Assessment and Exposure Analysis of Trace Metals in Different Age Groups of the Male Population in Southern Punjab, Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sample Collection
2.3. Sample Preparation
2.4. Trace Element Analysis
2.5. Quality Control and Assurance
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef]
- Xu, X.; Cao, Z.; Zhang, Z.; Li, R.; Hu, B. Spatial distribution and pollution assessment of heavy metals in the surface sediments of the Bohai and Yellow Seas. Mar. Pollut. Bull. 2016, 110, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, L.; Dou, S. Bioaccumulation of heavy metals and health risk assessment in three benthic bivalves along the coast of Laizhou Bay, China. Mar. Pollut. Bull. 2017, 117, 98–110. [Google Scholar] [CrossRef]
- Ahmad, J.U.; Goni, A. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ. Monit. Assess. 2010, 166, 347–357. [Google Scholar] [CrossRef]
- Kazi, T.G.; Jalbani, N.; Kazi, N.; Jamali, M.K.; Arain, M.B.; Afridi, H.I.; Kandhro, A.; Pirzado, Z. Evaluation of toxic metals in blood and urine samples of chronic renal failure patients, before and after dialysis. Ren. Fail. 2008, 30, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Cebi, A.; Kaya, Y.; Gungor, H.; Demir, H.; Yoruk, I.H.; Soylemez, N.; Gunes, Y.; Tuncer, M. Trace elements, heavy metals and vitamin levels in patients with coronary artery disease. Int. J. Med. Sci. 2011, 8, 456. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, F.I.; Akan, J.; Chellube, Z.M.; Waziri, M. Levels of heavy metals in human hair and nail samples from Maiduguri Metropolis, Borno State, Nigeria. World Environ. 2012, 2, 81–89. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef]
- Chatt, A.; Katz, S.A.; Townshend, A. Hair Analysis: Applications in the Biomedical and Environmental Sciences; V.C.H. Publishers: Weinheim, Germany, 1988. [Google Scholar]
- Carmichael, G.R.; Adhikary, B.; Kulkarni, S.; D’allura, A.; Tang, Y.; Streets, D.; Zhang, Q.; Bond, T.C.; Ramanathan, V.; Jamroensan, A.; et al. Asian aerosols: Current and year 2030 distributions and implications to human health and regional climate change. Environ. Sci. Technol. 2009, 43, 5811–5817. [Google Scholar] [CrossRef]
- Podgorski, J.E.; Eqani, S.A.; Khanam, T.; Ullah, R.; Shen, H.; Berg, M. Extensive arsenic contamination in high-pH unconfined aquifers in the Indus Valley. Sci. Adv. 2017, 3, e1700935. [Google Scholar] [CrossRef]
- Mohmand, J.; Eqani, S.A.M.A.S.; Fasola, M.; Alamdar, A.; Mustafa, I.; Ali, N.; Liu, L.; Peng, S.; Shen, H. Human exposure to toxic metals via contaminated dust: Bio-accumulation trends and their potential risk estimation. Chemosphere 2015, 132, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Oosthuizen, J. Environmental Health: Emerging Issues and Practice; InTech: London, UK, 2012. [Google Scholar]
- Wu, G.; Kang, H.; Zhang, X.; Shao, H.; Chu, L.; Ruan, C. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. J. Hazard. Mater. 2010, 174, 1–8. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy metals and human health: Mechanistic insight into toxicity and counter defense system of antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef] [PubMed]
- Tamás, M.J.; Sharma, S.K.; Ibstedt, S.; Jacobson, T.; Christen, P. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 2014, 4, 252–267. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Hussain, S.; Habib-Ur-Rehman, M.; Khanam, T.; Sheer, A.; Kebin, Z.; Jianjun, Y. Health risk assessment of different heavy metals dissolved in drinking water. Int. J. Environ. Res. Public Health 2019, 16, 1737. [Google Scholar] [CrossRef]
- World Health Organization. Lead Poisoning and Health Fact Sheet; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Schoeters, G.; Hond, E.D.; Zuurbier, M.; Naginiene, R.; Hazel, P.V.D.; Stilianakis, N.; Ronchetti, R.; Koppe, J.G. Cadmium and children: Exposure and health effects. Acta Paediatr. 2006, 95, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef]
- Dorsey, A.; Ingerman, L. Toxicological Profile for Copper; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2004. [Google Scholar]
- Huang, J.-H.; Matzner, E. Biogeochemistry of organic and inorganic arsenic species in a forested catchment in Germany. Environ. Sci. Technol. 2007, 41, 1564–1569. [Google Scholar] [CrossRef]
- Khanam, T.; Eqani, S.A.M.A.S.; Zhang, J.; Wang, H.; Zhang, Y.; Yang, J.; Sadiq, M.; Rasheed, H.; Shen, H. Urinary profiles of selected metals and arsenic and their exposure pathway analysis in four large floodplains of Pakistan. Sci. Total Environ. 2020, 737, 139586. [Google Scholar] [CrossRef]
- NHANES, Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES) Fourth National Exposure Report; Updated Tables, September 2013; Centers for Disease Control and Prevention: Washington, DC, USA, 2013. [Google Scholar]
- World Health Organization. Trace Elements in Human Nutrition and Health; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Hussain, S.; Yang, J.; Hussain, J.; Sattar, A.; Ullah, S.; Hussain, I.; Rahman, S.U.; Zandi, P.; Xia, X.; Zhang, L. Mercury fractionation, bioavailability, and the major factors predicting its transfer and accumulation in soil–wheat systems. Sci. Total Environ. 2022, 847, 157432. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Yang, J.; Hussain, J.; Hussain, I.; Kumar, M.; Ullah, S.; Zhang, L.; Xia, X.; Jia, Y.; Ma, Y.; et al. Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils. J. Environ. Res. 2022, 207, 112190. [Google Scholar] [CrossRef] [PubMed]
- Zafar, A.; Eqani, S.A.M.A.S.; Bostan, N.; Cincinelli, A.; Tahir, F.; Shah, S.T.A.; Hussain, A.; Alamdar, A.; Huang, Q.; Peng, S.; et al. Toxic metals signature in the human seminal plasma of Pakistani population and their potential role in male infertility. Environ. Geochem. Health 2015, 37, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Iqbal, J.; Shah, M.H. Study of seasonal variations and risk assessment of selected metals in sediments from Mangla Lake, Pakistan. J. Geochem. Explor. 2013, 125, 144–152. [Google Scholar] [CrossRef]
- Klevay, L.M. Cardiovascular disease from copper deficiency—A history. J. Nutr. 2000, 130, 489S–492S. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, W.; Jaffar, M.; Mohammad, D. Comparison of trace metal levels in the hair of Pakistani Urban and rural adult male populations. Int. J. Environ. Stud. 1995, 47, 63–68. [Google Scholar] [CrossRef]
- Soltanieh, M.; Zohrabian, A.; Gholipour, M.J.; Kalnay, E. A review of global gas flaring and venting and impact on the environment: Case study of Iran. Int. J. Greenh. Gas Control 2016, 49, 488–509. [Google Scholar] [CrossRef]
- Bencko, V. Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology 1995, 101, 29–39. [Google Scholar] [CrossRef]
- Savinov, S.S.; Sharypova, R.M.; Drobyshev, A.I. Determination of the trace element composition of human nails. J. Anal. Chem. 2020, 75, 409–415. [Google Scholar] [CrossRef]
- Wongsasuluk, P.; Chotpantarat, S.; Siriwong, W.; Robson, M. Using hair and fingernails in binary logistic regression f or bio-monitoring of heavy metals/metalloid in groundwater in intensively agricultural areas, Thailand. Environ. Res. 2018, 162, 106–118. [Google Scholar] [CrossRef]
- Janbabai, G.; Alipour, A.; Ehteshami, S.; Borhani, S.S.; Farazmandfar, T. Investigation of trace elements in the hair and nail of patients with stomach cancer. Indian J. Clin. Biochem. 2018, 33, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.P.; Miller, S.K.; Nguyen, V.; Kotch, J.B.; Fry, R.C. Toxic metal levels in children residing in a smelting craft village in Vietnam: A pilot biomonitoring study. BMC Public Health 2014, 14, 1–8. [Google Scholar] [CrossRef]
- Saat, N.Z.; Chow, S.Y.; Ghazah, A.R.; Lubis, S.H. Study of heavy metal levels in nails and hairs among vegetable farmers in Malaysia. Res. J. Appl. Sci. 2013, 8, 449–455. [Google Scholar]
- Were, F.H.; Njue, W.; Murungi, J.; Wanjau, R. Use of human nails as bio-indicators of heavy metals environmental exposure among school age children in Kenya. Sci. Total Environ. 2008, 393, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Rashed, M.N.; Hossam, F. Heavy metals in fingernails and scalp hair of children, adults and workers from environmentally exposed areas at Aswan, Egypt. Environ. Bioindic. 2007, 2, 131–145. [Google Scholar] [CrossRef]
- Mehra, R.; Juneja, M. Elements in scalp hair and nails indicating metal body burden in polluted environment. J. Sci. Ind. Res. 2005, 64, 119–124. [Google Scholar]
- Gerhardsson, L.; Englyst, V.; Lundström, N.-G.; Sandberg, S.; Nordberg, G. Cadmium, copper and zinc in tissues of deceased copper smelter workers. J. Trace Elem. Med. Biol. 2002, 16, 261–266. [Google Scholar] [CrossRef]
- Rodushkin, I.; Axelsson, M.D. Application of double focusing sector field ICP-MS for multielemental characterization of human hair and nails. Part II. A study of the inhabitants of northern Sweden. Sci. Total Environ. 2000, 262, 21–36. [Google Scholar] [CrossRef]
- Ingle, M.E.; Bloom, M.S.; Parsons, P.J.; Steuerwald, A.J.; Kruger, P.; Fujimoto, V.Y. Associations between IVF outcomes and essential trace elements measured in follicular fluid and urine: A pilot study. J. Assist. Reprod. Genet. 2017, 34, 253–261. [Google Scholar] [CrossRef]
- Sani, A.; Abdullahi, I.L. Evaluation of some heavy metals concentration in body fluids of metal workers in Kano metropolis, Nigeria. Toxicol. Rep. 2017, 4, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yu, X.; Wu, C. Comparison of the levels of five heavy metals in human urine and sweat after strenuous exercise by ICP-MS. J. Appl. Math. Phys. 2016, 4, 183–188. [Google Scholar] [CrossRef]
- Morton, J.; Tan, E.; Leese, E.; Cocker, J. Determination of 61 elements in urine samples collected from a non-occupationally exposed UK adult population. Toxicol. Lett. 2014, 231, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Lawal, M. Levels of Lead, Cadmium and Chromium in Blood, Urine, Nail and Hair Samples of Electronic Repairers in Kaduna Metropolis, Nigeria. Ph.D. Thesis, Ahmadu Bello University, Zaria, Nigeria, 2014. [Google Scholar]
- Brodzka, R.; Trzcinka-Ochocka, M.; Janasik, B. Multi-element analysis of urine using dynamic reaction cell inductively coupled plasma mass spectrometry (ICP-DRC-MS)—A practical application. Int. J. Occup. Med. Environ. Health 2013, 26, 302–312. [Google Scholar] [CrossRef]
- Hoet, P.; Jacquerye, C.; Deumer, G.; Lison, D.; Haufroid, V. Reference values and upper reference limits for 26 trace elements in the urine of adults living in Belgium. Clin. Chem. Lab. Med. 2013, 51, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, J.O.; Lwenje, S.M.; Mtetwa, V.S.; Gumedze, P.N.; Shilongonyane, M.M. Determination of urinary lead in school children in Manzini, Swaziland, Southern Africa. Environmentalist 2001, 21, 205–209. [Google Scholar] [CrossRef]
- Chojnacka, K.; Saeid, A.; Michalak, I.; Mikulewicz, M. Effects of local industry on heavy metals content in human hair. Pol. J. Environ. Stud. 2012, 21, 1563–1570. [Google Scholar]
- Dongarrà, G.; Lombardo, M.; Tamburo, E.; Varrica, D.; Cibella, F.; Cuttitta, G. Concentration and reference interval of trace elements in human hair from students living in Palermo, Sicily (Italy). Environ. Toxicol. Pharmacol. 2011, 32, 27–34. [Google Scholar] [CrossRef]
- Carneiro, M.F.H.; Grotto, D.; Batista, B.L.; Rhoden, C.R.; Barbosa, F. Background values for essential and toxic elements in children’s nails and correlation with hair levels. Biol. Trace Elem. Res. 2011, 144, 339–350. [Google Scholar] [CrossRef]
- Pasha, Q.; Malik, S.A.; Shaheen, N.; Shah, M.H. Investigation of trace metals in the blood plasma and scalp hair of gastrointestinal cancer patients in comparison with controls. Clin. Chim. Acta 2010, 411, 531–539. [Google Scholar] [CrossRef]
- Wang, T.; Fu, J.; Wang, Y.; Liao, C.; Tao, Y.; Jiang, G. Use of scalp hair as indicator of human exposure to heavy metals in an electronic waste recycling area. Environ. Pollut. 2009, 157, 2445–2451. [Google Scholar] [CrossRef] [PubMed]
- Khuder, A.; Bakir, M.A.; Hasan, R.; Mohammad, A. Determination of nickel, copper, zinc and lead in human scalp hair in Syrian occupationally exposed workers by total reflection X-ray fluorescence. Environ. Monit. Assess. 2008, 143, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Shin, K.O.; Kim, J.S. Assessment of reference values for hair minerals of Korean preschool children. Biol. Trace Elem. Res. 2007, 116, 119–130. [Google Scholar] [CrossRef]
- Goullé, J.P.; Mahieu, L.; Castermant, J.; Neveu, N.; Bonneau, L.; Lainé, G.; Lacroix, C. Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair: Reference values. Forensic Sci. Int. 2005, 153, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Nnorom, I.C.; Igwe, J.C.; Ejimone, J.C. Multielement analyses of human scalp hair samples from three distant towns in southeastern Nigeria. Afr. J. Biotechnol. 2005, 4, 1124–1127. [Google Scholar]
- Pereira, R.; Ribeiro, R.; Goncalves, F. Scalp hair analysis as a tool in assessing human exposure to heavy metals (S. Domingos mine, Portugal). Sci. Total Environ. 2004, 327, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Sasmaz, S.; Uz, E.; Pinar, T.; Vural, H.; Eiri, M.; Ilihan, A.; Akyol, Ö. Hair lead and cadmium concentrations in patients with epilepsy and migraine. Neurosci. Res. Commun. 2003, 32, 107–114. [Google Scholar] [CrossRef]
- Vishwanathan, H.; Hema, A.; Edwin, D.; Rani, M.V.U. Trace metal concentration in scalp hair of occupationally exposed autodrivers. Environ. Monit. Assess. 2002, 77, 149–154. [Google Scholar] [CrossRef]
- Rao, K.S.; Balaji, T.; Rao, T.P.; Babu, Y.; Naidu, G.R.K. Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1333–1338. [Google Scholar]
- Ulvi, H.; Yiğiter, R.; Yoldaş, T.; Dolu, Y.; Var, A.; Müngen, B. Magnesium, zinc and copper contents in hair and their serum concentrations in patients with epilepsy. East. J. Med. 2002, 7, 31–35. [Google Scholar]
- Mortada, W.I.; Sobh, M.A.; El-Defrawy, M.M.; Farahat, S.E. Reference intervals of cadmium, lead, and mercury in blood, urine, hair, and nails among residents in Mansoura city, Nile delta, Egypt. Environ. Res. 2002, 90, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Man, C.; Zheng, Y. Analysis of trace elements in scalp hair of mentally retarded children. J. Radioanal. Nucl. Chem. 2002, 253, 375–377. [Google Scholar] [CrossRef]
- Nowak, B.; Chmielnicka, J. Relationship of lead and cadmium to essential elements in hair, teeth, and nails of environmentally exposed people. Ecotoxicol. Environ. Saf. 2000, 46, 265–274. [Google Scholar] [CrossRef]
- Man, C.; Zheng, Y.; Mak, P. Trace element profiles in the hair of nasopharyngeal carcinoma (NPC) patients. J. Radioanal. Nucl. Chem. 1996, 212, 151–160. [Google Scholar] [CrossRef]
- Sturaro, A.; Parvoli, G.; Doretti, L.; Zanchetta, S.; Allegri, G.; Battiston, G. Simultaneous determination of trace metals in human hair by dynamic ion-exchange chromatography. Anal. Chim. Acta 1993, 274, 163–170. [Google Scholar] [CrossRef]
- Nagra, M.; Pallah, B.; Sahota, G.; Singh, H.; Sahota, H. A study of trace elements in scalp hair and fingernails of industrial workers of Ontario, Canada. J. Radioanal. Nucl. Chem. 1992, 162, 283–288. [Google Scholar] [CrossRef]
- Eltayeb, M.; Van Grieken, R. Preconcentration and XRF-determination of heavy metals in hair from Sudanese populations. J. Radioanal. Nucl. Chem. 1989, 131, 331–342. [Google Scholar] [CrossRef]
- Nielsen, G.D.; Søderbergc, U.; Jørgensen, P.J.; Templeton, D.M.; Rasmussen, S.N.; Andersen, K.E.; Grandjeanag, P. Absorption and retention of nickel from drinking water in relation to food intake and nickel sensitivity. Toxicol. Appl. Pharmacol. 1999, 154, 67–75. [Google Scholar] [CrossRef]
- Zahm, S.H.; Weisenburger, D.D.; Babbitt, P.A.; Saal, R.C.; Vaught, J.B.; Blair, A. Use of hair coloring products and the risk of lymphoma, multiple myeloma, and chronic lymphocytic leukemia. Am. J. Public Health 1992, 82, 990–997. [Google Scholar] [CrossRef]
- World Health Organization. Autism Spectrum Disorders & Other Developmental Disorders: From Raising Awareness to Building Capacity; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Abdullah, M.; Fasola, M.; Muhammad, A.; Malik, S.A.; Bostan, N.; Bokhari, H.; Kamran, M.A.; Shafqat, M.N.; Alamdar, A.; Khan, M. Avian feathers as a non-destructive bio-monitoring tool of trace metals signatures: A case study from severely contaminated areas. Chemosphere 2015, 119, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Shah, M.T.; Khan, S. Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchem. J. 2011, 98, 334–343. [Google Scholar] [CrossRef]
- Ding, Y.; Gonick, H.C.; Vaziri, N.D. Lead promotes hydroxyl radical generation and lipid peroxidation in cultured aortic endothelial cells. Am. J. Hypertens. 2000, 13, 552–555. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.C.; Chary, N.S.; Kamala, C.T.; Vairamani, M.; Anjaneyulu, Y.; Balaram, V.; Sorlie, J.E. Environmental risk assessment studies of heavy metal contamination in the industrial area of Kattedan, India—A case study. Hum. Ecol. Risk Assess. 2006, 12, 408–422. [Google Scholar] [CrossRef]
- Tolins, M.; Ruchirawat, M.; Landrigan, P. The developmental neurotoxicity of arsenic: Cognitive and behavioral consequences of early life exposure. Ann. Glob. Health 2014, 80, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Naujokas, M.F.; Anderson, B.; Ahsan, H.; Aposhian, H.V.; Graziano, J.H.; Thompson, C.; Suk, W.A. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 2013, 121, 295–302. [Google Scholar] [CrossRef]
- James, K.A.; Byers, T.; Hokanson, J.E.; Meliker, J.R.; Zerbe, G.O.; Marshall, J.A. Association between lifetime exposure to inorganic arsenic in drinking water and coronary heart disease in Colorado residents. Environ. Health Perspect. 2015, 123, 128–134. [Google Scholar] [CrossRef]
Factors | Study Population |
---|---|
No of participants | 200 |
Age (years) | 28 (18–45) a |
Weight | 62 (25–110) a |
Non-educated | 80 (40%) b |
Educated | 120 (60%) |
Smoker | 140 (70%) b |
Non-smoker | 60 (30%) b |
High-income | 20 (10%) b |
Moderate-income | 60 (30%) b |
Low-income | 120 (60%) b |
Agricultural worker/Laborer | 120 (60%) b |
Industrial worker | 46 (23%) b |
Educational sector | 20 (10%) b |
No work | 14 (7%) b |
Sample Type | Metal | Interquartile Range | Mean ± SD | Median | Range | NHANES/WHO * |
---|---|---|---|---|---|---|
Hair | Cr | 0.4–1.1 | 0.85 ± 0.67 | 0.71 | 5.44 | 1.2 |
Co | 0.04–0.1 | 0.35 ± 3.4 | 0.07 | 46.6 | 0.3 | |
Ni | 0.26–0.5 | 0.48 ± 0.34 | 0.4 | 2.8 | 0.2 | |
Cu | 5.7–7.8 | 7.5 ± 8.8 | 6.8 | 123 | 25 | |
Cd | 0.01–0.04 | 0.04 ± 0.07 | 0.02 | 0.62 | 1 | |
Pb | 0.68–2.9 | 2.68 ± 4.08 | 1.48 | 40 | 20 | |
As | 0.19–0.5 | 0.45 ± 0.57 | 0.32 | 6.38 | - | |
Urine | Cr | 19–26 | 26 ± 21 | 23 | 244 | 0.22 |
Co | 0.38–0.9 | 0.9 ± 2 | 0.6 | 25 | 0.35 | |
Ni | 2.07–4.7 | 3.89 ± 4 | 3.1 | 48 | 3 | |
Cu | 10.4–27 | 21 ± 18.2 | 17 | 17 | - | |
Cd | 0.13–0.35 | 0.3 ± 0.5 | 0.2 | 5 | 0.2 | |
Pb | 2.25–4 | 3.6 ± 3 | 3 | 18 | 0.5 | |
As | 14–46 | 34 ± 31 | 25 | 171 | 8.6 | |
Nail | Cr | 1–2.45 | 3.14 ± 5.2 | 1.8 | 22.4 | |
Co | 0.1–0.6 | 0.66 ± 1.27 | 0.4 | 5.5 | 0.3 | |
Ni | 1.9–7.05 | 8.6 ± 13.4 | 3.6 | 47.8 | 0.2 | |
Cu | 5.05–11.7 | 14.1 ± 24.5 | 5.8 | 105 | 25 | |
Cd | 0–0.1 | 0.08 ± 0.19 | 0 | 0.8 | 1.9 | |
Pb | 0.8–4.5 | 3.1 ± 3.8 | 1.5 | 13 | 20 | |
As | 0.01–1.45 | 1.1 ± 1.13 | 1 | 4.4 | - |
Hair | Urine | Nail | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Metals | Descriptive Stats | Multan | Muzaffargarh | Vehari | Multan | Muzaffargarh | Vehari | Multan | Muzaffargarh | Vehari |
Cr | Median | 0.4 | 0.9 | 0.6 | 23 | 24 | 20 | 3 | 1.7 | 1.9 |
Max | 3 | 6 | 3 | 284 | 146 | 249 | 3 | 6 | 22 | |
Mean ± SD | 0.56 ± 0.5 | 1.1 ± 0.8 | 0.8 ± 0.6 | 56 ± 527 | 26 ± 16.27 | 26.92 ± 25 | 1.78 ± 0.8 | 2.31 ± 2.46 | 5.6 ± 9.37 | |
Co | Median | 0.1 | 0.05 | 0.1 | 0.54 | 0.90 | 0.48 | 1 | 0.3 | 0.3 |
Max | 1 | 1 | 47 | 662 | 5 | 25 | 1 | 1 | 6 | |
Mean ± SD | 0.09 ± 0.1 | 0.09 ± 0.07 | 0.6 ± 5 | 93 ± 118 | 1.15 ± 1.01 | 3.19 ± 2.6 | 0.42 ± 0.2 | 0.39 ± 0.39 | 1.3 ± 2.3 | |
Ni | Median | 0.3 | 0.3 | 0.4 | 3.61 | 3.63 | 2.63 | 7 | 2.7 | 2.7 |
Max | 2 | 2 | 3 | 1832 | 48 | 14 | 20 | 48 | 36 | |
Mean ± SD | 0.5 ± 0.37 | 0.45 ± 0.3 | 0.49 ± 0.36 | 49 ± 371 | 15. ± 6.2 | 17.35 ± 1.9 | 8.1 ± 7 | 9 ± 17 | 9.2 ± 15 | |
Cu | Median | 6.8 | 7.4 | 6.5 | 16 | 21.17 | 13.10 | 9.3 | 5.8 | 5.8 |
Max | 11 | 123 | 25 | 1068 | 168 | 85 | 105 | 20 | 33 | |
Mean ± SD | 6.89 ± 1.79 | 9.1 ± 15 | 6.83 ± 2.8 | 69 ± 179 | 28 ± 24 | 34.26 ± 13 | 28 ± 44 | 6.18 ± 6.8 | 12 ± 12 | |
Cd | Median | 0 | 0.015 | 0 | 38.4 | 0.22 | 0.18 | 0.1 | 0.01 | 0.1 |
Max | 1 | 1 | 1 | 1144 | 146 | 1 | 1 | 13 | 1 | |
Mean ± SD | 0.08 ± 0.12 | 0.03 ± 0.03 | 0.05 ± 0.0 | 45 ± 242 | 26 ± 26.1 | 0.22 ± 0.1 | 0.16 ± 0.3 | 3.69 ± 4.6 | 0.0 ± 0.08 | |
Pb | Median | 2.0 | 1.446 | 1.4 | 0.50 | 3.29 | 2.64 | 0.01 | 2.0 | 1.2 |
Max | 18 | 40 | 12 | 1837 | 5 | 13 | 2 | 3 | 1.2 | |
Mean ± SD | 3.47 ± 4.17 | 2.99–5.7 | 2.25 ± 2.5 | 35 ± 41 | 0.36 ± 0.7 | 3.12 ± 1.7 | 1.5 ± 4 | 0.81 ± 0.92 | 2.8 ± 3.24 | |
As | Median | 0.4 | 0.17 | 0.4 | 3.01 | 17 | 32 | 0.5 | 1.0 | 1.5 |
Max | 1 | 1 | 6 | 624 | 19 | 123 | 1 | 2 | 4 | |
Mean ± SD | 0.45 ± 0.24 | 0.23 ± 0.16 | 0.6 ± 0.74 | 79 ± 127 | 4.15 ± 3.09 | 34.26 ± 20 | 0.7 ± 0.67 | 0.03 ± 0.04 | 2 ± 1.4 |
Multan | Muzaffargarh | Vehari | |||||
---|---|---|---|---|---|---|---|
Dependent Variable | Independent Variable | Β | p-Value | Β | p-Value | β | p-Value |
Hair Cr | Crwater | 28 | <0.001 | −17 | 0.63 | 0.26 | 0.9 |
Crwheat | −0.2 | 0.3 | −0.69 | 0.1 | −0.69 | 0.29 | |
Hair Co | Cowater | −6.6 | 0.93 | 19 | 0.76 | 8 | 0.83 |
Cowheat | 0.57 | 0.113 | 0.65 | 0.02 | −1.77 | 0.02 | |
Hair Ni | Niwater | 43 | 0.01 | −24 | 0.28 | −0.23 | 0.89 |
Niwheat | 0.5 | 0.13 | 2.04 | 0.1 | 0.76 | 0.03 | |
Hair Cu | Cuwater | 175 | 0.01 | −11 | 0.93 | 9 | 0.41 |
Cuwheat | 0.30 | 0.074 | 1.03 | 0.05 | −1.36 | 0.6 | |
Hair Cd | Cdwater | 868 | 0.45 | −64 | 0.78 | 69 | 0.82 |
Cdwheat | 0.30 | 0.001 | −0.21 | 0.19 | −2.9 | 0.1 | |
Hair Pb | Pbwater | 251 | 0.15 | −20 | 0.93 | 416 | 0.51 |
Pbwheat | −1.09 | 0.31 | 0.75 | 0.21 | 1.33 | 0.36 | |
Hair As | Aswater | −0.51 | 0.89 | −0.72 | 0.81 | −5.73 | 0.54 |
Aswheat | 0.57 | 0.11 | 0.65 | 0.01 | −1.77 | 0.02 | |
Urinary Cr | Crwater | −0.20 | 0.38 | −0.48 | 0.50 | −0.20 | 0.38 |
Crwheat | −5.92 | 0.01 | 3.41 | 0.06 | −0.45 | 0.23 | |
Urinary Co | Cowater | −0.28 | 0.20 | −0.33 | 0.71 | −0.28 | 0.20 |
Cowheat | −0.09 | 0.52 | −1.77 | 0.02 | 0.31 | 0.03 | |
Urinary Ni | Niwater | −0.10 | 0.26 | −0.62 | 0.16 | −0.10 | 0.26 |
Niwheat | 0.9 | 0.002 | 0.32 | 0.02 | −11.91 | 0.33 | |
Urinary Cu | Cuwater | 1.38 | 0.50 | 0.76 | 0.19 | −0.60 | 0.40 |
Cuwheat | 0.76 | 0.19 | −0.2 | 0.8 | 1.38 | 0.5 | |
Urinary As | Aswater | 4.5 | <0.001 | −0.39 | 0.64 | −0.39 | 0.64 |
Aswheat | 0.65 | 0.019 | −1.77 | 0.02 | 0.57 | 0.11 | |
Urinary Cd | Cdwater | 4.38 | 0.58 | 3.4 | 0.4 | 4.38 | 0.58 |
Cdwheat | −11.9 | 0.331 | −0.60 | 0.40 | −0.17 | 0.43 | |
Urinary Pb | Pbwater | −0.82 | 0.59 | 0.6 | 0.21 | −0.82 | 0.59 |
Pbwheat | 4.96 | 0.013 | 1.29 | 0.23 | −0.92 | 0.62 | |
Nail Co | Cowater | −0.34 | 0.12 | 0.26 | 0.8 | −0.06 | 0.54 |
Cowheat | 1.38 | 0.5 | 0.76 | 0.19 | −0.2 | 0.8 | |
Nail Cr | Crwater | 9.1 | 0.49 | −0.16 | 0.6 | −0.06 | 0.43 |
Crwheat | −0.09 | 0.52 | −1.98 | 0.015 | −1.77 | 0.02 | |
Nail Ni | Niwater | 0.32 | 0.27 | −0.05 | 0.25 | 0.075 | 0.03 |
Niwheat | 2.04 | 0.1 | −0.51 | 0.46 | −0.38 | 0.801 | |
Nail Cu | Cuwater | 0.1 | 0.53 | 0.11 | 0.11 | −0.21 | 0.5 |
Cuwheat | 1.38 | 0.5 | 0.76 | 0.19 | −0.2 | 0.8 | |
Nail As | Aswater | −0.12 | 0.72 | 0.13 | 0.13 | −0.12 | 0.9 |
Aswheat | 0.19 | 0.41 | 0.2 | 0.57 | 0.005 | 0.99 | |
Nail Cd | Cdwater | −0.09 | 0.01 | −0.31 | −0.31 | 0.04 | 0.3 |
Cdwheat | - | - | −5.92 | 0.09 | −0.45 | 0.23 | |
Nail Pb | Pbwater | −0.00 | 0.1 | 0.001 | 0.001 | −0.07 | 0.58 |
Pbwheat | −0.39 | 0.86 | 0.04 | 0.91 | 0.99 | 0.18 |
Nails | Country | Cd | Cr | Cu | Ni | Pb | Zn | Reference |
---|---|---|---|---|---|---|---|---|
Russia | 0.15 | <10 | 2.9 | <2 | 0.29 | 259 | Savinov et al., 2020 [36] | |
Thailand | 0.02 | - | - | - | 9.574 | - | Wongsasuluk et al., 2018 [37] | |
Iran | - | - | 6.5 | - | - | 158 | Janbabai et al., 2018 [38] | |
Pakistan | 0.14 | - | 20.72 | 10.68 | 10.57 | 251 | Mohmand et al., 2015 [12] | |
Vietnam | 0.28 | - | - | - | 1.57 | - | Sanders et al., 2014 [39] | |
Malaysia | 34.57 | - | - | 95.21 | 66.74 | - | Saat et al., 2013 [40] | |
Nigeria | 4.54 | - | 4 | 16.37 | 55.67 | 70 | Abdulrahman et al., 2012 [7] | |
Kenya | 0.73 | - | - | - | 27.5 | 95 | Were et al., 2008 [41] | |
Egypt | 0.89 | - | 6.06 | - | 12.86 | 1.55 | Rashed and Hossam, 2007 [42] | |
India | 1.42 | 87.9 | 11.62 | 32.26 | 53.67 | 212 | Mehra and Juneja, 2005 [43] | |
India | 0.99 | 86.62 | 7.63 | 56.24 | 20.21 | 180 | Mehra and Juneja, 2005 [43] | |
Sweden | - | - | 4.90 | - | - | 79 | Gerhardsson et al., 2002 [44] | |
Sweden | 0.06 | 0.76 | 7.6 | 0.84 | 1.06 | 116 | Rodushkin and Axelsson, 2000 [45] | |
Urine | USA | - | 1.78 | 7.88 | - | - | 356 | Ingle et al., 2017 [46] |
Nigeria | 0.005 | 0.02 | - | 0.082 | 0.15 | - | Sani and Abdullah, 2017 [47] | |
China | 0.001 | - | 0.81 | - | 0.03 | 0.81 | Tang et al., 2016 [48] | |
UK | 0.13 | 0.35 | 8.75 | 1.99 | 0.47 | 80 | Morton et al., 2014 [49] | |
Nigeria | 0.068 | - | - | - | 0.24 | - | Lawal, 2014 [50] | |
Poland | 15 | 35.4 | 118 | 44.1 | 24 | 556 | Brodzka et al., 2013 [51] | |
Belgium | 0.28 | 0.13 | 8.18 | 2.05 | 0.87 | 256 | Hoet et al., 2013 [52] | |
Swaziland | - | - | - | - | 0.040 | - | Okonkwo et al., 2001 [53] | |
Pakistan | 0.37 | 17.22 | - | 4.70 | 3.82 | - | Khanam et al., 2020 [25] | |
Reference value | 0.23 | 0.10–0.22 | - | 1.3 | 0.49 | - | NHANES, 2011 [26] | |
Hair | Thailand | 0.07 | - | - | - | 3.86 | - | Wongsasuluk et al., 2018 [37] |
Iran | - | - | 13.3 | - | - | 256 | Janbabai et al., 2018 [38] | |
Pakistan | 0.13 | 1.02 | 11.64 | 7.74 | 8.08 | 255 | Mohmand et al., 2015 [12] | |
Malaysia | 23.21 | - | - | 36.21 | 37.59 | - | Saat et al., 2013 [40] | |
Poland | 0.11 | 37 | 12.35 | 0.84 | 1.05 | 156 | Chojnacka et al., 2012 [54] | |
Italy | 0.16 | 0.48 | 59.7 | 1.75 | 3.03 | 329 | Dongarra et al., 2011 [55] | |
Brazil | 0.013 | - | - | - | 0.34 | - | Carneiro et al., 2011 [56] | |
Pakistan | 1.67 | 2.34 | 21.08 | 4.3 | 15.50 | 140 | Pasha et al., 2010 [57] | |
China | 0.55 | 1.32 | 40 | 1.52 | 49.5 | - | Wang et al., 2009 [58] | |
Syria | - | - | 15.6 | 2.58 | 10.7 | 260 | Khuder et al., 2008 [59] | |
Egypt | 0.53 | - | 8.76 | - | 7.32 | 179 | Rashed and Hossam, 2007 [42] | |
Korea | 0.2 | 0.9 | 2.5 | - | 3 | 130 | Park et al., 2007 [60] | |
France | 0.01 | 0.20 | 20.3 | 0.23 | 0.41 | 162 | Goulle et al., 2005 [61] | |
India | 0.32 | - | - | - | 7.60 | 182.4 | Mehra and Juneja, 2005 [43] | |
Nigeria | 1.0 | 35.1 | 117.2 | 26.4 | 63.6 | 146.2 | Nnorom et al., 2005 [62] | |
Spain | 0.89 | 0.88 | 27.19 | - | - | 0.41 | Pereira et al., 2004 [63] | |
Turkey | 0.67 | - | - | - | 3.06 | - | Sasmaz et al., 2003 [64] | |
India | 2.09 | 35 | 9.7 | 6.48 | 24.8 | 265 | Vishwanathan et al., 2002 [65] | |
India | 0.61 | - | 22.54 | 1.60 | 4.1 | 123 | Rao et al., 2002 [66] | |
Turkey | - | - | 60.22 | - | - | 176 | Ulvi et al., 2002 [67] | |
Sweden | - | - | 16.60 | - | - | 233 | Gerhardsson et al., 2002 [44] | |
Egypt | 0.82 | - | - | - | 9.7 | - | Mortada et al., 2002 [68] | |
Hong Kong | - | - | 14.29 | - | 7.4 | 210 | Man and Zheng, 2002 [69] | |
Sweden | 0.35 | 33 | 293 | 28 | 7.26 | 198 | Rodushkin and Axelsson, 2000 [45] | |
Poland | 0.56 | 0.4 | 7.2 | 0.6 | 4.8 | 132 | Nowak and Chmielnicka, 2000 [70] | |
Hong Kong | - | - | 20.14 | - | 12.04 | 19 | Man et al., 1996 [71] | |
Italy | - | - | 21 | 32 | 8.7 | 314 | Sturaro et al., 1993 [72] | |
South America | 12.61 | 1.88 | - | - | - | - | Nagra et al., 1992 [73] | |
Sudan | - | - | 22.1 | - | 17 | 170 | Eltayeb and Van-Grieken, 1989 [74] | |
Pakistan | 0.13 | 1.02 | 11.64 | 8.08 | 8.08 | - | Mohmand et al., 2015 [12] | |
Reference value | 0.25–1.0 | 0.3–1.2 | 15–25 | 0.02–0.2 | 2–20 | - | WHO, 1996 [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, S.; Khanam, T.; Ullah, S.; Aziz, F.; Sattar, A.; Hussain, I.; Saddique, M.A.B.; Maqsood, A.; Ding, C.; Wang, X.; et al. Assessment and Exposure Analysis of Trace Metals in Different Age Groups of the Male Population in Southern Punjab, Pakistan. Toxics 2023, 11, 958. https://doi.org/10.3390/toxics11120958
Hussain S, Khanam T, Ullah S, Aziz F, Sattar A, Hussain I, Saddique MAB, Maqsood A, Ding C, Wang X, et al. Assessment and Exposure Analysis of Trace Metals in Different Age Groups of the Male Population in Southern Punjab, Pakistan. Toxics. 2023; 11(12):958. https://doi.org/10.3390/toxics11120958
Chicago/Turabian StyleHussain, Sajjad, Tasawar Khanam, Subhan Ullah, Fouzia Aziz, Abdul Sattar, Imran Hussain, Muhammad Abu Bakar Saddique, Amna Maqsood, Changfeng Ding, Xingxiang Wang, and et al. 2023. "Assessment and Exposure Analysis of Trace Metals in Different Age Groups of the Male Population in Southern Punjab, Pakistan" Toxics 11, no. 12: 958. https://doi.org/10.3390/toxics11120958
APA StyleHussain, S., Khanam, T., Ullah, S., Aziz, F., Sattar, A., Hussain, I., Saddique, M. A. B., Maqsood, A., Ding, C., Wang, X., & Yang, J. (2023). Assessment and Exposure Analysis of Trace Metals in Different Age Groups of the Male Population in Southern Punjab, Pakistan. Toxics, 11(12), 958. https://doi.org/10.3390/toxics11120958