Developmental, Behavioral and Transcriptomic Changes in Zebrafish Embryos after Smoke Dye Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analytical Chemistry
2.2. Zebrafish Husbandry
2.3. Exposures
2.4. Developmental Toxicity Assessments
2.5. Blood–Brain Barrier Permeability
- [drug]equilibrium = ([drug]donor × VD + [drug]acceptor × VA)/(VD + VA);
- [drug]acceptor = (Aa/Ai × DF)acceptor;
- [drug]donor = (Aa/Ai × DF)donor;
- VD = 0.15 mL; VA = 0.30 mL; area = 0.28 cm2; time = 14,400 s;
- Aa/Ai: Peak area ratio of NAC and the internal standard; DF: Dilution factor (13.5).
2.6. Statistical Analysis of Toxicity Endpoints
2.7. RNA Sequencing
2.8. Analysis of RNA-Seq Data
3. Results
3.1. Mortality
3.2. Morphological Effects
3.3. Effect of Dyes on Behavior
3.4. Blood–Brain Barrier Permeability
3.5. Disperse Blue 14 Differentially Expressed Genes and Functional Enrichment
3.6. Disperse Red 9 Differentially Expressed Genes and Functional Enrichment
3.7. Solvent Red 169 Differentially Expressed Genes and Functional Enrichment
3.8. Solvent Yellow 33 Differentially Expressed Genes and Functional Enrichment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabnis, R.W. Manufacture of dye intermediates, dyes, and their industrial applications. In Handbook of Indus-Trial Chemistry and Biotechnology; Kent, J., Bommaraju, T., Barnicki, S., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Routoula, E.; Patwardhan, S.V. Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential. Environ. Sci. Technol. 2020, 54, 647–664. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Zaharia, C.; Suteu, D. Textile organic dyes—Characteristics, polluting effects and separation/elimination pro-cedures from industrial effluents—A critical overview. In Organic Pollutants Ten Years after the Stockholm Con-Vention—Environmental and Analytical Update; Puzyn, T., Ed.; InTechOpen: London, UK, 2012. [Google Scholar]
- Siddiqui, S.I.; Chaudhry, S.A. Arsenic: Toxic Effects and Remediation. In Advanced Materials for Wastewater Treatment; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 1–27. [Google Scholar]
- National Research Council. Toxicity of Military Smokes and Obscurants: Volume 3; The National Academies Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Matsunaga, K.; Hosokawa, K.; Suzuki, M.; Arima, Y.; Hayakawa, R. Occupational allergic contact dermatitis in beauticians. Contact Dermat. 1988, 18, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Gatica-Ortega, M.E.; Pastor-Nieto, M.A.; Sánchez-Matas, I.; Torres-Aranda, R.; Vergara-De-La-Campa, L.; Martínez-Camacho, M.; Pérez-Hortet, C. Erythroderma caused by allergic contact dermatitis from Solvent Yellow 33 in a patient with psoriasis. Contact Dermat. 2021, 84, 454–456. [Google Scholar] [CrossRef]
- National Toxicology Program. NTP Toxicology and Carcinogenesis Studies of D&C Yellow No. 11 (CAS No. 8003-22-3) in F344/N Rats (Feed Studies). Nat. Toxicol. Prog. Tech. Rep. Ser. 1997, 463, 1–190. [Google Scholar]
- Chequer, F.M.; Venancio, V.P.; Almeida, M.R.; Aissa, A.F.; Bianchi, M.L.P.; Antunes, L.M. Erythrosine B and quinoline yellow dyes regulate DNA repair gene expression in human HepG2 cells. Toxicol. Ind. Health 2017, 33, 765–774. [Google Scholar] [CrossRef]
- Tarnow, P.; Zordick, C.; Bottke, A.; Fischer, B.; Kühne, F.; Tralau, T.; Luch, A. Characterization of Quinoline Yellow Dyes as Transient Aryl Hydrocarbon Receptor Agonists. Chem. Res. Toxicol. 2020, 33, 742–750. [Google Scholar] [CrossRef]
- Eastin, W. NTP technical report on the toxicity studies of D&C Yellow No. 11 in F344/N Rats and B6C3F1 Mice (Feed Studies) (CAS No. 8003-22-3). Toxic. Rep. Ser. 1991, 8, 1–32. [Google Scholar]
- Domanico, J.A.; Redding, D.R.; Diviacchi, G. Low Toxicity, Environmentally Friendly Violet Smoke Generating Com-Positions and Methods of Making the Same. U.S. Patent 10,663,272, 26 May 2020. [Google Scholar]
- ECHA. Skin Sensitising, Irritative and/or Corrosive—Registry of Restriction Intentions until Outcome—ECHA. Available online: https://echa.europa.eu/registry-of-restriction-intentions/-/dislist/details/0b0236e182446136 (accessed on 22 January 2022).
- To, K.T.; Mary, L.S.; Wooley, A.H.; Wilbanks, M.S.; Bednar, A.J.; Perkins, E.J.; Truong, L.; Tanguay, R.L.; Garcia-Reyero, N. Morphological and Behavioral Effects in Zebrafish Embryos after Exposure to Smoke Dyes. Toxics 2021, 9, 9. [Google Scholar] [CrossRef]
- Dilger, J.M.; Martin, T.M.; Wilkins, B.P.; Bohrer, B.C.; Thoreson, K.M.; Fedick, P.W. Detection and toxicity modeling of anthraquinone dyes and chlorinated side products from a colored smoke pyrotechnic reaction. Chemosphere 2022, 287, 131845. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef] [PubMed]
- Mandrell, D.; Truong, L.; Jephson, C.; Sarker, M.R.; Moore, A.; Lang, C.; Simonich, M.T.; Tanguay, R.L. Automated Zebrafish Chorion Removal and Single Embryo Placement: Optimizing throughput of zebrafish developmental toxicity screens. J. Lab. Autom. 2012, 17, 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, L.; Reif, D.M.; Mary, L.S.; Geier, M.C.; Truong, H.D.; Tanguay, R.L. Multidimensional In Vivo Hazard Assessment Using Zebrafish. Toxicol. Sci. 2014, 137, 212–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabal, O.; Sánchez-Arias, J.A.; Eneriz, E.S.J.; Agirre, X.; De Miguel, I.; Garate, L.; Miranda, E.; Sáez, E.; Roa, S.; Martínez-Climent, J.A.; et al. Detailed Exploration around 4-Aminoquinolines Chemical Space to Navigate the Lysine Methyltransferase G9a and DNA Methyltransferase Biological Spaces. J. Med. Chem. 2018, 61, 6546–6573. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2020; Available online: http://www.r-project.org/index.html (accessed on 18 April 2022).
- Granato, M.; van Eeden, F.; Schach, U.; Trowe, T.; Brand, M.; Furutani-Seiki, M.; Haffter, P.; Hammerschmidt, M.; Heisenberg, C.; Jiang, Y.; et al. Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Dev. Camb. Engl. 1996, 123, 399–413. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, G.A.R.; de Lapuente, J.; Teixidó, E.; Porredón, C.; Borràs, M.; de Oliveira, D.P. Textile dyes induce toxicity on zebrafish early life stages. Environ. Toxicol. Chem. 2016, 35, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Abe, F.R.; Mendonça, J.N.; Moraes, L.A.; de Oliveira, G.A.; Gravato, C.A.; Soares, A.M.; de Oliveira, D.P. Toxicological and behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life. Chemosphere 2017, 178, 282–290. [Google Scholar] [CrossRef]
- Shen, B.; Liu, H.-C.; Ou, W.-B.; Eilers, G.; Zhou, S.-M.; Meng, F.-G.; Li, C.-Q.; Li, Y.-Q. Toxicity induced by Basic Violet 14, Direct Red 28 and Acid Red 26 in zebrafish larvae. J. Appl. Toxicol. 2015, 35, 1473–1480. [Google Scholar] [CrossRef]
- Eliceiri, B.P.; Gonzalez, A.M.; Baird, A. Zebrafish Model of the Blood-Brain Barrier: Morphological and Permeability Studies. Methods Mol. Biol. 2010, 686, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Chequer, F.M.; Venâncio, V.; de Souza Prado, M.R.; Campos da Silva e Cunha Junior, L.R.; Lizier, T.M.; Zanoni, M.V.; Rodríguez Burbano, R.; Bianchi, M.L.; Antunes, L.M. The cosmetic dye quinoline yellow causes DNA damage in vitro. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2015, 777, 54–61. [Google Scholar] [CrossRef]
- Hirschhorn, T.; Stockwell, B.R. The development of the concept of ferroptosis. Free Radic. Biol. Med. 2019, 133, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Bonner, J.R.; Bernard, D.J.; Sanchez, E.L.; Sause, E.T.; Prentice, R.R.; Burgess, S.M.; Brody, L.C. Disruption of the folate pathway in zebrafish causes developmental defects. BMC Dev. Biol. 2012, 12, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandersea, M.W.; Fleming, P.; McCarthy, R.A.; Smith, D.G. Fin duplications and deletions induced by disruption of retinoic acid signaling. Dev. Genes Evol. 1998, 208, 61–68. [Google Scholar] [CrossRef]
- Muralidharan, P.; Sarmah, S.; Marrs, J.A. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 2015, 49, 149–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghyselinck, N.B.; Duester, G. Retinoic acid signaling pathways. Development 2019, 146, dev167502. [Google Scholar] [CrossRef] [Green Version]
- Altinoz, E.; Turkoz, Y.; Vardi, N. The protective effect of N-acetylcysteine against acrylamide toxicity in liver and small and large intestine tissues. Bratisl Lek Listy 2015, 116, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.; Prats, E.; Gómez-Canela, C.; Hsu, C.-Y.; Arick, M.A.; Bedrossiantz, J.; Orozco, M.; Garcia-Reyero, N.; Ziv, T.; Ben-Lulu, S.; et al. Therapeutic potential of N-acetylcysteine in acrylamide acute neurotoxicity in adult zebrafish. Sci. Rep. 2019, 9, 16467. [Google Scholar] [CrossRef]
Name | Specifications | CAS Number | MW | Measured (mM) | Nominal (mM) | % of Nominal |
---|---|---|---|---|---|---|
Solvent Red 169 | 27354-18-3 | 265.31 | 13.53 | 40 | 33.8 | |
Solvent Yellow 33 | DOD-D-51485 | 8003-22-3 | 273.29 | 13.94 | 40 | 34.8 |
Disperse Blue 14 | Def Std 68-58/2 | 2475-44-7 | 266.29 | 22.64 | 40 | 56.6 |
Disperse Red 9 | Mil-D-3284 | 82-38-2 | 237.25 | 14.65 | 40 | 36.6 |
Endpoint | Solvent Red 169 | Disperse Blue 14 | Disperse Red 9 | Solvent Yellow 33 | ||||
---|---|---|---|---|---|---|---|---|
LOEL (µM) | p | LOEL (µM) | p | LOEL (µM) | p | LOEL (µM) | p | |
MO24 | - | - | 261.5 μM | 1.20 × 10−5 | - | - | - | - |
DP24 | - | - | - | - | - | - | 10.5 | 0.0031 |
SM24 | - | - | - | - | - | - | - | - |
NC24 | - | - | - | - | - | - | - | - |
MORT | - | - | 261.5 μM | 0.00013 | - | - | - | - |
YSE_ | - | - | 133 μM | 5.50 × 10−12 | 25 | 0.0032 | 7.5 | 5.00 × 10−14 |
AXIS | - | - | - | - | 45 | 0.00065 | 7.5 | 3.30 × 10−5 |
EYE_ | - | - | - | - | - | - | - | - |
SNOU | - | - | - | - | 25 | 0.0079 | - | - |
JAW_ | - | - | - | - | 25 | 0.0079 | - | - |
OTIC | - | - | - | - | - | - | - | - |
PE__ | - | - | - | - | 25 | 0.0032 | 7.5 | 0.00027 |
BRAI | - | - | - | - | - | - | - | - |
SOMI | - | - | - | - | - | - | - | - |
PFIN | - | - | - | - | 55 | 0.0091 | 7.5 | 0.00027 |
CFIN | - | - | - | - | 25 | 0.00018 | - | - |
PIG_ | - | - | - | - | - | - | - | - |
CIRC | - | - | - | - | - | - | - | - |
TRUN | - | - | - | - | 25 | 0.00049 | - | - |
SWIM | - | - | - | - | - | - | - | - |
NC__ | - | - | - | - | - | - | - | - |
TR__ | - | - | - | - | - | - | - | - |
Compound | Mean Pe (nm/s) | % Mean Recovery | Permeability |
---|---|---|---|
Disperse Red 9 | 30.891 | 4.7 | High |
Disperse Blue 14 | 26.259 | 11.5 | High |
Solvent Yellow 33 | 48.517 | 20 | High |
Solvent Red 169 | NT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perkins, E.J.; To, K.T.; St. Mary, L.; Laber, C.H.; Bednar, A.J.; Truong, L.; Tanguay, R.L.; Garcia-Reyero, N. Developmental, Behavioral and Transcriptomic Changes in Zebrafish Embryos after Smoke Dye Exposure. Toxics 2022, 10, 210. https://doi.org/10.3390/toxics10050210
Perkins EJ, To KT, St. Mary L, Laber CH, Bednar AJ, Truong L, Tanguay RL, Garcia-Reyero N. Developmental, Behavioral and Transcriptomic Changes in Zebrafish Embryos after Smoke Dye Exposure. Toxics. 2022; 10(5):210. https://doi.org/10.3390/toxics10050210
Chicago/Turabian StylePerkins, Edward J., Kimberly T. To, Lindsey St. Mary, Charles H. Laber, Anthony J. Bednar, Lisa Truong, Robyn L. Tanguay, and Natàlia Garcia-Reyero. 2022. "Developmental, Behavioral and Transcriptomic Changes in Zebrafish Embryos after Smoke Dye Exposure" Toxics 10, no. 5: 210. https://doi.org/10.3390/toxics10050210