V | 210 | 31.06 | 12.37 | 29.77 | 12.86 | 2.91 | 120.87 |
| Zn | 207 | 447.79 | 280.60 | 374.17 | 225.44 | 56.97 | 1779 |
| PTEs | Enrichment Factor (EF) | ||||||
|---|---|---|---|---|---|---|---|
| n | Mean | SD | Median | IQR | Min. | Max. | |
| Al | 210 | 1.00 | - | 1.00 | - | 1.00 | 1.00 |
| As | 207 | 30.17 | 27.39 | 25.68 | 15.04 | 9.26 | 332.22 |
| B | 209 | 8.53 | 6.17 | 7.40 | 3.88 | 2.05 | 72.82 |
| Ba | 207 | 1.66 | 0.90 | 1.51 | 0.60 | 0.51 | 9.22 |
| Cd | 194 | 88.23 | 148.14 | 43.11 | 61.86 | 4.65 | 1062.08 |
| Co | 206 | 0.61 | 0.55 | 0.47 | 0.35 | 0.07 | 4.82 |
| Cr | 210 | 1.89 | 1.29 | 1.57 | 0.82 | 0.72 | 14.22 |
| Cu | 205 | 17.50 | 13.77 | 13.49 | 11.59 | 4.74 | 97.73 |
| Mn | 210 | 3.43 | 1.37 | 3.19 | 1.76 | 1.32 | 9.18 |
| Mo | 201 | 4.18 | 2.33 | 3.56 | 2.26 | 1.11 | 15.46 |
| Ni | 210 | 3.14 | 2.17 | 2.63 | 1.83 | 0.75 | 15.64 |
| Pb | 208 | 14.17 | 10.65 | 10.61 | 7.98 | 3.11 | 74.63 |
| Sb | 203 | 117.80 | 127.90 | 74.81 | 69.50 | 21.96 | 995.01 |
| V | 210 | 1.20 | 0.24 | 1.20 | 0.32 | 0.68 | 2.26 |
| Zn | 207 | 28.44 | 20.06 | 22.81 | 18.88 | 6.69 | 144.07 |
| PTEs | Contamination Factor (CF) and Pollution Load Index (PLI) | ||||||
|---|---|---|---|---|---|---|---|
| n | Mean | SD | Median | IQR | Min. | Max. | |
| Al | 209 | 0.24 | 0.09 | 0.23 | 0.08 | 0.03 | 0.94 |
| As | 206 | 6.98 | 4.73 | 5.82 | 4.11 | 1.49 | 41.42 |
| B | 208 | 1.98 | 1.40 | 1.77 | 0.65 | 0.58 | 12.28 |
| Ba | 206 | 0.38 | 0.20 | 0.35 | 0.13 | 0.04 | 1.81 |
| Cd | 193 | 19.70 | 32.45 | 9.69 | 12.33 | 2.16 | 206.54 |
| Co | 205 | 0.14 | 0.12 | 0.11 | 0.10 | 0.02 | 1.00 |
| Cr | 209 | 0.45 | 0.41 | 0.38 | 0.20 | 0.04 | 5.61 |
| Cu | 204 | 3.92 | 2.90 | 2.97 | 2.08 | 0.55 | 17.55 |
| Mn | 209 | 0.81 | 0.38 | 0.71 | 0.40 | 0.05 | 3.40 |
| Mo | 200 | 0.96 | 0.56 | 0.84 | 0.49 | 0.40 | 5.70 |
| Ni | 209 | 0.71 | 0.46 | 0.61 | 0.33 | 0.05 | 3.32 |
| Pb | 207 | 3.29 | 2.53 | 2.50 | 1.79 | 0.25 | 17.80 |
| Sb | 203 | 26.55 | 26.10 | 16.61 | 15.50 | 3.84 | 173.96 |
| V | 209 | 0.29 | 0.12 | 0.28 | 0.12 | 0.03 | 1.13 |
| Zn | 206 | 6.32 | 3.96 | 5.29 | 3.18 | 0.80 | 25.05 |
| PLI | 209 | 0.74 | 0.28 | 0.71 | 0.26 | 0.03 | 3.41 |
| PTEs | Index of Geo-Accumulation (Igeo) | ||||||
|---|---|---|---|---|---|---|---|
| n | Mean | SD | Median | IQR | Min. | Max. | |
| Al | 210 | −0.81 | 0.15 | −0.80 | 0.17 | −1.75 | 0.00 |
| As | 207 | 0.61 | 0.22 | 0.59 | 0.30 | 0.00 | 1.44 |
| B | 209 | 0.07 | 0.18 | 0.07 | 0.17 | −0.41 | 0.91 |
| Ba | 207 | −0.63 | 0.17 | −0.63 | 0.16 | −1.60 | 0.08 |
| Cd | 194 | 0.87 | 0.41 | 0.81 | 0.51 | 0.16 | 2.14 |
| Co | 206 | −1.12 | 0.28 | −1.12 | 0.36 | −1.78 | −0.17 |
| Cr | 210 | −0.58 | 0.20 | −0.60 | 0.22 | −1.61 | 0.57 |
| Cu | 205 | 0.34 | 0.25 | 0.30 | 0.28 | −0.44 | 1.07 |
| Mn | 209 | −0.31 | 0.19 | −0.32 | 0.23 | −1.48 | 0.36 |
| Mo | 201 | −0.24 | 0.19 | −0.25 | 0.25 | −0.57 | 0.58 |
| Ni | 210 | −0.39 | 0.23 | −0.39 | 0.23 | −1.47 | 0.35 |
| Pb | 208 | 0.26 | 0.26 | 0.22 | 0.30 | −0.78 | 1.07 |
| Sb | 203 | 1.12 | 0.30 | 1.04 | 0.34 | 0.41 | 2.06 |
| V | 210 | −0.74 | 0.16 | −0.73 | 0.19 | −1.74 | −0.12 |
| Zn | 207 | 0.56 | 0.23 | 0.55 | 0.27 | −0.27 | 1.22 |
| PTEs | Concentrations (mg kg−1) | p-Value | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Haze Season | Non-Haze Season | ||||||||||
| n | Mean | SD | Median | IQR | n | Mean | SD | Median | IQR | ||
| Al | 54 | 19,795 | 10,391 | 18,575 | 6904 | 154 | 19,651.14 | 5687.81 | 18,887.20 | 6696.24 | 0.281 |
| As | 54 | 11.27 | 9.39 | 8.82 | 6.24 | 152 | 10.26 | 6.17 | 8.59 | 6.33 | 0.788 |
| B | 54 | 32.85 | 25.67 | 27.26 | 11.33 | 154 | 28.51 | 19.17 | 26.10 | 9.83 | 0.178 |
| Ba | 54 | 224.55 | 151.32 | 194.43 | 65.92 | 151 | 207.91 | 89.25 | 193.99 | 73.14 | 0.623 |
| Cd | 52 | 1.68 | 2.32 | 1.11 | 1.43 | 141 | 2.02 | 3.45 | 0.85 | 1.01 | 0.617 |
| Co | 53 | 2.77 | 2.78 | 2.10 | 2.22 | 152 | 2.29 | 1.74 | 1.92 | 1.52 | 0.328 |
| Cr | 54 | 50.77 | 61.25 | 41.15 | 17.36 | 154 | 32.90 | 14.47 | 29.53 | 12.88 | 0.000 |
| Cu | 52 | 99.36 | 53.95 | 80.37 | 54.09 | 151 | 98.34 | 77.95 | 72.10 | 51.97 | 0.358 |
| Mn | 54 | 488.31 | 271.49 | 431.93 | 214.46 | 154 | 485.82 | 210.87 | 424.88 | 239.00 | 0.891 |
| Mo | 52 | 1.79 | 1.15 | 1.52 | 0.81 | 148 | 1.32 | 0.65 | 1.16 | 0.63 | 0.000 |
| Ni | 54 | 38.17 | 25.65 | 29.75 | 21.83 | 154 | 28.90 | 17.03 | 24.88 | 13.56 | 0.001 |
| Pb | 54 | 73.85 | 60.63 | 48.68 | 52.53 | 152 | 50.90 | 34.30 | 41.91 | 28.41 | 0.007 |
| Sb | 51 | 4.85 | 3.25 | 3.32 | 3.84 | 151 | 5.45 | 5.75 | 3.32 | 2.54 | 0.925 |
| V | 54 | 33.24 | 16.08 | 32.60 | 16.68 | 154 | 30.49 | 10.59 | 29.49 | 11.51 | 0.407 |
| Zn | 54 | 648.71 | 872.15 | 418.27 | 348.60 | 152 | 449.47 | 445.50 | 357.63 | 225.60 | 0.004 |
| PTEs | Component | ||||
|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | |
| Al | −0.040 | 0.894 | −0.076 | 0.024 | 0.032 |
| As | 0.043 | 0.252 | 0.113 | 0.738 | −0.163 |
| B | 0.633 | 0.173 | −0.254 | 0.051 | −0.207 |
| Ba | 0.106 | 0.461 | 0.373 | 0.363 | 0.105 |
| Cd | 0.027 | −0.164 | 0.663 | 0.188 | 0.124 |
| Co | 0.330 | 0.236 | 0.718 | −0.094 | −0.263 |
| Cr | 0.596 | 0.497 | 0.214 | 0.057 | 0.226 |
| Cu | 0.655 | −0.080 | 0.122 | 0.147 | 0.229 |
| Mn | 0.148 | 0.464 | 0.293 | 0.508 | −0.333 |
| Mo | 0.685 | 0.179 | 0.148 | 0.175 | 0.195 |
| Ni | 0.759 | 0.013 | 0.267 | 0.056 | 0.096 |
| Pb | 0.181 | 0.354 | 0.460 | 0.019 | 0.513 |
| Sb | 0.263 | −0.047 | −0.040 | 0.686 | 0.286 |
| V | 0.224 | 0.843 | −0.004 | 0.205 | −0.032 |
| Zn | 0.211 | −0.009 | −0.030 | −0.002 | 0.823 |
| Eigenvalues | 2.574 | 2.527 | 1.630 | 1.555 | 1.450 |
| % Of variance | 17.16 | 16.84 | 10.87 | 10.36 | 9.67 |
| Cumulative % | 17.16 | 34.00 | 44.87 | 55.23 | 64.90 |
| Estimate sources | Mixed sources of vehicle emission, decorative materials, and biomass burning | Natural soils | Traffic combustion, industrial activities and wall paint | Agricultural lands and house’s decoration | Smoking, paint and biomass burning |
| PTEs | Component | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Haze Season | Non-Haze Season | ||||||||||
| 1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | |
| Al | 0.704 | −0.292 | 0.109 | 0.448 | 0.190 | 0.072 | 0.812 | −0.020 | 0.116 | −0.194 | −0.117 |
| As | 0.199 | 0.044 | −0.013 | −0.027 | −0.076 | 0.908 | 0.168 | 0.145 | 0.811 | −0.046 | 0.070 |
| B | 0.164 | 0.213 | −0.080 | −0.064 | 0.876 | −0.149 | 0.248 | 0.289 | 0.124 | 0.112 | −0.560 |
| Ba | 0.505 | 0.237 | 0.501 | −0.065 | −0.032 | 0.396 | 0.585 | 0.039 | 0.269 | 0.372 | 0.084 |
| Cd | −0.164 | 0.619 | 0.151 | −0.403 | 0.151 | 0.084 | 0.086 | 0.125 | 0.126 | 0.118 | 0.772 |
| Co | 0.095 | 0.289 | 0.705 | −0.425 | −0.067 | −0.252 | 0.498 | 0.363 | 0.193 | −0.254 | 0.262 |
| Cr | 0.596 | 0.242 | 0.293 | 0.302 | 0.233 | 0.271 | 0.597 | 0.579 | 0.032 | 0.123 | 0.007 |
| Cu | −0.050 | 0.769 | 0.184 | 0.176 | 0.078 | 0.165 | −0.039 | 0.783 | 0.069 | 0.112 | −0.010 |
| Mn | 0.761 | 0.282 | 0.022 | −0.271 | −0.271 | 0.064 | 0.419 | 0.141 | 0.723 | −0.070 | 0.025 |
| Mo | 0.423 | 0.738 | −0.061 | 0.209 | 0.054 | −0.052 | 0.281 | 0.618 | 0.151 | 0.294 | −0.071 |
| Ni | 0.050 | 0.636 | 0.345 | 0.040 | 0.278 | −0.046 | 0.115 | 0.809 | 0.114 | 0.026 | 0.033 |
| Pb | 0.082 | 0.095 | 0.838 | 0.291 | 0.026 | 0.083 | 0.524 | 0.228 | −0.032 | 0.368 | 0.338 |
| Sb | 0.006 | 0.324 | 0.466 | 0.049 | 0.557 | 0.379 | −0.063 | 0.103 | 0.516 | 0.617 | −0.149 |
| V | 0.921 | −0.092 | 0.026 | 0.019 | 0.208 | 0.092 | 0.791 | 0.159 | 0.271 | 0.043 | −0.150 |
| Zn | 0.023 | 0.220 | 0.097 | 0.850 | −0.048 | −0.041 | −0.005 | 0.240 | −0.288 | 0.749 | 0.128 |
| Eigenvalues | 2.827 | 2.506 | 1.962 | 1.604 | 1.408 | 1.350 | 2.875 | 2.405 | 1.800 | 1.468 | 1.186 |
| % Of variance | 18.85 | 16.70 | 13.08 | 10.69 | 9.39 | 9.00 | 19.17 | 16.03 | 12.00 | 9.79 | 7.91 |
| Cumulative % | 18.85 | 35.55 | 48.63 | 59.32 | 68.71 | 77.71 | 19.17 | 35.20 | 47.20 | 56.99 | 64.90 |
| PTEs | Non-Carcinogenic Risk | |||||||
|---|---|---|---|---|---|---|---|---|
| Adult | Children | |||||||
| HQing | HQinh | HQdermal | HI | HQing | HQinh | HQdermal | HI | |
| Al | 3.13 × 10−2 | 7.51 × 10−4 | 3.21 × 10−2 | 2.51 × 10−1 | 1.71 × 10−3 | 2.52 × 10−1 | ||
| As | 5.61 × 10−2 | 1.35 × 10−4 | 1.64 × 10−2 | 7.26 × 10−2 | 4.49 × 10−1 | 3.07 × 10−4 | 7.80 × 10−2 | 5.27 × 10−1 |
| B | 2.37 × 10−4 | 2.84 × 10−7 | 2.37 × 10−4 | 1.89 × 10−3 | 6.48 × 10−7 | 1.89 × 10−3 | ||
| Ba | 1.69 × 10−3 | 8.11 × 10−5 | 1.77 × 10−3 | 1.35 × 10−2 | 1.85 × 10−4 | 1.37 × 10−2 | ||
| Cd | 3.09 × 10−2 | 3.70 × 10−5 | 1.23 × 10−3 | 3.21 × 10−2 | 2.47 × 10−1 | 8.45 × 10−5 | 5.86 × 10−3 | 2.53 × 10−1 |
| Co | 1.28 × 10−2 | 7.69 × 10−5 | 9.60 × 10−7 | 1.29 × 10−2 | 1.03 × 10−1 | 1.76 × 10−4 | 4.57 × 10−6 | 1.03 × 10−1 |
| Cr | 6.64 × 10−2 | 2.39 × 10−4 | 3.97 × 10−3 | 7.06 × 10−2 | 5.31 × 10−1 | 5.45 × 10−4 | 1.89 × 10−2 | 5.51 × 10−1 |
| Cu | 3.92 × 10−3 | 4.67 × 10−7 | 5.21 × 10−5 | 3.97 × 10−3 | 3.13 × 10−2 | 1.07 × 10−6 | 2.48 × 10−4 | 3.16 × 10−2 |
| Mn | 3.23 × 10−2 | 1.86 × 10−3 | 1.68 × 10−3 | 3.59 × 10−2 | 2.59 × 10−1 | 4.24 × 10−3 | 8.00 × 10−3 | 2.71 × 10−1 |
| Mo | 4.63 × 10−4 | 1.39 × 10−7 | 4.63 × 10−4 | 3.70 × 10−3 | 3.17 × 10−7 | 3.70 × 10−3 | ||
| Ni | 2.49 × 10−3 | 5.98 × 10−4 | 3.69 × 10−5 | 3.13 × 10−3 | 1.99 × 10−2 | 1.36 × 10−3 | 1.75 × 10−4 | 2.15 × 10−2 |
| Pb | 2.58 × 10−2 | 3.08 × 10−6 | 6.87 × 10−4 | 2.65 × 10−2 | 2.07 × 10−1 | 7.03 × 10−6 | 3.27 × 10−3 | 2.10 × 10−1 |
| Sb | 2.12 × 10−2 | 3.39 × 10−6 | 2.12 × 10−2 | 1.70 × 10−1 | 7.74 × 10−6 | 1.70 × 10−1 | ||
| V | 9.85 × 10−3 | 5.95 × 10−5 | 9.91 × 10−3 | 7.88 × 10−2 | 1.36 × 10−4 | 7.89 × 10−2 | ||
| Zn | 2.39 × 10−3 | 2.86 × 10−7 | 4.76 × 10−5 | 2.43 × 10−3 | 1.91 × 10−2 | 6.53 × 10−7 | 2.26 × 10−4 | 1.93 × 10−2 |
| Total | 2.98 × 10−1 | 3.84 × 10−3 | 2.41 × 10−2 | 3.26 × 10−1 | 2.38 | 8.77 × 10−3 | 1.15 × 10−1 | 2.51 |
| PTEs | Non-Carcinogenic Risk (Adults) | |||||||
|---|---|---|---|---|---|---|---|---|
| Haze Season | Non-Haze Season | |||||||
| HQing | HQinh | HQdermal | HI | HQing | HQinh | HQdermal | HI | |
| Al | 3.16 × 10−2 | 7.59 × 10−4 | 3.24 × 10−2 | 3.14 × 10−2 | 7.53 × 10−4 | 3.22 × 10−2 | ||
| As | 6.00 × 10−2 | 1.44 × 10−4 | 1.75 × 10−2 | 7.77 × 10−2 | 5.47 × 10−2 | 1.31 × 10−4 | 1.60 × 10−2 | 7.08 × 10−2 |
| B | 2.63 × 10−4 | 3.15 × 10−7 | 2.63 × 10−4 | 2.28 × 10−4 | 2.73 × 10−7 | 2.28 × 10−4 | ||
| Ba | 1.79 × 10−3 | 8.61 × 10−5 | 1.88 × 10−3 | 1.66 × 10−3 | 7.97 × 10−5 | 1.74 × 10−3 | ||
| Cd | 2.69 × 10−2 | 3.23 × 10−5 | 1.07 × 10−3 | 2.80 × 10−2 | 3.23 × 10−2 | 3.88 × 10−5 | 1.29 × 10−3 | 3.37 × 10−2 |
| Co | 1.48 × 10−2 | 8.85 × 10−5 | 1.10 × 10−6 | 1.48 × 10−2 | 1.22 × 10−2 | 7.30 × 10−5 | 9.11 × 10−7 | 1.23 × 10−2 |
| Cr | 9.02 × 10−2 | 3.24 × 10−4 | 5.40 × 10−3 | 9.59 × 10−2 | 5.84 × 10−2 | 2.10 × 10−4 | 3.50 × 10−3 | 6.21 × 10−2 |
| Cu | 3.97 × 10−3 | 4.74 × 10−7 | 5.28 × 10−5 | 4.02 × 10−3 | 3.93 × 10−3 | 4.69 × 10−7 | 5.23 × 10−5 | 3.98 × 10−3 |
| Mn | 3.25 × 10−2 | 1.87 × 10−3 | 1.69 × 10−3 | 3.61 × 10−2 | 3.24 × 10−2 | 1.86 × 10−3 | 1.68 × 10−3 | 3.59 × 10−2 |
| Mo | 5.74 × 10−4 | 1.72 × 10−7 | 5.74 × 10−4 | 4.22 × 10−4 | 1.27 × 10−7 | 4.22 × 10−4 | ||
| Ni | 3.05 × 10−3 | 7.31 × 10−4 | 4.51 × 10−5 | 3.83 × 10−3 | 2.31 × 10−3 | 5.54 × 10−4 | 3.41 × 10−5 | 2.90 × 10−3 |
| Pb | 3.37 × 10−2 | 4.02 × 10−6 | 8.97 × 10−4 | 3.46 × 10−2 | 2.32 × 10−2 | 2.77 × 10−6 | 6.18 × 10−4 | 2.39 × 10−2 |
| Sb | 1.94 × 10−2 | 3.10 × 10−6 | 1.94 × 10−2 | 2.18 × 10−2 | 3.48 × 10−6 | 2.18 × 10−2 | ||
| V | 1.05 × 10−2 | 6.37 × 10−5 | 1.06 × 10−2 | 9.67 × 10−3 | 5.84 × 10−5 | 9.73 × 10−3 | ||
| Zn | 2.88 × 10−3 | 3.45 × 10−7 | 5.74 × 10−5 | 2.93 × 10−3 | 2.23 × 10−3 | 2.67 × 10−7 | 4.45 × 10−5 | 2.27 × 10−3 |
| Total | 3.32 × 10−1 | 4.11 × 10−3 | 2.67 × 10−2 | 3.63 × 10−1 | 2.87 × 10−1 | 3.77 × 10−3 | 2.32 × 10−2 | 3.14 × 10−1 |
| PTEs | Non-Carcinogenic Risk (Children) | |||||||
|---|---|---|---|---|---|---|---|---|
| Haze Season | Non-Haze Season | |||||||
| HQing | HQinh | HQdermal | HI | HQing | HQinh | HQdermal | HI | |
| Al | 2.53 × 10−1 | 1.73 × 10−3 | 2.55 × 10−1 | 2.51 × 10−1 | 1.72 × 10−3 | 2.53 × 10−1 | ||
| As | 4.80 × 10−1 | 3.29 × 10−4 | 8.34 × 10−2 | 5.64 × 10−1 | 4.37 × 10−1 | 2.99 × 10−4 | 7.59 × 10−2 | 5.14 × 10−1 |
| B | 2.10 × 10−3 | 7.18 × 10−7 | 2.10 × 10−3 | 1.82 × 10−3 | 6.23 × 10−7 | 1.82 × 10−3 | ||
| Ba | 1.44 × 10−2 | 1.96 × 10−4 | 1.46 × 10−2 | 1.33 × 10−2 | 1.82 × 10−4 | 1.35 × 10−2 | ||
| Cd | 2.15 × 10−1 | 7.36 × 10−5 | 5.11 × 10−3 | 2.20 × 10−1 | 2.59 × 10−1 | 8.85 × 10−5 | 6.14 × 10−3 | 2.65 × 10−1 |
| Co | 1.18 × 10−1 | 2.02 × 10−4 | 5.25 × 10−6 | 1.18 × 10−1 | 9.75 × 10−2 | 1.67 × 10−4 | 4.34 × 10−6 | 9.76 × 10−2 |
| Cr | 7.21 × 10−1 | 7.40 × 10−4 | 2.57 × 10−2 | 7.48 × 10−1 | 4.67 × 10−1 | 4.80 × 10−4 | 1.66 × 10−2 | 4.85 × 10−1 |
| Cu | 3.18 × 10−2 | 1.08 × 10−6 | 2.51 × 10−4 | 3.20 × 10−2 | 3.14 × 10−2 | 1.07 × 10−6 | 2.49 × 10−4 | 3.17 × 10−2 |
| Mn | 2.60 × 10−1 | 4.27 × 10−3 | 8.05 × 10−3 | 2.72 × 10−1 | 2.59 × 10−1 | 4.25 × 10−3 | 8.01 × 10−3 | 2.71 × 10−1 |
| Mo | 4.59 × 10−3 | 3.92 × 10−7 | 4.59 × 10−3 | 3.38 × 10−3 | 2.89 × 10−7 | 3.38 × 10−3 | ||
| Ni | 2.44 × 10−2 | 1.67 × 10−3 | 2.14 × 10−4 | 2.63 × 10−2 | 1.85 × 10−2 | 1.26 × 10−3 | 1.62 × 10−4 | 1.99 × 10−2 |
| Pb | 2.70 × 10−1 | 9.18 × 10−6 | 4.27 × 10−3 | 2.74 × 10−1 | 1.86 × 10−1 | 6.32 × 10−6 | 2.94 × 10−3 | 1.89 × 10−1 |
| Sb | 1.55 × 10−1 | 7.06 × 10−6 | 1.55 × 10−1 | 1.74 × 10−1 | 7.94 × 10−6 | 1.74 × 10−1 | ||
| V | 8.43 × 10−2 | 1.45 × 10−4 | 8.45 × 10−2 | 7.73 × 10−2 | 1.33 × 10−4 | 7.75 × 10−2 | ||
| Zn | 2.30 × 10−2 | 7.87 × 10−7 | 2.73 × 10−4 | 2.33 × 10−2 | 1.78 × 10−2 | 6.10 × 10−7 | 2.12 × 10−4 | 1.80 × 10−2 |
| Total | 2.66 | 9.38 × 10−3 | 1.27 × 10−1 | 2.79 | 2.29 | 8.60 × 10−3 | 1.10 × 10−1 | 2.41 |
| PTEs | Carcinogenic Risk | |||||||
|---|---|---|---|---|---|---|---|---|
| Adult | Child | |||||||
| CRing | CRinh | CRdermal | LCR | CRing | CRnh | CRdermal | LCR | |
| As | 1.79 × 10−5 | 1.19 × 10−8 | 2.35 × 10−6 | 2.03 × 10−5 | 1.79 × 10−5 | 2.74 × 10−9 | 2.35 × 10−6 | 2.03 × 10−5 |
| Cd | 8.33 × 10−7 | 3.57 × 10−6 | 1.46 × 10−7 | 4.55 × 10−6 | 8.33 × 10−7 | 8.23 × 10−7 | 1.46 × 10−7 | 1.80 × 10−6 |
| Co | 5.68 × 10−9 | 5.68 × 10−9 | 1.31 × 10−9 | 1.31 × 10−9 | ||||
| Cr | 6.79 × 10−6 | 4.11 × 10−4 | 3.71 × 10−6 | 4.22 × 10−4 | 6.79 × 10−6 | 9.50 × 10−5 | 3.71 × 10−6 | 1.05 × 10−4 |
| Ni | 5.46 × 10−6 | 2.13 × 10−9 | 1.41 × 10−7 | 5.60 × 10−6 | 5.46 × 10−6 | 4.91 × 10−10 | 1.41 × 10−7 | 5.60 × 10−6 |
| Pb | 5.46 × 10−7 | 1.78 × 10−10 | 5.90 × 10−8 | 6.05 × 10−7 | 5.46 × 10−7 | 4.10 × 10−11 | 5.90 × 10−8 | 6.05 × 10−7 |
| Total | 3.16 × 10−5 | 4.15 × 10−4 | 6.41 × 10−6 | 4.53 × 10−4 | 3.16 × 10−5 | 9.58 × 10−5 | 6.41 × 10−6 | 1.34 × 10−4 |
| PTEs | Carcinogenic Risk (Adults) | |||||||
|---|---|---|---|---|---|---|---|---|
| Haze Season | Non-Haze Season | |||||||
| CRing | CRinh | CRdermal | LCR | CRing | CRnh | CRdermal | LCR | |
| As | 1.92 × 10−5 | 1.27 × 10−8 | 2.52 × 10−6 | 2.17 × 10−5 | 1.75 × 10−5 | 1.16 × 10−8 | 2.29 × 10−6 | 1.98 × 10−5 |
| Cd | 7.26 × 10−7 | 3.11 × 10−6 | 1.27 × 10−7 | 3.96 × 10−6 | 8.73 × 10−7 | 3.74 × 10−6 | 1.53 × 10−7 | 4.76 × 10−6 |
| Co | 6.53 × 10−9 | 6.53 × 10−9 | 5.39 × 10−9 | 5.39 × 10−9 | ||||
| Cr | 9.22 × 10−6 | 5.59 × 10−4 | 5.04 × 10−6 | 5.73 × 10−4 | 5.98 × 10−6 | 3.62 × 10−4 | 3.27 × 10−6 | 3.71 × 10−4 |
| Ni | 6.67 × 10−6 | 2.60 × 10−9 | 1.72 × 10−7 | 6.85 × 10−6 | 5.05 × 10−6 | 1.97 × 10−9 | 1.31 × 10−7 | 5.18 × 10−6 |
| Pb | 7.13 × 10−7 | 2.32 × 10−10 | 7.70 × 10−8 | 7.90 × 10−7 | 4.91 × 10−7 | 1.60 × 10−10 | 5.31 × 10−8 | 5.44 × 10−7 |
| Total | 3.65 × 10−5 | 5.62 × 10−4 | 7.94 × 10−6 | 6.06 × 10−4 | 2.99 × 10−5 | 3.66 × 10−4 | 5.90 × 10−6 | 4.02 × 10−4 |
| PTEs | Carcinogenic Risk (Children) | |||||||
|---|---|---|---|---|---|---|---|---|
| Haze Season | Non-Haze Season | |||||||
| CRing | CRinh | CRdermal | LCR | CRing | CRnh | CRdermal | LCR | |
| As | 1.92 × 10−5 | 2.93 × 10−9 | 2.52 × 10−6 | 2.17 × 10−5 | 1.75 × 10−5 | 2.67 × 10−9 | 2.29 × 10−6 | 1.98 × 10−5 |
| Cd | 7.26 × 10−7 | 7.17 × 10−7 | 1.27 × 10−7 | 1.57 × 10−6 | 8.73 × 10−7 | 8.63 × 10−7 | 1.53 × 10−7 | 1.89 × 10−6 |
| Co | 1.51 × 10−9 | 1.51 × 10−9 | 1.24 × 10−9 | 1.24 × 10−9 | ||||
| Cr | 9.22 × 10−6 | 1.29 × 10−4 | 5.04 × 10−6 | 1.43 × 10−4 | 5.98 × 10−6 | 8.36 × 10−5 | 3.27 × 10−6 | 9.28 × 10−5 |
| Ni | 6.67 × 10−6 | 6.00 × 10−10 | 1.72 × 10−7 | 6.84 × 10−6 | 5.05 × 10−6 | 4.54 × 10−10 | 1.31 × 10−7 | 5.18 × 10−6 |
| Pb | 7.13 × 10−7 | 5.36 × 10−11 | 7.70 × 10−8 | 7.90 × 10−7 | 4.91 × 10−7 | 3.69 × 10−11 | 5.31 × 10−8 | 5.44 × 10−7 |
| Total | 3.65 × 10−5 | 1.30 × 10−4 | 7.94 × 10−6 | 1.74 × 10−4 | 2.99 × 10−5 | 8.44 × 10−5 | 5.90 × 10−6 | 1.20 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somsunun, K.; Santijitpakdee, T.; Kohsuwan, K.; Jeytawan, N.; Kirtsaeng, S.; Norbäck, D.; Prapamontol, T. Contamination and Health Risk Assessment of Potentially Toxic Elements in Household Dust Across the Haze Season in Upper Northern Thailand. Toxics 2025, 13, 1008. https://doi.org/10.3390/toxics13121008
Somsunun K, Santijitpakdee T, Kohsuwan K, Jeytawan N, Kirtsaeng S, Norbäck D, Prapamontol T. Contamination and Health Risk Assessment of Potentially Toxic Elements in Household Dust Across the Haze Season in Upper Northern Thailand. Toxics. 2025; 13(12):1008. https://doi.org/10.3390/toxics13121008
Chicago/Turabian StyleSomsunun, Kawinwut, Teetawat Santijitpakdee, Kanyapak Kohsuwan, Natwasan Jeytawan, Sukrit Kirtsaeng, Dan Norbäck, and Tippawan Prapamontol. 2025. "Contamination and Health Risk Assessment of Potentially Toxic Elements in Household Dust Across the Haze Season in Upper Northern Thailand" Toxics 13, no. 12: 1008. https://doi.org/10.3390/toxics13121008
APA StyleSomsunun, K., Santijitpakdee, T., Kohsuwan, K., Jeytawan, N., Kirtsaeng, S., Norbäck, D., & Prapamontol, T. (2025). Contamination and Health Risk Assessment of Potentially Toxic Elements in Household Dust Across the Haze Season in Upper Northern Thailand. Toxics, 13(12), 1008. https://doi.org/10.3390/toxics13121008

