Risk Assessment and Risk Reduction of Ptaquiloside in Bracken Fern
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Pretreatment and Sampling of BF for HPLC Analysis
2.3. HPLC Analysis Conditions
2.4. Human Exposure to PTA
2.5. Non-Cancer and Cancer Risk Assessment
3. Results
3.1. Determination of Optimal Boiling Time for Removal of PTA from BF
3.2. Concentration of PTA after Boiling BF for 20 Min
3.3. Human Exposure to PTA
3.4. Determination of Non-Cancer and Cancer Toxicity Values for PTA
3.5. Non-Cancer and Cancer Risk Assessment for PTA
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mannan, M.M.; Maridass, M.; Victor, B. A Review on the Potential Uses of Ferns. Ethnobot. Leafl. 2008, 12, 281–285. [Google Scholar]
- Cárdenas, G.G.; Lehtonen, S.; Tuomisto, H. Taxonomy and evolutionary history of the neotropical fern genus Salpichlaena (Blechnaceae). Blumea Biodivers. Evol. Biogeogr. Plants 2019, 64, 1–22. [Google Scholar] [CrossRef]
- Perrino, E.V.; Tomaselli, V.; Wagensommer, R.P.; Silletti, G.N.; Esposito, A.; Stinca, A. Ophioglossum lusitanicum L.: New Records of Plant Community and 92/43/EEC Habitat in Italy. Agronomy 2022, 12, 3188. [Google Scholar] [CrossRef]
- Matongera, T.N.; Mutanga, O.; Dube, T.; Lottering, R.T. Detection and mapping of bracken fern weeds using multispectral remotely sensed data: A review of progress and challenges. Geocarto Int. 2018, 33, 209–224. [Google Scholar] [CrossRef]
- Marrs, R.H.; Watt, A.S. Biological Flora of the British Isles: Pteridium aquilinum (L.) Kuhn. J. Ecol. 2006, 94, 1272–1321. [Google Scholar] [CrossRef]
- Aranha, P.C.D.R.; Rasmussen, L.H.; Wolf-Jäckel, G.A.; Jensen, H.M.E.; Hansen, H.C.B.; Friis, C. Fate of ptaquiloside-A bracken fern toxin-In cattle. PLoS ONE 2019, 14, e0218628. [Google Scholar] [CrossRef]
- Virgilio, A.; Sinisi, A.; Russo, V.; Gerado, S.; Santoro, A.; Galeone, A.; Taglialatela-Scafati, O.; Roperto, F. Ptaquiloside, the major carcinogen of bracken fern, in the pooled raw milk of healthy sheep and goats: An underestimated, global concern of food safety. J. Agric. Food Chem. 2015, 63, 4886–4892. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wujisguleng, W.; Long, C. Food uses of ferns in China: A review. Acta Soc. Bot. Pol. 2012, 81, 263–270. [Google Scholar] [CrossRef]
- Tourchi-Roudsari, M. Multiple effects of bracken fern under in vivo and in vitro conditions. Asian Pac. J. Cancer Prev. 2014, 15, 7505–7513. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Amelot, M.E.; Avendaño, M. Human carcinogenesis and bracken fern: A review of the evidence. Curr. Med. Chem. 2002, 9, 675–686. [Google Scholar] [CrossRef]
- Marliére, C.A.; Wathern, P.; Castro, M.C.F.M.; O’Connor, P.; Galvao, M.A. Bracken fern (Pteridium aquilinum) ingestion and oesophageal and stomach cancer. IARC Sci. Publ. 2002, 156, 379–380. [Google Scholar]
- IARC. Bracken fern (Pteridium aquilinum) and some of its constituents. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 1986, 40, 47–65. [Google Scholar]
- IARC. Overall evaluations of carcinogenicity: An updating of IARC Monographs volumes 1 to 42. In IARC Working Group on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; WHO: Geneva, Switzerland, 1987; Volume 7, pp. 1–440. [Google Scholar]
- Ramwell, C.T.; van Beinum, W.; Rowbothan, A.; Parry, H.; Parsons, S.A.; Luo, W.; Evans, G. Ptaquiloside & Other Bracken Toxins: A Preliminary Risk Assessment. The Food and Environment Research Agency (FERA). Available online: https://www.dwi.gov.uk/research/completed-research/risk-assessment-chemical/ptaquiloside-other-bracken-toxins-a-preliminary-risk-assessment/ (accessed on 28 May 2010).
- Wilson, D.; Donaldson, L.J.; Sepai, O. Should we be frightened of bracken? A review of the evidence. J. Epidemiol. Community Health 1998, 52, 812–817. [Google Scholar] [CrossRef]
- Vetter, J. A biological hazard of our age: Bracken fern [Pteridium aquilinum (L.) Kuhn]—A review. Acta Vet. Hung. 2009, 57, 183–196. [Google Scholar] [CrossRef]
- Prakash, A.S.; Pereira, T.N.; Smith, B.L.; Shaw, G.; Seawright, A.A. Mechanism of bracken fern carcinogenesis: Evidence for H-ras activation via initial adenine alkylation by ptaquiloside. Nat. Toxins 1996, 4, 221–227. [Google Scholar] [CrossRef]
- Shahin, M.; Moore, M.R.; Worrall, S.; Smith, B.L.; Seawright, A.A.; Prakash, A.S. H-ras activation is an early event in the ptaquiloside-induced carcinogenesis: Comparison of acute and chronic toxicity in rats. Biochem. Biophys. Res. Commun. 1998, 250, 491–497. [Google Scholar] [CrossRef]
- Schubbert, S.; Shannon, K.; Bollag, G. Hyperactive Ras in developmental disorders and cancer. Nat. Rev. Cancer 2007, 7, 295–308. [Google Scholar] [CrossRef]
- Yamada, K.; Ojika, M.; Kigoshi, H. Ptaquiloside, the major toxin of bracken, and related terpene glycosides: Chemistry, biology and ecology. Nat. Prod. Rep. 2007, 24, 798–813. [Google Scholar] [CrossRef]
- Sharma, R.; Bhat, T.K.; Sharma, O.P. The environmental and human effects of ptaquiloside-induced enzootic bovine hematuria: A tumorous disease of cattle. Rev. Environ. Contam. Toxicol. 2013, 224, 53–95. [Google Scholar] [CrossRef]
- Vetter, J. The Norsesquiterpene Glycoside Ptaquiloside as a Poisonous, Carcinogenic Component of Certain Ferns. Molecules 2022, 27, 6662. [Google Scholar] [CrossRef]
- Lee, H.H.; Kim, A.G.; Lee, M.G.; Choi, S.Y.; Seo, J.J.; Kim, E.S.; Seo, K.W.; Cho, B.S. Study on Processing Methods to Remove Toxic Ptaquiloside from Bracken Fern. J. Food Hyg. Saf. 2017, 32, 217–221. [Google Scholar] [CrossRef]
- Potter, D.M.; Baird, M.S. Carcinogenic effects of ptaquiloside in bracken fern and related compounds. Br. J. Cancer 2000, 83, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Nagao, T.; Matoba, M.; Koyama, K.; Natori, S.; Murakami, T.; Saiki, Y. Chemical assay of ptaquiloside, the carcinogen of pteridium aquilinum, and the distribution of related compounds in the pteridaceae. Phytochemistry 1989, 28, 1605–1611. [Google Scholar] [CrossRef]
- Chen, L.Y.; Hu, A.; Chang, C.J. The Degradation Mechanism of Toxic Atractyloside in Herbal Medicines by Decoction. Molecules 2013, 18, 2018–2028. [Google Scholar] [CrossRef]
- EFSA. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 2012, 10, 1–32. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Committee on a request from EFSA related to A Harmonised Approach for Risk Assessment of Substances Which are both Genotoxic and Carcinogenic. EFSA J. 2005, 3, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Fürst, P.; Milana, M.R.; Pfaff, K.; Tlustos, C.; Vleminckx, C.; Arcella, D.; Barthélémy, E.; Colombo, P.; Goumperis, T.; Roldán Torres, R.; et al. Risk evaluation of chemical contaminants in food in the context of RASFF notifications. EFSA Support. Publ. 2019, 16, 1–108. [Google Scholar] [CrossRef]
- KHIDI. Amount of Intake by Food. Korea Health Industry Development Institute (KHIDI). Available online: https://www.khidi.or.kr/kps/dhraStat/result2?menuId=MENU01653&year=2018 (accessed on 14 March 2020).
- Barlow, S.; Schlatter, J. Risk assessment of carcinogens in food. Toxicol. Appl. Pharmacol. 2010, 243, 180–190. [Google Scholar] [CrossRef]
- Dybing, E.; Sanner, T.; Roelfzema, H.; Kroese, D.; Tennant, R.W. T25: A simplified carcinogenic potency index: Description of the system and study of correlations between carcinogenic potency and species/site specificity and mutagenicity. Pharmacol. Toxicol. 1997, 80, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Gounalan, S.; Somvanshi, R.; Kumar, R.; Dash, S.; Devi, V. Clinico-pathological effects of bracken fern (Pteridium aquilinum) feeding in laboratory rats. Indian J. Anim. Sci. 1999, 69, 385–388. [Google Scholar]
- Hirono, I.; Ogino, H.; Fujimoto, M.; Yamada, K.; Yoshida, Y.; Ikagawa, M.; Okumura, M. Induction of tumors in ACI rats given a diet containing ptaquiloside, a bracken carcinogen. J. Natl. Cancer Inst. 1987, 79, 1143–1149. [Google Scholar] [CrossRef]
- Dybing, E.; O’Brien, J.; Renwick, A.G.; Sanner, T. Risk assessment of dietary exposures to compounds that are genotoxic and carcinogenic—An overview. Toxicol. Lett. 2008, 180, 110–117. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Zezi, A.U.; Anafi, S.B.; Alshargi, O.Y.; Mohammed, M.; Mustapha, S.; Bala, A.A.; Muhammad, S.; Julde, S.M.; Wada, A.S.; et al. Sub-acute toxicity study on hydromethanolic leaves extract of Combretum hypopilinum (Combretaceae) Diels in Wistar rats. Toxicol. Res. 2022, 38, 487–502. [Google Scholar] [CrossRef]
- Da Silva, S.P.; da Costa, C.B.L.; de Freitas, A.F.S.; da Silva, J.D.F.; Costa, W.K.; da Silva, W.S.F.L.; Machado, J.C.B.; da Silva, S.M.S.; Ferreira, M.R.A.; Soares, L.A.L.; et al. Saline extract of Portulaca elatior leaves with photoprotective and antioxidant activities does not show acute oral and dermal toxicity in mice. Toxicol. Res. 2022. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, V.; Akhouri, V.; Kumar, R.; Ali, M.; Rashmi, T.; Chand, G.B.; Singh, S.K.; Ghosh, A.K. Protective efficacy of Coriandrum sativum seeds against arsenic induced toxicity in Swiss albino mice. Toxicol. Res. 2022, 38, 437–447. [Google Scholar] [CrossRef]
- Bai, Z.; He, Y.; Han, Z.; Wu, F. Leaching Mechanism and Health Risk Assessment of As and Sb in Tailings of Typical Antimony Mines: A Case Study in Yunnan and Guizhou Province, Southwest China. Toxics 2022, 10, 777. [Google Scholar] [CrossRef]
- Kim, K.B.; Kwack, S.J.; Lee, J.Y.; Kacew, S.; Lee, B.M. Current opinion on risk assessment of cosmetics. J. Toxicol. Environ. Health B Crit. Rev. 2021, 24, 137–161. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J.W.; Kim, J.Y.; Park, J.H.; Park, S.H.; Kim, K.B.; Lee, B.M.; Kwon, S. Current trends in read-across applications for chemical risk assessments and chemical registrations in the Republic of Korea. J. Toxicol. Environ. Health B Crit. Rev. 2022, 25, 393–404. [Google Scholar] [CrossRef]
- Qi, H.; Liu, Y.; Li, L.; Zhao, B. Optimization of Cancer Risk Assessment Models for PM2.5-Bound PAHs: Application in Jingzhong, Shanxi, China. Toxics 2022, 10, 761. [Google Scholar] [CrossRef]
- Wang, Y.; Xin, C.; Yu, S.; Xie, Y.; Zhang, W.; Fu, R. Health Risk Assessment Based on Source Identification of Heavy Metal(loid)s: A Case Study of Surface Water in the Lijiang River, China. Toxics 2022, 10, 726. [Google Scholar] [CrossRef]
- Alonso-Amelot, M.E.; Castillo, U.; Smith, B.L.; Lauren, D.R. Bracken ptaquiloside in milk. Nature 1996, 382, 587. [Google Scholar] [CrossRef] [PubMed]
- García-Jorgensen, D.B.; Hansen, H.C.B.; Abrahamsen, P.; Diamantopoulos, E. A novel model concept for modelling the leaching of natural toxins: Results for the case of ptaquiloside. Environ. Sci. Process Impacts 2020, 22, 1768–1779. [Google Scholar] [CrossRef] [PubMed]
Sample | Concentration of PTA 1 (Reduction Rate of PTA) | ||
---|---|---|---|
Soaked BF 2 | BF Soaked 2 and Then Boiled for 10 Min | BF Soaked 2 and Then Boiled for 20 Min | |
1 | 112.58 ppm | 33.61 ppm (70.14%) | 6.54 ppm (94.19%) |
2 | 108.20 ppm | 29.07 ppm (73.14%) | 4.72 ppm (95.64%) |
3 | 84.95 ppm | 16.23 ppm (80.89%) | 3.93 ppm (95.37%) |
4 | 92.15 ppm | 10.82 ppm (88.26%) | 2.48 ppm (97.31%) |
5 | 107.27 ppm | 24.63 ppm (77.04%) | 4.03 ppm (96.24%) |
Range | 84.95–112.58 ppm | 10.82–33.61 ppm (70.14–88.26%) | 2.48–6.54 ppm (94.19–97.31%) |
Sample | Concentration of PTA (ppm) 1 | Reduction Rate of PTA (%) | |
---|---|---|---|
Soaked BF 2 | BF Soaked 2 and Then Boiled for 20 Min | ||
1 | 112.58 | 6.54 | 94.19 |
2 | 108.20 | 4.72 | 95.64 |
3 | 84.95 | 3.93 | 95.37 |
4 | 92.15 | 2.48 | 97.31 |
5 | 107.27 | 4.03 | 96.24 |
6 | 12.50 | 2.31 | 81.51 |
7 | 45.22 | 9.22 | 79.61 |
8 | 168.20 | 32.06 | 80.94 |
9 | 137.22 | 12.28 | 91.05 |
10 | 563.84 | 50.93 | 90.97 |
11 | 391.54 | 9.39 | 97.60 |
12 | 1303.15 | 132.74 | 89.81 |
13 | 1995.38 | 39.87 | 98.00 |
14 | 433.35 | 88.05 | 79.68 |
15 | 540.09 | 4.21 | 99.22 |
16 | 476.59 | 5.01 | 98.95 |
17 | 461.96 | 4.07 | 99.12 |
18 | 489.34 | 27.17 | 94.45 |
19 | 427.56 | 3.36 | 99.21 |
20 | 518.02 | 3.94 | 99.24 |
Range | 12.50–1995.38 | 2.31–132.74 | 79.61–99.24 |
Median | 409.55 | 5.78 | 95.51 |
Daily BF Intake (g/Day) 1 | Concentration of PTA (%) | Oral Absorption Rate (%) 3 | Body Weight (kg) 4 | Human Exposure (mg/kg/Day) 5 | ||
---|---|---|---|---|---|---|
2.32 | Average exposure (median PTA value) | Soaked BF 2 | 4.10 × 10−2 | 100 | 70 | 1.36 × 10−2 |
BF soaked 2 and then boiled for 20 min | 5.78 × 10−4 | 1.92 × 10−4 | ||||
Maximal exposure (maximal PTA value) | Soaked BF 2 | 2.00 × 10−1 | 6.63 × 10−2 | |||
BF soaked 2 and then boiled for 20 min | 1.33 × 10−2 | 4.41 × 10−3 |
Toxicity Endpoint | Animal Species | Duration | Dose | Toxicity Value | Reference |
---|---|---|---|---|---|
Non-cancer | Rat | 90 days | - 4 controls: normal diet - 6 experimental animals: diet containing 25% dried BF (PTA 4.6–20.7 mg/kg in BF) = PTA 1.15–5.175 mg/kg in diet = PTA 0.104–0.466 mg/kg/day 1 | LOAEL: 0.104 mg/kg/day 3 - Decrease in body weight - Increase in spleen weight - Decrease in the number of red blood cells, white blood cells, and lymphocytes in the blood - Decrease in glucose and increase in AST and ALT in serum | [33] |
Cancer | Rat | 207 days | - 20 controls: normal diet - 15 experimental animals: diet containing PTA (0.04% for 15 days, 0.027% for 40 days, 0.04% for 52 days, 0.08% for 40 days, and 0.04% for 60 days) = PTA 0.0452% (452.174 mg/kg) in diet = PTA 22.609 mg/kg/day 2 | T25: 5.652 mg/kg/day 4 - Observation in ileal and bladder tumors (controls: 0/20 and experimental animals: 15/15) | [34] |
Toxicity Value (mg/kg/Day) 1 | Human Exposure (mg/kg/Day) 2 | Risk Assessment Result | ||||
---|---|---|---|---|---|---|
Non-Cancer | Cancer | Non-Cancer MOE (≥300 = safe) 4 | Cancer MOE (≥25,000 = safe) 5 | |||
LOAEL: 0.104 | T25: 5.652 | Average exposure (median PTA value) | Soaked BF 3 | 1.36 × 10−2 | 7.65 (not safe) | 415.59 (not safe) |
BF soaked 3 and then boiled for 20 min | 1.92 × 10−4 | 541.67 (safe) | 29,437.50 (safe) | |||
Maximal exposure (maximal PTA value) | Soaked BF 3 | 6.63 × 10−2 | 1.57 (not safe) | 85.25 (not safe) | ||
BF soaked 3 and then boiled for 20 min | 4.41 × 10−3 | 23.58 (not safe) | 1281.63 (not safe) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.K.; Kang, J.S.; Kundu, A.; Kim, H.S.; Lee, B.-M. Risk Assessment and Risk Reduction of Ptaquiloside in Bracken Fern. Toxics 2023, 11, 115. https://doi.org/10.3390/toxics11020115
Kim MK, Kang JS, Kundu A, Kim HS, Lee B-M. Risk Assessment and Risk Reduction of Ptaquiloside in Bracken Fern. Toxics. 2023; 11(2):115. https://doi.org/10.3390/toxics11020115
Chicago/Turabian StyleKim, Min Kook, Ji Soo Kang, Amit Kundu, Hyung Sik Kim, and Byung-Mu Lee. 2023. "Risk Assessment and Risk Reduction of Ptaquiloside in Bracken Fern" Toxics 11, no. 2: 115. https://doi.org/10.3390/toxics11020115
APA StyleKim, M. K., Kang, J. S., Kundu, A., Kim, H. S., & Lee, B. -M. (2023). Risk Assessment and Risk Reduction of Ptaquiloside in Bracken Fern. Toxics, 11(2), 115. https://doi.org/10.3390/toxics11020115