GC-MS and LC-MS Pesticide Analysis of Black Teas Originating from Sri Lanka, Iran, Turkey, and India
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Preparation of Tea Samples for Analysis
2.2. Extraction of Tea Samples
2.3. LC-MS Determination of Pesticide Residues
2.4. GC-MS Determination of Pesticide Residues
3. Results
City Where the Tea Sample was Taken | Origin of Tea Sample | Detected Pesticide Compounds | Results/Measurement | Measurement Limit (LOQ) | Uncertainty | Compliance with Regulation | Analysis Method |
---|---|---|---|---|---|---|---|
Mardin | Sri Lanka | Diuron | 0.016 ± 0.008 | 0.010 | 0.008 | Ok | LC-MS/MS |
Mardin | Sri Lanka | Diuron | 0.021 ± 0.007 | 0.010 | 0.014 | Not ok | LC-MS/MS |
Mardin | Sri Lanka | Diuron | 0.011 ± 0.006 | 0.010 | 0.005 | Ok | LC-MS/MS |
Mardin | Sri Lanka | Diuron | 0.017 ± 0.006 | 0.010 | 0.011 | Not ok | LC-MS/MS |
Van | Iran | Ethion | 0.013 ± 0.007 | 0.010 | 0.006 | Ok | GC-MS & GC MS/MS |
Van | Iran | Cypermethrin | 0.014 ± 0.007 | 0.010 | 0.007 | Ok | GC-MS & GC MS/MS |
Van | Iran | Diuron | 0.011 ± 0.006 | 0.010 | 0.005 | Ok | LC-MS/MS |
Van | Iran | Ethion | 0.017 ± 0.009 | 0.010 | 0.008 | Ok | GC-MS & GC MS/MS |
Van | Iran | Thiacloprid | 0.021 ± 0.011 | 0.010 | 0.010 | Ok | LC-MS/MS |
Van | Iran | Thiamethoxam | 0.050 ± 0.025 | 0.010 | 0.025 | Not ok | LC-MS/MS |
Van | Iran | Ethion | 0.019 ± 0.009 | 0.010 | 0.010 | Ok | GC-MS & GC MS/MS |
Thiacloprid | 0.025 ± 0.013 | 0.010 | 0.012 | Not ok | LC-MS/MS | ||
Thiamethoxam | 0.054 ± 0.021 | 0.010 | 0.033 | Not ok | LC-MS/MS | ||
Van | Iran | Thiamethoxam | 0.069 ± 0.035 | 0.010 | 0.034 | Not ok | LC-MS/MS |
Van | Iran | Cypermethrin | 0.014 ± 0.007 | 0.010 | 0.007 | Ok | GC-MS & GC MS/MS |
Van | Iran | Ethion | 0.017 ± 0.009 | 0.010 | 0.008 | Ok | GC-MS & GC MS/MS |
Van | Iran | Fenpyroximate | 0.012 ± 0.006 | 0.010 | 0.006 | Ok | LC-MS/MS |
Van | Iran | Thiacloprid | 0.036 ± 0.018 | 0.010 | 0.018 | Not ok | LC-MS/MS |
Van | Iran | Acetamiprid | 0.062 ± 0.031 | 0.010 | 0.031 | Not ok | LC-MS/MS |
Cypermethrin | 0.027 ± 0.014 | 0.010 | 0.013 | Not ok | GC-MS & GC MS/MS | ||
Van | Iran | Acetamiprid | 0.033 ± 0.017 | 0.010 | 0.016 | Not ok | LC-MS/MS |
Cypermethrin | 0.017 ± 0.009 | 0.010 | 0.008 | Ok | GC-MS & GC MS/MS | ||
Ethion | 0.012 ± 0.006 | 0.010 | 0.006 | Ok | GC-MS & GC MS/MS | ||
Flubendiamide | 0.015 ± 0.008 | 0.010 | 0.007 | Ok | LC-MS/MS | ||
Thiacloprid | 0.080 ± 0.040 | 0.010 | 0.040 | Not ok | LC-MS/MS | ||
Thiamethoxam | 0.076 ± 0.038 | 0.010 | 0.038 | Not ok | LC-MS/MS | ||
Van | Iran | Ethion | 0.019 ± 0.010 | 0.010 | 0.009 | Ok | GC-MS & GC MS/MS |
Imidacloprid | 0.023 ± 0.012 | 0.010 | 0.011 | Not ok | LC-MS/MS | ||
Thiacloprid | 0.058 ± 0.029 | 0.010 | 0.029 | Not ok | LC-MS/MS | ||
Thiamethoxam | 0.076 ± 0.038 | 0.010 | 0.038 | Not ok | LC-MS/MS | ||
Sirnak | Sri Lanka (Kuwait) | Diuron | 0.012 ± 0.006 | 0.010 | 0.006 | Ok | LC-MS/MS |
Siirt | Sri Lanka | Ethion | 0.011 ± 0.006 | 0.010 | 0.005 | Ok | GC-MS & GC MS/MS |
Thiacloprid | 0.011 ± 0.006 | 0.010 | 0.005 | Ok | LC-MS/MS | ||
Thiamethoxam | 0.018 ± 0.009 | 0.010 | 0.009 | Ok | LC-MS/MS | ||
Siirt | Iran | Diuron | 0.028 ± 0.014 | 0.010 | 0.014 | Not ok | LC-MS/MS |
Diyarbakır | Sri Lanka | Deltamethrin | 0.029 ± 0.015 | 0.010 | 0.014 | Not ok | LC-MS/MS |
Thiacloprid | 0.047 ± 0.024 | 0.010 | 0.023 | Not ok | LC-MS/MS | ||
Thiamethoxam | 0.050 ± 0.025 | 0.010 | 0.025 | Not ok | LC-MS/MS | ||
Diyarbakır | Iran | Hexythiazox | 0.015 ± 0.008 | 0.010 | 0.007 | Ok | LC-MS/MS |
Thiacloprid | 0.027 ± 0.014 | 0.010 | 0.013 | Not ok | LC-MS/MS | ||
Thiamethoxam | 0.052 ± 0.026 | 0.010 | 0.026 | Not ok | LC-MS/MS | ||
Batman | Iran | Ethion | 0.032 ± 0.016 | 0.010 | 0.016 | Not ok | GC-MS & GC MS/MS |
Thiacloprid | 0.086 ± 0.043 | 0.010 | 0.043 | Not ok | LC-MS/MS | ||
Thiamethoxam | 0.076 ± 0.038 | 0.010 | 0.038 | Not ok | LC-MS/MS | ||
Gaziantep | India | Ethion | 0.021 ± 0.011 | 0.010 | 0.010 | Ok | GC-MS & GC MS/MS |
Thiacloprid | 0.012 ± 0.006 | 0.010 | 0.006 | Ok | LC-MS/MS | ||
Thiamethoxam | 0.034 ± 0.017 | 0.010 | 0.017 | Not ok | LC-MS/MS | ||
Gaziantep | Sri Lanka | Ethion | 0.020 ± 0.010 | 0.010 | 0.010 | Ok | GC-MS & GC MS/MS |
Sanliurfa | Sri Lanka | Diuron | 0.011 ± 0.006 | 0.010 | 0.005 | Ok | LC-MS/MS |
City Where the Tea Sample is Taken | Origin of Tea Sample | Detected Pesticide Compounds | Result-Measurement Uncertainty mg/kg | STMR × Dry Tea Consumed Daily (10 mg) | Brew Factor | * TMDI = STMR × Dry Tea Consumed Daily (10 mg) × Brew Factor | ADI (CODEX) |
---|---|---|---|---|---|---|---|
Mardin | Sri Lanka | Diuron | 0.008 | 0.08 | - | - | 0.01 |
Mardin | Sri Lanka | Diuron | 0.014 | 0.14 | - | - | 0.01 |
Mardin | Sri Lanka | Diuron | 0.005 | 0.05 | - | - | 0.01 |
Mardin | Sri Lanka | Diuron | 0.011 | 0.11 | - | - | 0.01 |
Van | Iran | Ethion | 0.006 | 0.06 | 0.025 | 0.015 | 0.02 |
Van | Iran | Cypermethrin | 0.007 | 0.07 | 0.021 | 0.015 | 0.02 |
Van | Iran | Diuron | 0.005 | 0.05 | - | - | 0.01 |
Van | Iran | Ethion | 0.008 | 0.08 | 0.025 | 0.002 | 0.02 |
Van | Iran | Thiacloprid | 0.010 | 0.10 | - | 0.01 | |
Van | Iran | Thiamethoxam | 0.025 | 0.25 | 0.816 | 0.566 | 0.08 |
Van | Iran | Ethion | 0.010 | 0.10 | 0.025 | 0.0025 | 0.02 |
Thiacloprid | 0.012 | 0.12 | 0.497 | 0.06 | 0.01 | ||
Thiamethoxam | 0.033 | 0.33 | 0.816 | 0.27 | 0.08 | ||
Van | Iran | Thiamethoxam | 0.034 | 0.34 | 0.816 | 0.28 | 0.08 |
Van | Iran | Cypermethrin | 0.007 | 0.07 | 0.021 | 0.015 | 0.02 |
Van | Iran | Ethion | 0.008 | 0.08 | 0.025 | 0.0015 | 0.02 |
Van | Iran | Fenpyroximate | 0.006 | 0.06 | - | - | 0.01 |
Van | Iran | Thiacloprid | 0.018 | 0.18 | 0.497 | 0.09 | 0.01 |
Van | Iran | Acetamiprid | 0.031 | 0.31 | 0.806 | 0.25 | 0.07 |
Cypermethrin | 0.013 | 0.13 | 0.021 | 0.28 | 0.02 | ||
Van | Iran | Acetamiprid | 0.016 | 0.16 | 0.806 | 0.13 | 0.07 |
Cypermethrin | 0.008 | 0.08 | 0.021 | 0.0017 | 0.02 | ||
Ethion | 0.006 | 0.06 | 0.025 | 0.0015 | 0.02 | ||
Flubendiamide | 0.007 | 0.07 | - | - | 0.02 | ||
Thiacloprid | 0.040 | 0.4 | 0.497 | 0.2 | 0.01 | ||
Thiamethoxam | 0.038 | 0.38 | 0.816 | 0.31 | 0.08 | ||
Van | Iran | Ethion | 0.009 | 0.09 | 0.025 | 0.0023 | 0.02 |
Imidacloprid | 0.011 | 0.11 | 0.42 | 0.05 | 0.06 | ||
Thiacloprid | 0.029 | 0.29 | 0.497 | 0.14 | 0.01 | ||
Thiamethoxam | 0.038 | 0.38 | 0.816 | 0.31 | 0.08 | ||
Sirnak | Sri Lanka (Kuwait) ** | Diuron | 0.006 | 0.06 | - | - | 0.01 |
Siirt | Sri Lanka | Ethion | 0.005 | 0.05 | 0.025 | 0.0013 | 0.02 |
Thiacloprid | 0.005 | 0.05 | 0.497 | 0.025 | 0.01 | ||
Thiamethoxam | 0.009 | 0.09 | 0.816 | 0.075 | 0.08 | ||
Siirt | Iran | Diuron | 0.014 | 0.14 | - | - | 0.01 |
Diyarbakır | Sri Lanka | Deltamethrin | 0.014 | 0.14 | 0.0046 | 0.0006 | 0.01 |
Thiacloprid | 0.023 | 0.23 | 0.497 | 0.11 | 0.01 | ||
Thiamethoxam | 0.025 | 0.25 | 0.816 | 0.204 | 0.08 | ||
Diyarbakır | Iran | Hexythiazox | 0.007 | 0.7 | - | - | 0.03 |
Thiacloprid | 0.013 | 0.13 | 0.497 | 0.06 | 0.01 | ||
Thiamethoxam | 0.026 | 0.26 | 0.816 | 0.2 | 0.08 | ||
Batman | Iran | Ethion | 0.016 | 0.16 | 0.025 | 0.004 | 0.02 |
Thiacloprid | 0.043 | 0.43 | 0.497 | 0.2 | 0.01 | ||
Thiamethoxam | 0.038 | 0.38 | 0.816 | 0.3 | 0.08 | ||
Gaziantep | India | Ethion | 0.010 | 0.10 | 0.025 | 0.0025 | 0.02 |
Thiacloprid | 0.006 | 0.06 | 0.497 | 0.03 | 0.01 | ||
Thiamethoxam | 0.017 | 0.17 | 0.816 | 0.13 | 0.08 | ||
Gaziantep | Sri Lanka | Ethion | 0.010 | 0.10 | 0.025 | 0.0025 | 0.02 |
Sanliurfa | Sri Lanka | Diuron | 0.005 | 0.05 | - | - | 0.01 |
Pesticides | CODEX MRL (mg/kg) | EU MRL (mg/kg) | USA * mg/kg | Canada * mg/kg | Australia * (mg/kg) | Japan * mg/kg | CODEX ADI mg/kg | Transfer Rate (%) | Water Solubility (mg/L) | Brew Factor ** |
---|---|---|---|---|---|---|---|---|---|---|
Diuron | - | 0.05 | - | - | - | - | 0.01 | 1.4–2.1 | 0.01 | 0.014–0.021 |
Imidacloprid | - | 0.05 | - | - | - | - | 0.06 | 62.2–63.1 | 610 | 0.62–0.63 |
Fenpyroximate | - | 8 | - | - | - | - | 0.01 | - | - | - |
Acetamiprid | - | 0.05 * | 50 | - | - | 30 | 0.07 | 78.3–80.6 | 4200 | 0.78–0.81 |
Cypermethrin | 20 (*15) | 0.5 | - | 0.5 | 20 | 0.02 | - | - | - | |
Deltamethrin | 5 | 5 | - | 7 | 5 | 10 | 0.01 | 0.14–0.46 | 0.002 | 0.0014–0.0046 |
Ethion | - | 3 | - | - | 5 | 0.3 | 0.02 | 2.25–2.5 | 2 | 0.022-–0.025 |
Flubendiamide | 50 | 0.02 * | - | 0.02 | 0.02 | 40 | 0.02 | - | - | - |
Hexythiazox | 15 | 4 | - | - | 4 | 35 | 0.03 | - | - | - |
Thiamethoxam | 20 | 20 | 20 | - | 20 | 20 | 0.08 | 80.5–81.6 | 4100 | 0.81–0.82 |
Thiacloprid | - | 10 | - | - | 10 | 30 | 0.01 | 49.7–50.0 | 184 | 0.49–0.50 |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKay, D.L.; Blumberg, J.B. The role of tea in human health: An update. J. Am. Coll. Nutr. 2002, 21, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Elhadad, M.A.; Karavasiloglou, N.; Wulaningsih, W.; Tsilidis, K.K.; Tzoulaki, I.; Patel, C.J.; Rohrmann, S. Metabolites, nutrients, and lifestyle factors in relation to coffee consumption: An Environment-Wide Association Study. Nutrients 2020, 12, 19–1470. [Google Scholar] [CrossRef] [PubMed]
- Üstün, Ç.; Demirci, N. Historical development, and medical evaluation of the tea plant (Camellia sinensis L.). Mersin Univ. Fac. Med. Lokman Hekim Hist. Med. Folk. Med. J. 2013, 3, 5–12. [Google Scholar]
- Kurt, G.; Hacioğlu, H.K. Investigation of Tea Production of the World Countries and Turkey with Statistics. In Eastern Black Sea Industry Trade and Logistics Center II. Rize Development Symposium Tea Logistics Tourism Proceedings Book; Recep Tayyip Erdoğan University Publications, Rize, Turkey, 2013; pp. 39–64.
- Takim, K.; Aydemir, M.E. Aflatoxin analysis by LC-MS of local and imported black tea sold in Turkey. Int. J. Agric. Environ. Food Sci. 2021, 5, 640–644. [Google Scholar] [CrossRef]
- Amirahmadi, M.; Shoeibi, S.; Abdollahi, M.; Rastegar, H.; Khosrokhavar, R.; Hamedani, M.P. Monitoring of some pesticides residue in consumed tea in Tehran market. J. Environ. Health Sci. Eng. 2013, 10, 2–7. [Google Scholar] [CrossRef]
- Gurusubramanian, G.; Rahman, A.; Sarmah, M.; Ray, S.; Bora, S. Pesticide usage pattern in tea ecosystem, their retrospects and alternative measures. J. Environ. Biol. 2008, 29, 813–826. [Google Scholar]
- Takım, K.; Aydemir, M.E. Pesticide Analysis by LC-MS and GC-MS in Leaky Tea Consumed in Sanliurfa. KSU J. Agric. Nat. 2018, 21, 650–664. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea polyphenols for health promotion. Life Sci. 2007, 81, 519–553. [Google Scholar] [CrossRef]
- Chen, H.; Pan, M.; Liu, X.; Lu, C. Evaluation of transfer rates of multiple pesticides from green tea into infusion using water as pressurized liquid extraction solvent and ultra-performance liquid chromatography tandem mass spectrometry. Food Chem. 2017, 216, 1–9. [Google Scholar] [CrossRef]
- Soyöz, M.; Özcelik, N. Cytogenetic effects of pesticides used in agricultural control. J. SDU Fac. Med. 2009, 10, 21–34. [Google Scholar] [CrossRef]
- Anonymous. Turkish Food Codex Regulation on Maximum Residue Limits of Pesticides T.C. Official Gazette (29899). Available online: https://www.resmigazete.gov.tr/eskiler/2016/11/20161125M1-1.htm (accessed on 28 March 2022).
- CAC. Joint FAO/WHO food standards program—Codex Alimentarius Commission. In Proceedings of the Report of the 48th Session of the Codex Committee on Pesticide Residues. 2016. Available online: https://www.fao.org/fao-who-codexalimentarius (accessed on 25 September 2022).
- Areo, O.M.; Olowoyo, J.O.; Sethoga, L.S.; Adebo, O.A.; Njobeh, P.B. Determination of pesticide residues in rooibos (Aspalathus linearis) teas in South Africa. Toxicol. Rep. 2022, 9, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Areo, O.M.; Abafe, O.A.; Gbashi, S.; Njobeh, P.B. Detection of multi-mycotoxins in rooibos and other consumed teas in South Africa by a modified QuEChERS method and ultra-high performance liquid chromatography tandem mass spectrometry. Food Control 2023, 143, 109255. [Google Scholar] [CrossRef]
- Abd El-Aty, A.M.; Choi, J.H.; Rahman, M.M.; Kim, S.W.; Tosun, A.; Shim, J.H. Residues and contaminants in tea and tea infusions: A review. Food Addit. Contam. Part A 2014, 31, 1794–1804. [Google Scholar] [CrossRef] [PubMed]
- González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Evolution and applications of the QuEChERS method. TrAC Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- Lozano, A.; Rajski, Ł.; Belmonte-Valles, N.; Uclés, A.; Uclés, S.; Mezcua, M.; Fernández-Alba, A.R. Pesticide analysis in teas and chamomile by liquid chromatography and gas chromatography tandem mass spectrometry using a modified QuEChERS method: Validation and pilot survey in real samples. J. Chromatogr. A. 2012, 1268, 109–122. [Google Scholar] [CrossRef]
- Chun, O.K.; Kang, H.G.; Kim, M.H. Multiresidue method for the determination of pesticides in Korean domestic crops by gas chromatography/mass selective detection. J. AOAC Int. 2003, 86, 823–831. [Google Scholar] [CrossRef]
- Dehghani, R.; Moosavi, S.G.; Esalmi, H.; Mohammadi, M.; Jalali, Z.; Zamini, N. Surveying of pesticides commonly on the markets of Iran in 2009. J. Environ. Prot. 2011, 2, 1113–1117. [Google Scholar] [CrossRef][Green Version]
- Seenivasan, S.; Muraleedharan, N. Survey on the pesticide residues in tea in south India. Environ. Monit. Assess. 2011, 176, 365–371. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations, Implications of Maximum Residue Levels (MRLs) on Tea Trade. 2015. Available online: https://www.fao.org/3/i4481e/i4481e.pdf (accessed on 20 September 2022).
- Giacomazzi, S.; Cochet, N. Environmental impact of diuron transformation: A review. Chemosphere 2004, 56, 1021–1032. [Google Scholar] [CrossRef]
- Woollen, B.H.; Marsh, J.R.; Laird, W.J.D.; Lesser, J.E. The metabolism of cypermethrin in man: Differences in urinary metabolite profiles following oral and dermal administration. Xenobiotica 1992, 22, 983–991. [Google Scholar] [CrossRef]
- Agrawal, R.C.; Kumar, S. Hepato-toxic effect of diuron in albino rats. Indian J. Exp. Biol. 1999, 37, 503–504. [Google Scholar] [PubMed]
- Giray, B.; Gurbay, A.; Hincal, F. Cypermethrin-induced oxidative stress in rat brain and liver is prevented by Vitamin E or allopurinol. Toxicol. Lett. 2001, 118, 139–146. [Google Scholar] [CrossRef]
- Shukla, Y.; Yadav, A.; Arora, A. Carcinogenic and cocarcinogenic potential of cypermethrin on mouse skin. Cancer Lett. 2002, 182, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Green, T.; Toghill, A.; Lee, R.; Waechter, F.; Weber, E.; Noakes, J. Thiamethoxam induced mouse liver tumors and their relevance to humans Part 1: Mode of action studies in the mouse. Toxicol. Sci. 2005, 86, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Pastoor, T.; Rose, P.; Lloyd, S.; Peffer, R.; Green, T. Case study: Weight of evidence evaluation of the human health relevance of thiamethoxam-related mouse liver tumors. Toxicol. Sci. 2005, 86, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Sherer, T.B.; Richardson, J.R.; Testa, C.M.; Seo, B.B.; Panov, A.V.; Yagi, T.; Matsuno-Yagi, A.; Miller, G.W.; Greenamyre, J.T. Mechanism of toxicity of pesticides acting at complex I: Relevance to environmental etiologies of Parkinson’s disease. J. Neurochem. 2007, 100, 1469–1479. [Google Scholar] [CrossRef]
- Imamura, T.; Yanagawa, Y.; Nishikawa, K.; Matsumoto, N.; Sakamoto, T. Two cases of acute poisoning with acetamiprid in humans. Clin. Toxicol. 2010, 48, 851–853. [Google Scholar] [CrossRef]
- Cavas, T.; Cinkilic, N.; Vatan, O.; Yilmaz, D. Effects of fullerenol nanoparticles on acetamiprid induced cytotoxicity and genotoxicity in cultured human lung fibroblasts. Pestic. Biochem. Physiol. 2014, 114, 1–7. [Google Scholar] [CrossRef]
- Bal, R.; Turk, G.; Tuzcu, M.; Yilmaz, O.; Kuloglu, T.; Gundogdu, R.; Gur, S.; Agca, A.; Ulas, M.; Cambay, Z.; et al. Assessment of imidacloprid toxicity on reproductive organ system of adult male rats. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2012, 47, 434–444. [Google Scholar] [CrossRef]
- Abdel-Daim, M.M.; Abuzead, S.M.M.; Halawa, S.M. Protective Role of Spirulina platensis against Acute Deltamethrin-Induced Toxicity in Rats. PLoS ONE 2013, 8, e72991. [Google Scholar] [CrossRef]
- Abdel-Daim, M.; El-Bialy, B.E.; Rahman, H.G.A.; Radi, A.M.; Hefny, H.A.; Hassan, A.M. Antagonistic effects of Spirulina platensis against sub-acute deltamethrin toxicity in mice: Biochemical and histopathological studies. Biomed. Pharmacother. 2016, 77, 79–85. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takim, K.; Aydemir, M.E. GC-MS and LC-MS Pesticide Analysis of Black Teas Originating from Sri Lanka, Iran, Turkey, and India. Toxics 2023, 11, 34. https://doi.org/10.3390/toxics11010034
Takim K, Aydemir ME. GC-MS and LC-MS Pesticide Analysis of Black Teas Originating from Sri Lanka, Iran, Turkey, and India. Toxics. 2023; 11(1):34. https://doi.org/10.3390/toxics11010034
Chicago/Turabian StyleTakim, Kasim, and Mehmet Emin Aydemir. 2023. "GC-MS and LC-MS Pesticide Analysis of Black Teas Originating from Sri Lanka, Iran, Turkey, and India" Toxics 11, no. 1: 34. https://doi.org/10.3390/toxics11010034
APA StyleTakim, K., & Aydemir, M. E. (2023). GC-MS and LC-MS Pesticide Analysis of Black Teas Originating from Sri Lanka, Iran, Turkey, and India. Toxics, 11(1), 34. https://doi.org/10.3390/toxics11010034