Health Risk and Quality Assessment of Vegetables Cultivated on Soils from a Heavily Polluted Old Mining Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment and Plant Sample Analysis
2.2. Evaluation of Bioaccumulation Factor and Risk Assessment
2.3. Statistical Methods
3. Results
3.1. Toxic Elements in Vegetables
3.2. Bioaccumulation Factor
3.3. Chronic Daily Intake
3.4. Risk Assessment
3.5. Macronutrients
3.6. Free Amino Acids
3.7. Relationship between Toxic Elements in Soil and Determined Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šichorová, K.; Tlustoš, P.; Száková, J.; Kořínek, K.; Balík, J. Horizontal and vertical variability of heavy metals in the soil of a polluted area. Plant Soil Environ. 2004, 50, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Vaněk, A.; Ettler, V.; Grygar, T.; Borůvka, L.; Šebek, O.; Drábek, O. Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere 2008, 18, 464–478. [Google Scholar] [CrossRef]
- Sucharová, J.; Suchara, I. Distribution of 36 element deposition rates in a historic mining and smelting area as determined through fine-scale biomonitoring techniques. Part I: Relative and absolute current atmospheric deposition levels detected by moss analyses. Water Air Soil Pollut. 2004, 153, 205–228. [Google Scholar] [CrossRef]
- Bešter, P.K.; Lobnik, F.; Eržen, I.; Kastelec, D.; Zupan, M. Prediction of cadmium concentration in selected home-produced vegetables. Ecotoxicol. Environ. Saf. 2013, 96, 182–190. [Google Scholar] [CrossRef]
- Fahr, M.; Laplaze, L.; Bendaou, N.; Hocher, V.; El Mzibri, M.; Bogusz, D.; Smouni, A. Effect of lead on root growth. Front. Plant Sci. 2013, 4, 175. [Google Scholar] [CrossRef] [Green Version]
- Reddy, A.M.; Kumar, S.G.; Jyothsnakumari, G.; Thimmanaik, S.; Sudhakar, C. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere 2005, 60, 97–104. [Google Scholar] [CrossRef]
- Bidar, G.; Pelfrêne, A.; Schwartz, C.; Waterlot, C.; Sahmer, K.; Marot, F.; Douay, F. Urban kitchen gardens: Effect of the soil contamination and parameters on the trace element accumulation in vegetables—A review. Sci. Total Environ. 2020, 738, 139569. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef]
- Roba, C.; Roşu, C.; Piştea, I.; Ozunu, A.; Baciu, C. Heavy metal content in vegetables and fruits cultivated in Baia Maremining area (Romania) and health risk assessment. Environ. Sci. Pollut. Res. 2016, 23, 6062–6073. [Google Scholar] [CrossRef]
- Natasha; Shahid, M.; Farooq, A.B.U.; Rabbani, F.; Khalid, S.; Dumat, C. Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere 2020, 245, 125605. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Yang, S.; Deng, J.; Xu, J. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Sci. Total Environ. 2021, 779, 146438. [Google Scholar] [CrossRef]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hortic. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Favas, P.J.C.; Pratas, J.; Varun, M.; Paul, M.S. Metal(loid) induced toxicity and defense mechanisms in Spinacia oleracea L.: Ecological hazard and prospects for phytoremediation. Ecotoxicol. Environ. Saf. 2019, 183, 109570. [Google Scholar] [CrossRef]
- Pavlík, M.; Zemanová, V.; Pavlíková, D.; Kyjaková, P.; Hlavsa, T. Regulation of odd-numbered fatty acid content plays an important part in the metabolism of the hyperaccumulator Noccaea spp. adapted to oxidative stress. J. Plant Physiol. 2017, 208, 94–101. [Google Scholar] [CrossRef]
- Riyazuddin, R.; Nisha, N.; Ejaz, B.; Khan, M.I.R.; Kumar, M.; Ramteke, P.W.; Gupta, R.A. Comprehensive review on the heavy metal toxicity and sequestration in plants. Biomolecules 2022, 12, 43. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Jia, L.; Chen, H.; Wei, X. Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol. Environ. Saf. 2013, 89, 150–157. [Google Scholar] [CrossRef]
- Pavlíková, D.; Zemanová, V.; Procházková, D.; Pavlík, M.; Száková, J.; Wilhelmová, N. The long-term effect of zinc soil contamination on selected free amino acids playing an important role in plant adaptation to stress and senescence. Ecotoxicol. Environ. Saf. 2014, 100, 166–170. [Google Scholar] [CrossRef]
- Ahmed, S.; Tuj-Zohra, F.; Mahdi, M.M.; Nurnabi, M.; Alam, M.Z.; Choudhury, T.R. Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicol. Rep. 2022, 9, 346–355. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Krishnan, S.; Kumar, S.; Nejad, Z.D.; Khan, M.A.M.; Alam, J. Evaluating heavy metals contamination in soil and vegetables in the region of North India: Levels, transfer and potential human health risk analysis. Environ. Toxicol. Pharmacol. 2021, 82, 103563. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- Rusin, M.; Domagalska, J.; Rogala, D.; Razzaghi, M.; Szymala, I. Concentration of cadmium and lead in vegetables and fruits. Sci. Rep. 2021, 11, 11913. [Google Scholar] [CrossRef] [PubMed]
- Salaskar, D.; Shrivastava, M.; Kale, S.P. Bioremediation potential of spinach (Spinacia oleracea L.) for decontamination of cadmium in soil. Curr. Sci. 2011, 101, 10. [Google Scholar]
- Czech Ministry of the Environment. Public Notice No. 153/2016 for the Management of Soil Protection; Czech Ministry of the Environment: Prague, Czech Republic, 2016.
- Pavlíková, D.; Zemanová, V.; Pavlík, M.; Dobrev, P.I.; Hnilička, F.; Motyka, V. Response of cytokinins and nitrogen metabolism in the fronds of Pteris sp. under arsenic stress. PLoS ONE 2020, 15, e0233055. [Google Scholar] [CrossRef] [PubMed]
- Pavlíková, D.; Pavlík, M.; Zemanová, V.; Novák, M.; Doležal, P.; Dobrev, P.I.; Motyka, V.; Kraus, K. Accumulation of toxic arsenic by cherry radish tuber (Raphanus sativus var. sativus Pers.) and its physiological, metabolic and anatomical stress responses. Plants 2023, 12, 1257. [Google Scholar] [CrossRef] [PubMed]
- Němcová, V.; Buchtová, I. Situation and Outlook Report—Vegetable; The Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2022; p. 73.
- Chary, N.S.; Kamala, C.T.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Li, H.X.; Ji, H.B.; Shi, C.J.; Gao, Y.; Zhang, Y.; Xu, X.Y.; Ding, H.J.; Tang, L.; Xing, Y.X. Distribution of heavy metals and metalloids in bulk and particle size fractions of soils from coal-mine brownfield and implications on human health. Chemosphere 2017, 172, 505–515. [Google Scholar] [CrossRef]
- Braak, T.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination; Version 4.5; Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
- Lhotská, M.; Zemanová, V.; Pavlík, M.; Pavlíková, D.; Hnilička, F.; Popov, M. Leaf fitness and stress response after the application of contaminated soil dust particulate matter. Sci. Rep. 2022, 12, 10046. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; p. 550. [Google Scholar]
- Warman, P.R.; Havard, K.A. Yield, vitamin and mineral contents of organically and conventionally grown carrots and cabbage. Agric. Ecosyst. Environ. 1997, 61, 155–162. [Google Scholar] [CrossRef]
- Knez, E.; Kadac-Czapska, K.; Dmochowska-Slezak, K.; Grembecka, M. Root vegetables—Composition, health effects, and contaminants. Int. J. Environ. Res. Public Health 2022, 19, 15531. [Google Scholar] [CrossRef]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press—Elsevier: Amsterdam, The Netherlands, 2012; p. 651. [Google Scholar]
- Manea, D.N.; Ienciu, A.A.; Stef, R.; Smuleac, I.L.; Gergen, I.I.; Nica, D.V. Health risk assessment of dietary heavy metals intake from fruits and vegetables grown in selected old mining areas—A case study: The Banat area of southern Carpathians. Int. J. Environ. Res. Public Health 2020, 17, 5172. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, S.; Chi, Y. Accumulation and chemical forms of cadmium in tissues of different vegetable crops. Agronomy 2023, 13, 680. [Google Scholar] [CrossRef]
- Musilová, J.; Franková, H.; Lidiková, J.; Chlpík, J.; Vollmannová, A.; Árvay, J.; Harangozo, L.; Urminská, J.; Tóth, T. Impact of old environmental burden in the Spiš region (Slovakia) on soil and home-grown vegetable contamination, and health effects of heavy metals. Sci. Rep. 2022, 12, 16371. [Google Scholar] [CrossRef]
- Guo, Z.; Dai, H.; Pan, S. Health risk assessment of heavy metal exposure through vegetable consumption around a phosphorus chemical plant in the Kaiyang karst area, southwestern China. Environ. Sci. Pollut. Res. 2023, 30, 35617–35634. [Google Scholar] [CrossRef]
- Dogan, M.; Karatas, M.; Aasim, M. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study. Ecotoxicol. Environ. Saf. 2018, 148, 431–440. [Google Scholar] [CrossRef]
- Zheng, S.N.; Wang, Q.; Yuan, Y.Z.; Sun, W.M. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef]
- Antoniadis, V.; Shaheen, S.M.; Boersch, J.; Frohne, T.; Du Laing, G.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef]
- Ametepey, S.T.; Cobbina, S.J.; Akpabey, F.J.; Duwiejuah, A.B.; Abuntori, Z.N. Health risk assessment and heavy metal contamination levels in vegetables from Tamale Metropolis, Ghana. Int. J. Food Contam. 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Cherfi, A.; Abdoun, S.; Gaci, O. Food survey:Levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria. Food Chem. Toxicol. 2014, 70, 48.e53. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, Z.G.; Lin, C.J.; Bi, X.Y.; Liu, J.L.; Feng, X.; Zhang, H.; Chen, J.; Wu, T.T. Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicol. Environ. Saf. 2018, 161, 99–110. [Google Scholar] [CrossRef]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef] [Green Version]
- Zemanová, V.; Pavlíková, D.; Hnilička, F.; Pavlík, M. Arsenic toxicity-induced physiological and metabolic changes in the shoots of Pteris cretica and Spinacia oleracea. Plants 2021, 10, 2009. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.Q.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34. [Google Scholar] [CrossRef]
- Procházková, D.; Pavlíková, D.; Pavlík, M. Sulphur: Role in Alleviation in Environmental Stress in Crop Plants. In Plant-Environmental Interaction: Responses and Approaches to Mitigate Stress; Azooz, M.M., Ahmad, P., Eds.; John Wiley and Sons, Ltd.: West Sussex, UK, 2016; pp. 84–96. [Google Scholar]
- Colovic, M.B.; Vasic, V.M.; Djuric, D.M.; Krstic, D.Z. Sulphur-containing amino acids:Protective role against free radicals and heavy metals. Curr. Med. Chem. 2018, 25, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Liu, H.; Zhou, D.; Zhou, H.; Fan, G.; Chen, W.; Li, J.; Lou, L.; Gao, Y. Sulfur reduces the root-to-shoot translocation of arsenic and cadmium by regulating their vacuolar sequestration in wheat (Triticum aestivum L.). Front. Plant Sci. 2022, 13, 1032681. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Dhakane-Lad, J.; Dhumal, S.; Changan, S.; Senapathy, M.; Berwal, M.K.; Sampathrajan, V.; Sayed, A.A.S.; et al. Plant-based proteins and their multifaceted industrial applications. LWT—Food Sci. Technol. 2022, 154, 112620. [Google Scholar] [CrossRef]
- Zemanová, V.; Pavlík, M.; Pavlíková, D.; Kyjaková, P. Changes in the contents of amino acids and the profile of fatty acids in response to cadmium contamination in spinach. Plant Soil Environ. 2015, 61, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Okunev, R.V. Free Amino acid accumulation in soil and tomato plants (Solanum lycopersicum L.) associated with arsenic stress. Water Air Soil Pollut. 2019, 230, 253. [Google Scholar] [CrossRef]
- Chaffei, C.; Pageau, K.; Suzuki, A.; Gouia, H.; Ghorbel, M.H.; Masclaux-Daubresse, C. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol. 2004, 45, 1681–1693. [Google Scholar] [CrossRef]
- Zemanová, V.; Pavlík, M.; Pavlíková, D.; Tlustoš, P. The significance of methionine, histidine and tryptophan in plant responses and adaptation to cadmium stress. Plant Soil Environ. 2014, 60, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Kirma, M.; Araújo, W.L.; Fernie, A.R.; Galili, G. The multifaceted role of aspartate-family amino acids in plant metabolism. J. Exp. Bot. 2012, 63, 4995–5001. [Google Scholar] [CrossRef] [Green Version]
- Pavlík, M.; Pavlíková, D.; Zemanová, V.; Hnilička, F.; Urbanová, V.; Száková, J. Trace elements present in airborne particulate matter—Stressors of plant metabolism. Ecotoxicol. Environ. Saf. 2012, 79, 101–107. [Google Scholar] [CrossRef]
Parameters | Podlesí 1 | Podlesí 2 |
---|---|---|
Soil Type and Subtype | Cambisol Haplic | Cambisol Haplic |
pHH2O | 5.9 | 6.0 |
Cation Exchange Capacity (mmol(+)·kg−1) | 165.8 ± 15.1 | 166.7 ± 12.3 |
Organic Carbon (%) | 4.1 ± 0.1 | 4.8 ± 0.3 |
Pseudo-Total Content of Cd (mg·kg−1) 1 | 6.5 ± 1.1 | 2.4 ± 0.2 |
Pseudo-Total Content of Pb (mg·kg−1) | 1560.2 ± 167.1 | 503.6 ± 14.3 |
Pseudo-Total Content of Cr (mg·kg−1) | 24.9 ± 1.0 | 22.4 ± 1.6 |
Pseudo-Total Content of Zn (mg·kg−1) | 243.4 ± 8.2 | 135.0 ± 0.6 |
Water-soluble Content of Cd (mg·kg−1) | 0.01 ± 0.001 | 0.007 ± 0.001 |
Water-soluble Content of Pb (mg·kg−1) | 0.4 ± 0.04 | 0.3 ± 0.03 |
Water-soluble Content of Cr (mg·kg−1) | 0.03 ± 0.001 | 0.03 ± 0.001 |
Water-soluble Content of Zn (mg·kg−1) | 0.2 ± 0.03 | 0.1 ± 0.01 |
BAF | Bioaccumulation Factor | |
Cvge | Content of Toxic Elements in The Edible Parts of Vegetables | mg·kg−1 dry weight (DW) |
Csoil | Content of Toxic Elements in Soils | mg·kg−1 soil |
CDI | Chronic Daily Intake of Toxic Elements | |
IR | Daily Consumption of Vegetables | kg·person−1·day−1 |
EF | The Exposure Frequency | 365 days |
ED | Exposure Duration | 30 years for adult |
ET | The Exposure Time ED × 365 | days |
BW | Body Weight | 70 kg for adult |
THQ | Target Hazard Quotient | |
RfD | The Oral Reference Consumption Dose of Toxic Elements | mg·kg−1·day−1 |
HI | Hazard Index | |
CR | Carcinogenic Risk | |
SF | The Slope Factor of Carcinogenic Elements | mg·kg−1·day−1 |
TCR | Total Carcinogenic Risk |
Vegetable | Soil | Ca (% DW) | Mg (% DW) | P (% DW) | S (% DW) |
---|---|---|---|---|---|
Lettuce | Podlesí 1 | 2.16 ± 1.32 aB | 0.52 ± 0.09 bB | 0.26 ± 0.03 aB | 0.20 ± 0.02 bC |
Podlesí 2 | 1.57 ± 0.22 aB | 0.34 ± 0.05 aB | 0.26 ± 0.02 aB | 0.14 ± 0.01 aC | |
Carrot | Podlesí 1 | 0.22 ± 0.02 aA | 0.10 ± 0.01 aA | 0.15 ± 0.01 aA | 0.06 ± 0.003 bA |
Podlesí 2 | 0.24 ± 0.01 aA | 0.11 ± 0.01 aA | 0.15 ± 0.01 aA | 0.04 ± 0.003 aA | |
Radish | Podlesí 1 | 0.42 ± 0.03 aA | 0.18 ± 0.01 aA | 0.22 ± 0.02 bB | 0.16 ± 0.01 bB |
Podlesí 2 | 0.43 ± 0.03 aA | 0.15 ± 0.03 aA | 0.14 ± 0.01 aA | 0.09 ± 0.02 aB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlíková, D.; Zemanová, V.; Pavlík, M. Health Risk and Quality Assessment of Vegetables Cultivated on Soils from a Heavily Polluted Old Mining Area. Toxics 2023, 11, 583. https://doi.org/10.3390/toxics11070583
Pavlíková D, Zemanová V, Pavlík M. Health Risk and Quality Assessment of Vegetables Cultivated on Soils from a Heavily Polluted Old Mining Area. Toxics. 2023; 11(7):583. https://doi.org/10.3390/toxics11070583
Chicago/Turabian StylePavlíková, Daniela, Veronika Zemanová, and Milan Pavlík. 2023. "Health Risk and Quality Assessment of Vegetables Cultivated on Soils from a Heavily Polluted Old Mining Area" Toxics 11, no. 7: 583. https://doi.org/10.3390/toxics11070583