Facilitated Adsorption of Mercury(II) and Chromium(VI) Ions over Functionalized Carbon Nanotubes
Abstract
:1. Introduction
2. Experimental Analysis
2.1. Materials
2.2. Preparation of CNTs–PLA–Pd
2.3. Adsorption Experiments
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khurshid, H.; Mustafa, M.R.U.; Isa, M.H. Adsorption of chromium, copper, lead and mercury ions from aqueous solution using bio and nano adsorbents: A review of recent trends in the application of AC, BC, nZVI and MXene. Environ. Res. 2022, 212, 113138. [Google Scholar] [CrossRef] [PubMed]
- Foroutan, R.; Peighambardoust, S.J.; Ahmadi, A.; Akbari, A.; Farjadfard, S.; Ramavandi, B. Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. J. Environ. Chem. Eng. 2021, 9, 105709. [Google Scholar] [CrossRef]
- Feng, B.; Shen, W.; Shi, L.; Qu, S. Adsorption of hexavalent chromium by polyacrylonitrile–based porous carbon from aqueous solution. R. Soc. Open Sci. 2018, 5, 171662. [Google Scholar] [CrossRef] [Green Version]
- Raghunathan, V.K.; Tettey, J.N.A.; Ellis, E.M.; Grant, M.H. Comparative chronic in vitro toxicity of hexavalent chromium to osteoblasts and monocytes. J. Biomed. Mater. Res. A 2009, 88 Pt A, 543–550. [Google Scholar] [CrossRef]
- Cohen, M.D.; Kargacin, B.; Klein, C.B.; Costa, M. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 1993, 23, 255–281. [Google Scholar] [CrossRef] [PubMed]
- Alemu, A.; Lemma, B.; Gabbiye, N. Adsorption of chromium (III) from aqueous solution using vesicular basalt rock. Cogent Environ. Sci. 2019, 5, 1650416. [Google Scholar] [CrossRef]
- Dula, T.; Siraj, K.; Kitte, S.A. Adsorption of hexavalent chromium from aqueous solution using chemically activated carbon prepared from locally available waste of bamboo (Oxytenanthera abyssinica). SRN Environ. Chem. 2014, 2014, 438245. [Google Scholar] [CrossRef] [Green Version]
- Dzieniszewska, A.; Kyziol-Komosinska, J.; Pająk, M. Adsorption and bonding strength of chromium species by ferrihydrite from acidic aqueous solutions. PeerJ 2020, 8, e9324. [Google Scholar] [CrossRef]
- Kailasam, S.; Arumugam, S.; Balaji, K.; Kanth, S.V. Adsorption of chromium by exopolysaccharides extracted from lignolytic phosphate solubilizing bacteria. Int. J. Biol. Macromol. 2022, 206, 788–798. [Google Scholar] [CrossRef]
- Yang, J.; Huang, B.; Lin, M. Adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: Isotherm, kinetics, and thermodynamics studies. J. Chem. Eng. Data 2020, 65, 2751–2763. [Google Scholar] [CrossRef]
- Ayoub, G.M.; Damaj, A.; El-Rassy, H.; Al-Hindi, M.; Zayyat, R.M. Equilibrium and kinetic studies on adsorption of chromium (VI) onto pine-needle-generated activated carbon. SN Appl. Sci. 2019, 1, 1562. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wu, J.; Wang, H.; Wang, J.; Shen, H.; Ying, Z. Interference effect of experimental parameters on the mercury removal mechanism of biomass char under an oxy–fuel atmosphere. ACS Omega 2021, 6, 35124–35133. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yan, L.; Wang, Y.; Xu, M. Ion–imprinted sponge produced by ice template–assisted freeze drying of salecan and graphene oxide nanosheets for highly selective adsorption of mercury (II) ion. Carbohydr. Polym. 2021, 258, 117622. [Google Scholar] [CrossRef] [PubMed]
- Sahu, M.K.; Patel, R.K.; Kurwadkar, S. Mechanistic insight into the adsorption of mercury (II) on the surface of red mud supported nanoscale zero–valent iron composite. J. Contam. Hydrol. 2022, 246, 103959. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Y.; Wang, X.; Chen, Z.; Li, C. Competitive adsorption of cadmium(II) and mercury(II) Ions from aqueous solutions by activated carbon from xanthoceras sorbifolia bunge hull. J. Chem. 2016, 2016, 4326351. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Fang, J.; Liao, S.; Mia, R.; Li, W.; Gao, C.; Tian, D.; Li, W. A smart chitosan nonwoven fabric coated with coumarin–based fluorophore for selective detection and efficient adsorption of mercury (II) in water. Sens. Actuators B 2021, 342, 130064. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. Available online: https://link.springer.com/chapter/10.1007%2F978-3-7643-8340-4_6 (accessed on 31 May 2022).
- Zhang, Z.; Wu, D.; Guo, X.; Qian, X.; Lu, Z.; Xu, Q.; Yang, Y.; Duan, L.; He, Y.; Feng, Z. Visible study of mercuric ion and its conjugate in living cells of mammals and plants. Chem. Res. Toxicol. 2005, 18, 1814–1820. Available online: http://refhub.elsevier.com/S0925-4005(18)31621-6/sbref0035 (accessed on 2 June 2022). [CrossRef]
- Park, J.-D.; Zheng, W. Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 2012, 45, 344–352. [Google Scholar] [CrossRef]
- Awad, F.S.; Bakry, A.M.; Ibrahim, A.A.; Lin, A.; El-Shall, M.S. Thiol– and amine–incorporated UIO–66–NH2 as an efficient adsorbent for the removal of mercury(II) and phosphate ions from aqueous solutions. Ind. Eng. Chem. Res. 2021, 60, 12675–12688. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, S.; Zeng, Z.; Huang, J.; Shen, Y.; Guo, Y. Synthesis of magnetic short–channel mesoporous silica SBA–15 modified with a polypyrrole/polyaniline copolymer for the removal of mercury Ions from aqueous solution. ACS Omega 2021, 6, 25791–25806. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Ma, L.; Han, L.; Chen, S.; Hu, J.; Chang, L.; Bao, W.; Wang, J. Rapid synthesis of magnetic zeolite materials from fly ash and iron–containing wastes using supercritical water for elemental mercury removal from flue gas. Fuel Process. Technol. 2019, 189, 39–48. [Google Scholar] [CrossRef]
- Jang, E.-H.; Pack, S.P.; Kim, I.; Chung, S. A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles. Sci. Rep. 2020, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene oxide−MnFe2O4 Magnetic Nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef]
- Ramos-Hernández, L.E.; Pérez-Aguilar, N.V.; Ovando-Medina, V.M.; Oyervides-Muñoz, E.; Arcibar-Orozco, J.A. Arcibar–Orozco, Photoinduced adsorption of Cr(VI) ions in nano–zinc oxide and nano–zinc oxide/polypyrrole composite. J. Appl. Polym. Sci. 2022, 139, e52225. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Shen, F.; Zhou, Y.; Liu, J.; Yang, H. Two–dimensional WS2 as a new mercury removal material: Mercury conversion pathway and effect of defect. Fuel 2022, 307, 121864. [Google Scholar] [CrossRef]
- Vicente-Martínez, Y.; Caravaca, M.; Soto-Meca, A. Simultaneous adsorption of mercury species from aquatic environments using magnetic nanoparticles coated with nanomeric silver functionalized with L–Cysteine. Chemosphere 2021, 282, 131128. [Google Scholar] [CrossRef]
- Bayuo, J.; Rwiza, M.J.; Sillanpa, M.; Mteia, K.M. Removal of heavy metals from binary and multicomponent adsorption systems using various adsorbents—A systematic review. RSC Adv. 2023, 13, 13052–13093. [Google Scholar] [CrossRef]
- Wan, K.; Wang, G.; Xue, S.; Xiao, Y.; Fan, J.; Li, L.; Miao, Z. Preparation of humic acid/L-cysteine–codecorated magnetic Fe3O4 nanoparticles for selective and highly efficient adsorption of mercury. ACS Omega 2021, 6, 7941–7950. [Google Scholar] [CrossRef]
- Yang, Y.; Huang, R.; Xu, W.; Zhang, J.; Li, C.; Song, J.; Zhu, T. Different crystal forms of ZnS nanomaterials for the adsorption of elemental mercury. Environ. Sci. Technol. 2021, 55, 6965–6974. [Google Scholar] [CrossRef]
- Selvi, K.; Pattabhi, S.; Kadirvelu, K. Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresour. Technol. 2001, 80, 87–89. [Google Scholar] [CrossRef]
- Yang, T.; Han, C.; Tang, J.; Luo, Y. Removal performance and mechanisms of Cr(VI) by an in-situ self-improvement of mesoporous biochar derived from chicken bone. Environ. Sci. Pollut. Res. 2020, 27, 5018–5029. [Google Scholar] [CrossRef]
- Li, L.-L.; Feng, X.-Q.; Han, R.-P.; Zang, S.-Q.; Yang, G. Cr(VI) removal via anion exchange on a silver–triazolate MOF. J. Hazard. Mater. 2017, 321, 622–628. [Google Scholar] [CrossRef]
- Galán, B.; Castañeda, D.; Ortiz, I. Removal and recovery of Cr(VI) from polluted ground waters: A comparative study of ion exchange technologies. Water Res. 2005, 39, 4317–4324. [Google Scholar] [CrossRef]
- Kozlowski, C.A.; Walkowiak, W. Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes. Water Res. 2002, 36, 4870–4876. [Google Scholar] [CrossRef]
- Adhoum, N.; Monser, L.; Bellakhal, N.; Belgaied, J.-E. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. J. Hazard. Mater. 2004, 112, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Golbaz, S.; Jafari, A.J.; Rafiee, M.; Kalantary, R.R. Separate and simultaneous removal of phenol, chromium, and cyanide from aqueous solution by coagulation/precipitation: Mechanisms and theory. Chem. Eng. J. 2014, 253, 251–257. [Google Scholar] [CrossRef]
- Dupont, L.; Guillon, E. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ. Sci. Technol. 2003, 37, 4235–4241. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Meng, H.; Song, S.; Lu, S.; Lopez-Valdivieso, A. Elimination of Cr(VI) from electroplating wastewater by electrodialysis following chemical precipitation. Sep. Sci. Technol. 2004, 39, 1501–1517. [Google Scholar] [CrossRef]
- Kongsricharoern, N.; Polprasert, C. Chromium removal by a bipolar electro–chemical precipitation process. Water Sci. Technol. 1996, 34, 109–116. [Google Scholar] [CrossRef]
- Mulani, K.; Daniels, S.; Rajdeo, K.; Tambe, S.; Chavan, N. Adsorption of chromium(VI) from aqueous solutions by coffee polyphenol–formaldehyde/acetaldehyde resins. J. Polym. 2013, 2013, 798368. [Google Scholar] [CrossRef] [Green Version]
- Qu, G.; Zhou, J.; Liang, S.; Li, Y.; Ning, P.; Pan, K.; Ji, W.; Tang, H. Thiol–functionalized multi–walled carbon nanotubes for effective removal of Pb(II) from aqueous solutions. Mater. Chem. Phys. 2022, 278, 125688. [Google Scholar] [CrossRef]
- Egbosiuba, T.C.; Egwunyenga, M.C.; Tijani, J.O.; Mustapha, S.; Abdulkareem, A.S.; Kovo, A.S.; Krikstolaityte, V.; Veksha, A.; Wagner, M.; Lisak, G. Activated multi–walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. J. Hazard. Mater. 2022, 423, 126993. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xu, W.; Jie, F.; Zhao, Z.; Zhou, K.; Liu, H. The selective adsorption performance and mechanism of multiwall magnetic carbon nanotubes for heavy metals in wastewater. Sci. Rep. 2021, 11, 16878. [Google Scholar] [CrossRef]
- Guldi, D.M.; Rahman, G.M.A.; Zerbetto, F.; Prato, M. Carbon nanotubes in electron donor–acceptor nanocomposites. Accounts Chem. Res. 2005, 38, 871–878. [Google Scholar] [CrossRef]
- Lin, Y.; Taylor, S.; Li, H.; Fernando, K.A.S.; Qu, L.; Wang, W.; Gu, L.; Zhou, B.; Sun, Y.-P. Advances toward bioapplications of carbon nanotubes. J. Mater. Chem. 2004, 14, 527–541. [Google Scholar] [CrossRef]
- Pathak, A.; Gupta, B.D. Palladium nanoparticles embedded PPy shell coated CNTs towards a high performance hydrazine detection through optical fiber plasmonic sensor. Sens. Actuators B 2021, 326, 128717. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon nanotube chemical sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef]
- Silva, M.M.; Lopes, P.E.; Li, Y.; Pötschke, P.; Ferreira, F.N.; Paiva, M.C. Polylactic acid/carbon nanoparticle composite filaments for sensing. Appl. Sci. 2021, 11, 2580. [Google Scholar] [CrossRef]
- Nagarajan, V.; Mohanty, A.K.; Misra, M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 2016, 4, 2899–2916. [Google Scholar] [CrossRef]
- Neelgund, G.M.; Oki, A. Pd nanoparticles deposited on poly(lactic acid) grafted carbon nanotubes: Synthesis, characterization, and application in Heck C–C coupling reaction. Appl. Catal. A Gen. 2011, 399, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neelgund, G.M.; Aguilar, S.F.; Kurkuri, M.D.; Rodrigues, D.F.; Ray, R.L. Elevated adsorption of lead and arsenic over silver nanoparticles deposited on poly(amidoamine) grafted carbon nanotubes. Nanomaterials 2022, 12, 3852. [Google Scholar] [CrossRef] [PubMed]
- Neelgund, G.M.; Aguilar, S.F.; Jimenez, E.A.; Ray, R.L. Adsorption efficiency and photocatalytic activity of silver sulfide nanoparticles deposited on carbon nanotubes. Catalysts 2023, 13, 476. [Google Scholar] [CrossRef]
- Yuniarto, K.; Purwanto, Y.A.; Purwanto, S.; Welt, B.A.; Purwadaria, H.K.; Sunarti, T.C. Infrared and Raman studies on polylactide acid and polyethylene glycol–400 blend. AIP Conf. Proc. 2016, 1725, 020101. [Google Scholar] [CrossRef] [Green Version]
- Neelgund, G.M.; Oki, A. Photocatalytic activity of CdS and Ag2S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes. Appl. Catal. B Environ. 2011, 110, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Neelgund, G.M.; Oki, A. Contribution of polylactic acid and Pd nanoparticles in the enhanced photothermal effect of carbon nanotubes. Chemistryselect 2020, 5, 11020–11028. [Google Scholar] [CrossRef]
- Xiong, Y.; Xia, Y. Shape–controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385–3391. [Google Scholar] [CrossRef]
- Winjobi, O.; Zhang, Z.; Liang, C.; Li, W. Carbon nanzotube supported platinum–Palladium nanoparticles for formic acid oxidation. Electrochim. Acta 2010, 55, 4217–4221. [Google Scholar] [CrossRef]
- Wang, Y.; He, Q.; Ding, K.; Wei, H.; Guo, J.; Wang, Q.; O’Connor, R.; Huang, X.; Luo, Z.; Shen, T.D.; et al. Multiwalled carbon nanotubes composited with palladium nanocatalysts for highly efficient ethanol oxidation. J. Electrochem. Soc. 2015, 162, F755–F763. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, W.; Wang, H.; Xie, L.; Liang, Y.; Wei, F.; Idrobo, J.-C.; Pennycook, S.J.; Dai, H. An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat. Nanotechnol. 2012, 7, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Mahendiran, C.; Rajesh, D.; Maiyalagan, T.; Prasanna, K. Pd nanoparticles-supported carbon nanotube-encapsulated NiO/MgO composite as an enhanced electrocatalyst for ethanol electrooxidation in alkaline medium. Chemistryselect 2017, 2, 11438–11444. [Google Scholar] [CrossRef]
- She, Y.; Lu, Z.; Fan, W.; Jewell, S.; Leung, M.K.H. Leung, Facile preparation of PdNi/rGO and its electrocatalytic performance towards formic acid oxidation. J. Mater. Chem. A 2014, 2, 3894–3898. [Google Scholar] [CrossRef]
- Tan, H.T.; Chen, Y.; Zhou, C.; Jia, X.; Zhu, J.; Chen, J.; Rui, X.; Yan, Q.; Yang, Y. Palladium nanoparticles supported on manganese oxide–CNT composites for solvent-free aerobic oxidation of alcohols: Tuning the properties of Pd active sites using MnOx. Appl. Catal. B 2012, 119–120, 166–174. [Google Scholar] [CrossRef]
- Joshi, S.; Sharma, M.; Kumari, A.; Shrestha, S.; Shrestha, B. Arsenic removal from water by adsorption onto iron oxide/nano-porous carbon magnetic composite. Appl. Sci. 2019, 9, 3732. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Zhai, L.; Qiao, T.; Yu, Y.; Zhang, J.; Li, D. Efficient removal of As(V) from aqueous media by magnetic nanoparticles prepared with iron-containing water treatment residuals. Sci. Rep. 2020, 10, 9335. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Proceed. Am. Soc. Civ. Eng. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Hameed, B.; Salman, J.; Ahmad, A. Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J. Hazard. Mater. 2009, 163, 121–126. [Google Scholar] [CrossRef]
- Hamayun, M.; Mahmood, T.; Naeem, A.; Muska, M.; Din, S.; Waseem, M. Equilibrium and kinetics studies of arsenate adsorption by FePO4. Chemosphere 2013, 99, 207–215. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids Part I. solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Ploychompoo, S.; Chen, J.; Luo, H.; Liang, Q. Fast and efficient aqueous arsenic removal by functionalized MIL-100(Fe)/rGO/d-MnO2 ternary composites: Adsorption performance and mechanism. J. Environ. Sci. 2020, 91, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Temkin, M.J.; Pyzhev, V. Recent modifications to Langmuir isotherms. Acta Physiochim. USSR 1940, 12, 217–222. [Google Scholar]
- Tabuchi, A.; Ogata, F.; Uematsu, Y.; Toda, M.; Otani, M.; Saenjum, C.; Nakamura, T.; Kawasaki, N. Granulation of nickel-aluminum–zirconium complex hydroxide using colloidal silica for adsorption of chromium(VI) ions from the liquid phase. Molecules 2022, 27, 2392. [Google Scholar] [CrossRef]
- Al-Yaari, M.; Saleh, T.A. Mercury Removal from water using a novel composite of polyacrylate-modified carbon. ACS Omega 2022, 7, 14820–14831. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Xi, C.; Jiang, B.; Zhang, F. Adsorption and removal of mercury(II) by a crosslinked hyperbranched polymer modified via sulfhydryl. ACS Omega 2022, 7, 12231–12241. [Google Scholar] [CrossRef]
- Kang, C.; Gao, L.; Zhu, H.; Lang, C.; Jiang, J.; Wei, J. Adsorption of Hg(II) in solution by mercaptofunctionalized palygorskite. Environ. Sci. Pollut. Res. 2021, 28, 66287–66302. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Liu, Q.; Meng, H.; Lu, Y.; Li, C. Alkynyl carbon materials as novel and efficient sorbents for the adsorption of mercury(II) from wastewater. J. Environ. Sci. 2018, 68, 169–176. [Google Scholar] [CrossRef]
- Shen, W.; Fang, Y.; Azeem, M.; Gao, Y.; Li, X.; Zhao, P.; Ali, A.; Li, M.; Li, R. Chitosan crosslinked with polyamine-co-melamine for adsorption of Hg2+: Application in purification of polluted water. Int. J. Biol. Macromol. 2021, 181, 778–785. [Google Scholar] [CrossRef]
- Geneti, S.T.; Mekonnen, G.A.; Murthy, H.C.A.; Mohammed, E.T.; Ravikumar, C.R.; Gonfa, B.A.; Sabir, F.K. Biogenic synthesis of magnetite nanoparticles using leaf extract of thymus schimperi and their application for monocomponent removal of chromium and mercury ions from aqueous solution. J. Nanomater. 2022, 2022, 5798824. [Google Scholar] [CrossRef]
- Villabona-Ortíz, A.; Tejada-Tovar, C.; González-Delgado, D. Elimination of chromium (VI) and nickel (II) ions in a packed column using oil palm bagasse and yam peels. Water 2022, 14, 1240. [Google Scholar] [CrossRef]
- Vaddi, D.R.; Gurugubelli, T.R.; Koutavarapu, R.; Lee, D.-Y.; Shim, J. Bio-stimulated adsorption of Cr(VI) from aqueous solution by groundnut shell activated carbon@Al embedded material. Catalysts 2022, 12, 290. [Google Scholar] [CrossRef]
- Qi, H.; Niu, X.; Wu, H.; Liu, X.; Chen, Y. Adsorption of chromium (VI) by Cu (I)-MOF in water: Optimization, kinetics, and thermodynamics. J. Chem. 2021, 2021, 4413095. [Google Scholar] [CrossRef]
Adsorbate | qe (exp) mg g−1 | Pseudo–First Order Kinetic Model | Pseudo–Second–Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
qe (cal) mg g−1 | k1 (min−1) | R2 | qe (cal) mg g−1 | k2 (g mg−1 min−1) | R2 | ||
Hg(II) | 2.500 | 1.0040 | 0.1036 | 0.9850 | 2.5686 | 0.1542 | 0.9991 |
Cr(VI) | 2.500 | 1.2270 | 0.0668 | 0.9841 | 2.8190 | 0.0290 | 0.9930 |
Adsorbate | Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm | ||||||
---|---|---|---|---|---|---|---|---|---|
qm (mg g−1) | KL (L mg−1) | R2Lan | KF (mg g−1) | n | R2Fre | A | B | R2Tem | |
Hg(II) | 263.2 | 0.6041 | 0.9980 | 145.7 | 6.685 | 0.9822 | 109.1 | 30.00 | 0.9959 |
Cr(VI) | 196.1 | 0.2567 | 0.9880 | 130.5 | 7.966 | 0.9970 | 260.5 | 22.41 | 0.9970 |
Adsorbent | Maximum Adsorption Capacity qm (mg/g) | pH | Ref |
---|---|---|---|
RM–nZVI | 94.58 | 5.0 | [14] |
UIO–66–NCS | 250.0 | 5.0 | [20] |
UIO–66–IT | 580.0 | 5.5 | [20] |
PAMC | 76.3 | 6.0 | [75] |
CHAP–SH | 282.7 | 4.5 | [76] |
M–PAL | 203.4 | 4.0 | [77] |
ACM–5 | 191.9 | 5.8 | [78] |
MCS–4N | 140.3 | 4.5 | [79] |
MCS–5N | 109.7 | 4.5 | [79] |
CNTs–PLA–Pd | 263.2 | 5.7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neelgund, G.M.; Jimenez, E.A.; Ray, R.L.; Kurkuri, M.D. Facilitated Adsorption of Mercury(II) and Chromium(VI) Ions over Functionalized Carbon Nanotubes. Toxics 2023, 11, 545. https://doi.org/10.3390/toxics11060545
Neelgund GM, Jimenez EA, Ray RL, Kurkuri MD. Facilitated Adsorption of Mercury(II) and Chromium(VI) Ions over Functionalized Carbon Nanotubes. Toxics. 2023; 11(6):545. https://doi.org/10.3390/toxics11060545
Chicago/Turabian StyleNeelgund, Gururaj M., Erica A. Jimenez, Ram L. Ray, and Mahaveer D. Kurkuri. 2023. "Facilitated Adsorption of Mercury(II) and Chromium(VI) Ions over Functionalized Carbon Nanotubes" Toxics 11, no. 6: 545. https://doi.org/10.3390/toxics11060545
APA StyleNeelgund, G. M., Jimenez, E. A., Ray, R. L., & Kurkuri, M. D. (2023). Facilitated Adsorption of Mercury(II) and Chromium(VI) Ions over Functionalized Carbon Nanotubes. Toxics, 11(6), 545. https://doi.org/10.3390/toxics11060545