Characterization of an Electronic Nicotine Delivery System (ENDS) Aerosol Generation Platform to Determine Exposure Risks
Abstract
:1. Introduction
2. Methods and Materials
2.1. ENDS Device and E-Liquid Selection
2.2. ENDS Aerosol Generation System
2.3. Exposure Chamber Environment
2.4. Real Time Particle Monitoring and Emission Characterization
2.5. Statistical Analysis
3. Results
3.1. Particle Emissions from Different Devices under Two Ventilation Scenarios
3.2. Differences in E-Liquid Formulation Modulate Particle Emissions
3.3. Device Ageing and Puff Fraction Number alter ENDS Particle Profiles
3.4. Influence of Atomizer Format on Particle Emissions
4. Discussion and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Food and Drug Administration. Premarket Tobacco Product Applications for Electronic Nicotine Delivery Systems; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2019. [Google Scholar]
- U.S. Department of Health and Human Services. E-Cigarette Use Among Youth and Young Adults: A Report of the Surgeon General; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2016. [Google Scholar]
- Ranpara, A.; Stefaniak, A.B.; Fernandez, E.; LeBouf, R.F. Effect of Puffing Behavior on Particle Size Distributions and Respiratory Depositions from Pod-Style Electronic Cigarette, or Vaping, Products. Front. Public Health 2021, 9, 750402. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.J.; Aldy, K.; Hsu, S.; McGetrick, M.; Verbeck, G.; De Silva, I.; Feng, S. Review of Health Consequences of Electronic Cigarettes and the Outbreak of Electronic Cigarette, or Vaping, Product Use-Associated Lung Injury. J. Med. Toxicol. 2020, 16, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fairman, R.T.; Churchill, V.; Ashley, D.L.; Popova, L. Users’ Modifications to Electronic Nicotine Delivery Systems (ENDS): Interviews with ENDS Enthusiasts. Int. J. Environ. Res. Public Health 2020, 17, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.; Talbot, P. Design Features in Multiple Generations of Electronic Cigarette Atomizers. Int. J. Environ. Res. Public Health 2019, 16, 2904. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lin, Y.; Xia, T.; Zhu, Y. Effects of Electronic Cigarettes on Indoor Air Quality and Health. Annu. Rev. Public Health 2020, 41, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Majmundar, A.; Xue, Z.; Asare, S.; Nargis, N. Trends in Public Interest in Shopping and Point-of-Sales of JUUL and Puff Bar 2019–2021. Tob. Control 2022. [Google Scholar] [CrossRef]
- Mathur Gaiha, S.; Halpern-Felsher, B.; Feld, A.L.; Gaber, J.; Rogers, T.; Henriksen, L. JUUL and Other E-Cigarettes: Socio-Demographic Factors Associated with Use and Susceptibility in California. Prev. Med. Rep. 2021, 23, 101457. [Google Scholar] [CrossRef]
- O’Connor, R.; Schneller, L.M.; Felicione, N.J.; Talhout, R.; Goniewicz, M.L.; Ashley, D.L. Evolution of Tobacco Products: Recent History and Future Directions. Tob. Control 2022, 31, 175–182. [Google Scholar] [CrossRef]
- Williams, M.; Bozhilov, K.; Ghai, S.; Talbot, P. Elements Including Metals in the Atomizer and Aerosol of Disposable Electronic Cigarettes and Electronic Hookahs. PLoS ONE 2017, 12, e0175430. [Google Scholar] [CrossRef] [Green Version]
- Olmedo, P.; Goessler, W.; Tanda, S.; Grau-Perez, M.; Jarmul, S.; Aherrera, A.; Chen, R.; Hilpert, M.; Cohen, J.E.; Navas-Acien, A.; et al. Metal Concentrations in E-Cigarette Liquid and Aerosol Samples: The Contribution of Metallic Coils. Environ. Health Perspect. 2018, 126, 027010. [Google Scholar] [CrossRef]
- Palazzolo, D.L.; Crow, A.P.; Nelson, J.M.; Johnson, R.A. Trace Metals Derived from Electronic Cigarette (ECIG) Generated Aerosol: Potential Problem of ECIG Devices That Contain Nickel. Front. Physiol. 2017, 7, 00663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talih, S.; Balhas, Z.; Salman, R.; Karaoghlanian, N.; Shihadeh, A. “Direct Dripping”: A High-Temperature, High-Formaldehyde Emission Electronic Cigarette Use Method. Nicotine Tob. Res. 2016, 18, 453–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farsalinos, K.E.; Voudris, V.; Poulas, K. E-Cigarettes Generate High Levels of Aldehydes Only in ‘Dry Puff’ Conditions. Addiction 2015, 110, 1352–1356. [Google Scholar] [CrossRef] [PubMed]
- Gardner, L.D.; Liu, S.T.; Xiao, H.; Anic, G.M.; Kasza, K.A.; Sharma, E.; Hyland, A.J. Electronic Nicotine Delivery System (ENDS) Device Types and Flavors Used by Youth in the PATH Study, 2016–2019. Int. J. Environ. Res. Public Health 2022, 19, 5236. [Google Scholar] [CrossRef]
- Talih, S.; Salman, R.; El-Hage, R.; Karam, E.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.; Shihadeh, A. Characteristics and Toxicant Emissions of JUUL Electronic Cigarettes. Tob. Control 2019, 28, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Sifat, A.E.; Archie, S.R.; Nozohouri, S.; Villalba, H.; Zhang, Y.; Sharma, S.; Ghanwatkar, Y.; Vaidya, B.; Mara, D.; Cucullo, L.; et al. Short-Term Exposure to JUUL Electronic Cigarettes Can Worsen Ischemic Stroke Outcome. Fluids Barriers CNS 2022, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, F.C.; Buonanno, G.; Stabile, L.; Vigo, P. Influential Parameters on Particle Concentration and Size Distribution in the Mainstream of E-Cigarettes. Environ. Pollut. 2014, 184, 523–529. [Google Scholar] [CrossRef]
- Ingebrethsen, B.J.; Cole, S.K.; Alderman, S.L. Electronic Cigarette Aerosol Particle Size Distribution Measurements. Inhal. Toxicol. 2012, 24, 976–984. [Google Scholar] [CrossRef]
- Mikheev, V.B.; Ivanov, A.; Lucas, E.A.; South, P.L.; Colijn, H.O.; Clark, P.I. Aerosol Size Distribution Measurement of Electronic Cigarette Emissions Using Combined Differential Mobility and Inertial Impaction Methods: Smoking Machine and Puff Topography Influence. Aerosol Sci. Technol. 2018, 52, 1233–1248. [Google Scholar] [CrossRef]
- Scungio, M.; Stabile, L.; Buonanno, G. Measurements of Electronic Cigarette-Generated Particles for the Evaluation of Lung Cancer Risk of Active and Passive Users. J. Aerosol Sci. 2018, 115, 1–11. [Google Scholar] [CrossRef]
- Baassiri, M.; Talih, S.; Salman, R.; Karaoghlanian, N.; Saleh, R.; El Hage, R.; Saliba, N.; Shihadeh, A. Clouds and “Throat Hit”: Effects of Liquid Composition on Nicotine Emissions and Physical Characteristics of Electronic Cigarette Aerosols. Aerosol Sci. Technol. 2017, 51, 1231–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zervas, E.; Litsiou, E.; Konstantopoulos, K.; Poulopoulos, S.; Katsaounou, P. Physical Characterization of the Aerosol of an Electronic Cigarette: Impact of Refill Liquids. Inhal. Toxicol. 2018, 30, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Floyd, E.L.; Queimado, L.; Wang, J.; Regens, J.L.; Johnson, D.L. Electronic Cigarette Power Affects Count Concentration and Particle Size Distribution of Vaping Aerosol. PLoS ONE 2018, 13, e0210147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.; Son, Y.; Kipen, H.; Laskin, D.; Schwander, S.; Delnevo, C. Particles Released from Primary E-Cigarette Vaping: Particle Size Distribution and Particle Deposition in the Human Respiratory Tract. In A16. Why Should We Be Concerned about E-Cigarettes? American Thoracic Society International Conference Abstracts; American Thoracic Society: New York, NY, USA, 2017; p. A1023. [Google Scholar] [CrossRef]
- Yoong, S.L.; Stockings, E.; Chai, L.K.; Tzelepis, F.; Wiggers, J.; Oldmeadow, C.; Paul, C.; Peruga, A.; Kingsland, M.; Attia, J.; et al. Prevalence of Electronic Nicotine Delivery Systems (ENDS) Use among Youth Globally: A Systematic Review and Meta-Analysis of Country Level Data. Aust. N. Z. J. Public Health 2018, 42, 303–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, A. Impact of Vaping on Respiratory Health. BMJ 2022, 378, e065997. [Google Scholar] [CrossRef] [PubMed]
- Giovacchini, C.X.; Crotty Alexander, L.E.; Que, L.G. Electronic Cigarettes: A Pro–Con Review of the Current Literature. J. Allergy Clin. Immunol. Pract. 2022. [Google Scholar] [CrossRef]
- Vivarelli, F.; Granata, S.; Rullo, L.; Mussoni, M.; Candeletti, S.; Romualdi, P.; Fimognari, C.; Cruz-Chamorro, I.; Carrillo-Vico, A.; Paolini, M.; et al. On the Toxicity of E-Cigarettes Consumption: Focus on Pathological Cellular Mechanisms. Pharmacol. Res. 2022, 182, 106315. [Google Scholar] [CrossRef]
- Esteban-Lopez, M.; Perry, M.D.; Garbinski, L.D.; Manevski, M.; Andre, M.; Ceyhan, Y.; Caobi, A.; Paul, P.; Lau, L.S.; Ramelow, J.; et al. Health Effects and Known Pathology Associated with the Use of E-Cigarettes. Toxicol. Rep. 2022, 9, 1357–1368. [Google Scholar] [CrossRef]
- Zhang, Y.; Sumner, W.; Chen, D.-R. In Vitro Particle Size Distributions in Electronic and Conventional Cigarette Aerosols Suggest Comparable Deposition Patterns. Nicotine Tob. Res. 2013, 15, 501–508. [Google Scholar] [CrossRef]
- Czogala, J.; Goniewicz, M.L.; Fidelus, B.; Zielinska-Danch, W.; Travers, M.J.; Sobczak, A. Secondhand Exposure to Vapors from Electronic Cigarettes. Nicotine Tob. Res. 2014, 16, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Schripp, T.; Markewitz, D.; Uhde, E.; Salthammer, T. Does E-Cigarette Consumption Cause Passive Vaping? Does e-Cigarette Consumption Cause Passive Vaping? Indoor Air 2013, 23, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Melstrom, P.; Koszowski, B.; Thanner, M.H.; Hoh, E.; King, B.; Bunnell, R.; McAfee, T. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes. Nicotine Tob. Res. 2017, 19, 1055–1061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soule, E.K.; Sousan, S.; Streuber, D.; Fresquez, S.E.; Mooring, R.; Salman, R.; Talih, S.; Pender, J. Increased JUUL Emissions from Initial Puffs after Removing and Reinserting Pod. Chem. Res. Toxicol. 2022, 35, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Robinson, R.J.; Hensel, E.C. Behavior-Based Yield for Electronic Cigarette Users of Different Strength Eliquids Based on Natural Environment Topography. Inhal. Toxicol. 2019, 31, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Sosnowski, T.R.; Odziomek, M. Particle Size Dynamics: Toward a Better Understanding of Electronic Cigarette Aerosol Interactions with the Respiratory System. Front. Physiol. 2018, 9. [Google Scholar] [CrossRef]
- Schober, W.; Szendrei, K.; Matzen, W.; Osiander-Fuchs, H.; Heitmann, D.; Schettgen, T.; Jörres, R.A.; Fromme, H. Use of Electronic Cigarettes (e-Cigarettes) Impairs Indoor Air Quality and Increases FeNO Levels of e-Cigarette Consumers. Int. J. Hyg. Environ. Health 2014, 217, 628–637. [Google Scholar] [CrossRef]
- Halstead, M.; Gray, N.; Gonzalez-Jimenez, N.; Fresquez, M.; Valentin-Blasini, L.; Watson, C.; Pappas, R.S. Analysis of Toxic Metals in Electronic Cigarette Aerosols Using a Novel Trap Design. J. Anal. Toxicol. 2020, 44, 149–155. [Google Scholar] [CrossRef]
- Offer, S.; Hartner, E.; Di, B.S.; Bisig, C.; Bauer, S.; Pantzke, J.; Zimmermann, E.J.; Cao, X.; Binder, S.; Kuhn, E.; et al. Effect of Atmospheric Aging on Soot Particle Toxicity in Lung Cell Models at the Air–Liquid Interface: Differential Toxicological Impacts of Biogenic and Anthropogenic Secondary Organic Aerosols (SOAs). Environ. Health Perspect. 2022, 130, 027003. [Google Scholar] [CrossRef]
- ASTM International. Designation: D6670—13. Standard Practice for Full-Scale Chamber Determination of Volatile Organic Emissions from Indoor Materials/Products; ASTM International: West Conshohocken, PA, USA, 2013. [Google Scholar]
- UL GreenGuard. Certification Program Method for Measuring and Evaluating Chemical and Particle Emissions from Electronic Equipment Using Dynamic Environmental Chambers; UL GreenGuard: Marietta, GA, USA, 2014. [Google Scholar]
- Jeon, J.; Zhang, Q.; Chepaitis, P.; Greenwald, R.; Black, M.; Wright, C. Toxicological Assessment of Particulate and Metal Hazards Associated with Vaping Frequency and Device Age. Toxics 2023. under review. [Google Scholar]
- ANSI. ANSI/CAN/UL 2904 Standard Method for Testing and Assessing Particle and Chemical Emissions from 3D Printers; American National Standards Institute: Washington, DC, USA, 2019. [Google Scholar]
- Zhang, Q.; Weber, R.J.; Luxton, T.P.; Peloquin, D.M.; Baumann, E.J.; Black, M.S. Metal Compositions of Particle Emissions from Material Extrusion 3D Printing: Emission Sources and Indoor Exposure Modeling. Sci. Total Environ. 2022, 160512. [Google Scholar] [CrossRef]
- Gillman, I.G.; Kistler, K.A.; Stewart, E.W.; Paolantonio, A.R. Effect of Variable Power Levels on the Yield of Total Aerosol Mass and Formation of Aldehydes in E-Cigarette Aerosols. Regul. Toxicol. Pharmacol. 2016, 75, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manigrasso, M.; Buonanno, G.; Fuoco, F.C.; Stabile, L.; Avino, P. Aerosol Deposition Doses in the Human Respiratory Tree of Electronic Cigarette Smokers. Environ. Pollut. 2015, 196, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Braymiller, J.; Eckel, S.P.; Liu, F.; Tackett, A.P.; Rebuli, M.E.; Barrington-Trimis, J.; McConnell, R. Secondhand Nicotine Vaping at Home and Respiratory Symptoms in Young Adults. Thorax 2022, 77, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Walton, K.; Gentzke, A.S.; Murphy-Hoefer, R.; Kenemer, B.; Neff, L.J. Exposure to Secondhand Smoke in Homes and Vehicles Among US Youths, United States, 2011–2019. Prev. Chronic. Dis. 2020, 17, E103. [Google Scholar] [CrossRef] [PubMed]
- Talih, S.; Balhas, Z.; Salman, R.; El-Hage, R.; Karaoghlanian, N.; El-Hellani, A.; Baassiri, M.; Jaroudi, E.; Eissenberg, T.; Saliba, N.; et al. Transport Phenomena Governing Nicotine Emissions from Electronic Cigarettes: Model Formulation and Experimental Investigation. Aerosol Sci. Technol. 2017, 51, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Lee, E.S.; Nguyen, C.; Zhu, Y. Effects of Propylene Glycol, Vegetable Glycerin, and Nicotine on Emissions and Dynamics of Electronic Cigarette Aerosols. Aerosol Sci. Technol. 2020, 54, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Talih, S.; Salman, R.; El-Hage, R.; Karaoghlanian, N.; El-Hellani, A.; Saliba, N.; Shihadeh, A. Effect of Free-Base and Protonated Nicotine on Nicotine Yield from Electronic Cigarettes with Varying Power and Liquid Vehicle. Sci. Rep. 2020, 10, 16263. [Google Scholar] [CrossRef]
- Jensen, R.P.; Strongin, R.M.; Peyton, D.H. Solvent Chemistry in the Electronic Cigarette Reaction Vessel. Sci. Rep. 2017, 7, 42549. [Google Scholar] [CrossRef] [Green Version]
- Ko, T.-J.; Kim, S.A. Effect of Heating on Physicochemical Property of Aerosols during Vaping. Int. J. Environ. Res. Public Health 2022, 19, 1892. [Google Scholar] [CrossRef]
ENDS Device | E-Liquid Flavor (Nicotine Strength) | Coil Resistance (Ω) | Power (W) |
---|---|---|---|
Pod-type | Tobacco 1 (5%) | 2.0 | 7 |
Tobacco 1 (3%) | 2.0 | 7 | |
Tobacco 2 (5%) | 2.0 | 7 | |
Mod-type | Tobacco 3 (0.3%) | 0.2 | 45 |
Tobacco 3 (0.3%) | 0.2 | 63 | |
Tobacco 3 (0.3%) | 0.6 | 22 | |
Tobacco 3 (0.3%) | 0.6 | 29 | |
Tobacco 4 (0.3%) | 0.15 | 51 |
Pod-Type | Mod-Type | |
---|---|---|
Unventilated scenario (n = 4) | ||
Number emission (#/puff) | 4.92 × 1010 ± 0.70 × 1010 | 1.72 × 1010 ± 0.08 × 1010 |
Mass emission (µg/puff) | 2.58 × 102 ± 0.60 × 102 | 1.50 × 104 ± 0.06 × 104 |
Ventilated scenario (n = 3) | ||
Number emission (#/puff) | 5.54 × 109 ± 2.11 × 109 | 5.00 × 109 ± 1.91 × 109 |
Mass emission (µg/puff) | 1.71 × 103 ± 1.00 × 103 | 1.09 × 103 ± 0.64 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Jeon, J.; Goldsmith, T.; Black, M.; Greenwald, R.; Wright, C. Characterization of an Electronic Nicotine Delivery System (ENDS) Aerosol Generation Platform to Determine Exposure Risks. Toxics 2023, 11, 99. https://doi.org/10.3390/toxics11020099
Zhang Q, Jeon J, Goldsmith T, Black M, Greenwald R, Wright C. Characterization of an Electronic Nicotine Delivery System (ENDS) Aerosol Generation Platform to Determine Exposure Risks. Toxics. 2023; 11(2):99. https://doi.org/10.3390/toxics11020099
Chicago/Turabian StyleZhang, Qian, Jennifer Jeon, Travis Goldsmith, Marilyn Black, Roby Greenwald, and Christa Wright. 2023. "Characterization of an Electronic Nicotine Delivery System (ENDS) Aerosol Generation Platform to Determine Exposure Risks" Toxics 11, no. 2: 99. https://doi.org/10.3390/toxics11020099
APA StyleZhang, Q., Jeon, J., Goldsmith, T., Black, M., Greenwald, R., & Wright, C. (2023). Characterization of an Electronic Nicotine Delivery System (ENDS) Aerosol Generation Platform to Determine Exposure Risks. Toxics, 11(2), 99. https://doi.org/10.3390/toxics11020099