Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of SPIONs
2.2. Synthesis of Alginate Beads
2.3. Synthesis of Alginate–SPIONs Beads
2.4. Characterization of SPIONs
2.5. Characterization of Alginate Beads and Alginate–SPIONs Beads
2.6. Batch Adsorption Studies
2.7. Isotherm Studies
2.8. In-Vivo Study to Determine Removal of Chromium
2.8.1. Collection and Maintenance of Zebrafish
2.8.2. In-Vivo Study Using Zebrafish as Model
2.8.3. Histology Studies
2.8.4. Inductively Coupled Plasma—Mass Spectrometry (ICP—MS)
3. Results and Discussion
3.1. Characterization of SPIONs, Alginate Beads and SPIONs—Coated Alginate Beads
3.1.1. UV—Visible Spectroscopy
3.1.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.1.3. X-ray Diffraction (XRD)
3.1.4. Scanning Electron Microscopy and Energy Dispersive X-ray Analysis
3.1.5. Zeta Potential Analysis
3.1.6. Vibrating Sample Magnetometer
3.2. Batch Adsorption Studies
3.2.1. Removal of Chromium Using SPIONs
3.2.2. Removal of Chromium Using Alginate Beads
3.2.3. Removal of Chromium Using Alginate–SPIONs Beads
3.2.4. Isotherm Studies
3.3. Toxicity Studies
3.3.1. Histology Studies
3.3.2. Inductively Coupled Plasma—Mass Spectrometry (ICP—MS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Wu, B.; Xu, H.; Liu, H.; Wang, M.; He, Y.; Pan, B. Nanomaterials-enabled water and wastewater treatment. NanoImpact 2016, 3–4, 22–39. [Google Scholar] [CrossRef]
- Singh, U.; Singh, S.; Tiwari, R.K.; Pandey, R.S. Water Pollution due to Discharge of Industrial Effluents with special reference to Uttar Pradesh, India–A review. Int. Arch. Appl. Sci. Technol. 2018, 9, 111–121. [Google Scholar]
- Salman, S.; Znad, H.; Hasan, N.; Hasan, M. Optimization of innovative composite sensor for Pb(II) detection and capturing from water samples. Microchem. J. 2021, 160, 105765. [Google Scholar] [CrossRef]
- Shahat, A.; Kubra, K.T.; Salman, S.; Hasan, N.; Hasan, M. Novel solid-state sensor material for efficient cadmium(II) detection and capturing from wastewater. Microchem. J. 2021, 164, 105967. [Google Scholar] [CrossRef]
- Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016, 286, 640–662. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, M.E. Nanoadsorbents for water and wastewater remediation. Sci. Total. Environ. 2020, 739, 139903. [Google Scholar] [CrossRef]
- Motshekga, S.C.; Ray, S.S.; Maity, A. Synthesis and characterization of alginate beads encapsulated zinc oxide nanoparticles for bacteria disinfection in water. J. Colloid Interface Sci. 2018, 512, 686–692. [Google Scholar] [CrossRef]
- Bée, A.; Talbot, D.; Abramson, S.; Dupuis, V. Magnetic alginate beads for Pb(II) ions removal from wastewater. J. Colloid Interface Sci. 2011, 362, 486–492. [Google Scholar] [CrossRef]
- Samrot, A.V.; Shobana, N.; Sruthi, D.P.; Sahithya, C.S. Utilization of chitosan-coated superparamagnetic iron oxide nanoparticles for chromium removal. Appl. Water Sci. 2018, 8, 192. [Google Scholar] [CrossRef] [Green Version]
- Chellapan, J.; Samrot, A.V.; Annamalai, A.A.; Bhattacharya, R.K.; Sathiyamoorthy, P.; Sahithya, C.S. Biopolymer Coated Coreshell Magnetite Nanoparticles for Rifampicin Delivery. Orient. J. Chem. 2018, 34, 2389–2396. [Google Scholar] [CrossRef]
- Covarrubias, S.A.; De-Bashan, L.E.; Moreno, M.; Bashan, Y. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl. Microbiol. Biotechnol. 2011, 93, 2669–2680. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.L.D.M.; Bittencourt, R.F.; Júnior, C.S. Nanomagnetic Polymeric Absorbent Based on Alginate and Gamma-Maghemite Synthesized in Situ for Wastewater Treatment from Metallurgical Industry. In Properties and Applications of Alginates; Deniz, I., Imamoglu, E., Keskin-Gundogdu, T., Eds.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Asadi, S.; Eris, S.; Azizian, S. Alginate-Based Hydrogel Beads as a Biocompatible and Efficient Adsorbent for Dye Removal from Aqueous Solutions. ACS Omega 2018, 3, 15140–15148. [Google Scholar] [CrossRef] [PubMed]
- Samrot, A.V.; Sahithya, C.S.; Selvarani, A.J.; Purayil, S.K.; Ponnaiah, P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Curr. Res. Green Sustain. Chem. 2021, 4, 100042. [Google Scholar] [CrossRef]
- Samrot, A.V.; Sai Bhavya, K.; Sruthi, P.D.; Paulraj, P. Synthesis of SPIONs to deliver drug in-vitro and to use as contrasting agent. Int. J. Adv. Res. Eng. Technol. (IJARET) 2020, 11, 200–208. [Google Scholar]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Mohamad Ibrahim, M.N. Role of nanomaterials in the treatment of wastewater: A review. Water 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
- Aziz, F.; El Achaby, M.; Lissaneddine, A.; Aziz, K.; Ouazzani, N.; Mamouni, R.; Mandi, L. Composites with alginate beads: A novel design of nano-adsorbents impregnation for large-scale continuous flow wastewater treatment pilots. Saudi J. Biol. Sci. 2020, 27, 2499–2508. [Google Scholar] [CrossRef] [PubMed]
- Mudhoo, A.; Sillanpää, M. Magnetic nanoadsorbents for micropollutant removal in real water treatment: A review. Environ. Chem. Lett. 2021, 19, 4393–4413. [Google Scholar] [CrossRef]
- Farhana, A.; Selvarani, A.J.; Samrot, A.V.; Alsrhani, A.; Raji, P.; Sahithya, C.S.; Cypriyana, P.J.J.; Senthilkumar, P.; Ling, M.P.; Yishak, S. Utilization of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Impregnated Activated Carbon for Removal of Hexavalent Chromium. J. Nanomater. 2022, 2022, 4326939. [Google Scholar] [CrossRef]
- Samrot, A.; Bhavya, K.S.; Angalene, J.L.A.; Roshini, S.; Preethi, R.; Steffi, S.; Raji, P.; Kumar, S.S. Utilization of gum polysaccharide of Araucaria heterophylla and Azadirachta indica for encapsulation of cyfluthrin loaded super paramagnetic iron oxide nanoparticles for mosquito larvicidal activity. Int. J. Biol. Macromol. 2020, 153, 1024–1034. [Google Scholar] [CrossRef]
- Samrot, A.V.; Saigeetha, S.; Mun, C.Y.; Abirami, S.; Purohit, K.; Cypriyana, P.J.J.; Dhas, T.S.; Inbathamizh, L.; Kumar, S.S. Utilization of Carica papaya latex on coating of SPIONs for dye removal and drug delivery. Sci. Rep. 2021, 11, 24511. [Google Scholar] [CrossRef]
- Justin, C.; Samrot, A.V.; Sruthi, P.D.; Sahithya, C.S.; Bhavya, K.S.; Saipriya, C. Preparation, characterization and utilization of coreshell super paramagnetic iron oxide nanoparticles for curcumin delivery. PLoS ONE 2018, 13, e0200440. [Google Scholar] [CrossRef]
- Singh, H.; Du, J.; Singh, P.; Mavlonov, G.T.; Yi, T.H. Development of superparamagnetic iron oxide nanoparticles via direct conjugation with ginsenosides and its in-vitro study. J. Photochem. Photobiol. B Biol. 2018, 185, 100–110. [Google Scholar] [CrossRef]
- Alpdemir, Ş.; Vural, T.; Kara, G.; Bayram, C.; Haberal, E.; Denkbaş, E.B. Magnetically responsive, sorafenib loaded alginate microspheres for hepatocellular carcinoma treatment. IET Nanobiotechnol. 2020, 14, 617–622. [Google Scholar] [CrossRef]
- Lace, A.; Ryan, D.; Bowkett, M.; Cleary, J. Chromium Monitoring in Water by Colorimetry Using Optimised 1,5-Diphenylcarbazide Method. Int. J. Environ. Res. Public Health 2019, 16, 1803. [Google Scholar] [CrossRef] [Green Version]
- Samrot, A.V.; Sahithya, C.S.; Selvarani, A.J.; Pachiyappan, S.; Suresh Kumar, S. Surface-Engineered Super-Paramagnetic Iron Oxide Nanoparticles for Chromium Removal. Int. J. Nanomed. 2019, 14, 8105–8119. [Google Scholar] [CrossRef] [Green Version]
- Avdesh, A.; Chen, M.; Martin-Iverson, M.T.; Mondal, A.; Ong, D.; Rainey-Smith, S.; Taddei, K.; Lardelli, M.; Groth, D.M.; Verdile, G.; et al. Regular Care and Maintenance of a Zebrafish (Danio rerio) Laboratory: An Introduction. JoVE J. Vis. Exp. 2012, 69, e4196. [Google Scholar] [CrossRef] [Green Version]
- Lam, W.-H.; Chong, M.N.; Horri, B.A.; Tey, B.-T.; Chan, E.-S. Physicochemical stability of calcium alginate beads immobilizing TiO2 nanoparticles for removal of cationic dye under UV irradiation. J. Appl. Polym. Sci. 2017, 134, 45002. [Google Scholar] [CrossRef]
- Justin, C.; Philip, S.A.; Samrot, A.V. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. Appl. Nanosci. 2017, 7, 463–475. [Google Scholar] [CrossRef]
- Idris, M.I.; Zaloga, J.; Detsch, R.; Roether, J.A.; Unterweger, H.; Alexiou, C.; Boccaccini, A.R. Surface Modification of SPIONs in PHBV Microspheres for Biomedical Applications. Sci. Rep. 2018, 8, 7286. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.C.; Gonçalves, M.C.; Pereira, L.C.J.; Vieira, B.J.C.; Waerenborgh, J.C. SPIONs Prepared in Air through Improved Synthesis Methodology: The Influence of γ-Fe2O3/Fe3O4 Ratio and Coating Composition on Magnetic Properties. Nanomaterials 2019, 9, 943. [Google Scholar] [CrossRef] [Green Version]
- Gopalakannan, V.; Viswanathan, N. Synthesis of magnetic alginate hybrid beads for efficient chromium (VI) removal. Int. J. Biol. Macromol. 2015, 72, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Khalkhali, M.; Rostamizadeh, K.; Sadighian, S.; Khoeini, F.; Naghibi, M.; Hamidi, M. The impact of polymer coatings on magnetite nanoparticles performance as MRI contrast agents: A comparative study. DARU J. Pharm. Sci. 2015, 23, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilhare, S.; Mathew, S.; Singh, A.; Carabineiro, S. Calcium Alginate Beads with Entrapped Iron Oxide Magnetic Nanoparticles Functionalized with Methionine—A Versatile Adsorbent for Arsenic Removal. Nanomaterials 2021, 11, 1345. [Google Scholar] [CrossRef] [PubMed]
- Baykal, A.; Amir; Günerb, S.; Sözeri, H. Preparation and characterization of SPION functionalized via caffeic acid. J. Magn. Magn. Mater. 2015, 395, 199–204. [Google Scholar] [CrossRef]
- Samrot, A.V.; Saipriya, C.; Selvarani, A.J.; Subbu, R.V.; Cypriyana, P.J.; Lavanya, Y.; Shehanaz, A.R.; Soundarya, P.; Priyanka, S.R.B.; Sangeetha, P.; et al. A study on influence of superparamagnetic iron oxide nanoparticles (SPIONs) on green gram (Vigna radiata L.) and earthworm (Eudrilus eugeniae L.). Mater. Res. Express 2020, 7, 055002. [Google Scholar] [CrossRef]
- Khatami, M.; Alijani, H.Q.; Fakheri, B.; Mobasseri, M.M.; Heydarpour, M.; Farahani, Z.K.; Khan, A.U. Super-paramagnetic iron oxide nanoparticles (SPIONs): Greener synthesis using Stevia plant and evaluation of its antioxidant properties. J. Clean. Prod. 2018, 208, 1171–1177. [Google Scholar] [CrossRef]
- Reczyńska, K.; Marszałek, M.; Zarzycki, A.; Reczyński, W.; Kornaus, K.; Pamuła, E.; Chrzanowski, W. Superparamagnetic Iron Oxide Nanoparticles Modified with Silica Layers as Potential Agents for Lung Cancer Treatment. Nanomaterials 2020, 10, 1076. [Google Scholar] [CrossRef]
- Raees, K.; Ansari, M.S.; Rafiquee, M.Z.A. Inhibitive effect of super paramagnetic iron oxide nanoparticles on the alkaline hydrolysis of procaine. J. Nanostructure Chem. 2019, 9, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Babu, A.N.; Mohan, G.V.K.; Kalpana, K.; Ravindhranath, K. Removal of Lead from Water Using Calcium Alginate Beads Doped with Hydrazine Sulphate-Activated Red Mud as Adsorbent. J. Anal. Methods Chem. 2017, 2017, 4650594. [Google Scholar] [CrossRef]
- Idris, A.; Ismail, N.S.M.; Hassan, N.; Misran, E.; Ngomsik, A.-F. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J. Ind. Eng. Chem. 2012, 18, 1582–1589. [Google Scholar] [CrossRef]
- Bilici, Z.; Ozay, Y.; Unal, B.O.; Dizge, N. Investigation of the usage potential of calcium alginate beads functionalized with sodium dodecyl sulfate for wastewater treatment contaminated with waste motor oil. Water Environ. Res. 2021, 93, 2623–2636. [Google Scholar] [CrossRef] [PubMed]
- Khani, R.; Sobhani, S.; Beyki, M.H. Highly selective and efficient removal of lead with magnetic nano-adsorbent: Multivariate optimization, isotherm and thermodynamic studies. J. Colloid Interface Sci. 2016, 466, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Aldavood, S.J.; Abbott, L.C.; Evans, Z.R.; Griffin, D.J.; Lee, M.D.; Quintero-Arevalo, N.M.; Villalobos, A.R.; Quintero, N. Effect of Cadmium and Nickel Exposure on Early Development in Zebrafish (Danio rerio) Embryos. Water 2020, 12, 3005. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Zhou, Q.; Liu, Z.; Li, Q. Hexavalent chromium amplifies the developmental toxicity of graphene oxide during zebrafish embryogenesis. Ecotoxicol. Environ. Saf. 2021, 208, 111487. [Google Scholar] [CrossRef] [PubMed]
- Guillén, A.; Ardila, Y.; Noguera, M.J.; Campaña, A.L.; Bejarano, M.; Akle, V.; Osma, J.F. Toxicity of Modified Magnetite-Based Nanocomposites Used for Wastewater Treatment and Evaluated on Zebrafish (Danio rerio) Model. Nanomaterials 2022, 12, 489. [Google Scholar] [CrossRef]
- Samrot, A.V.; Shobana, N.; Sathiyasree, M.; Thirugnanasambandam, R.; Visvanathan, S.; Mohanty, B.K.; Sabesan, G.S.; Dhiva, S. Toxicity evaluation of SPIONs on Danio rerio embryonic development. Mater. Today Proc. 2022, 59, 1555–1560. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samrot, A.V.; Bavanilatha, M.; Krithika Shree, S.; Sathiyasree, M.; Vanjinathan, J.; Shobana, N.; Thirugnanasambandam, R.; Kumar, C.; Wilson, S.; Rajalakshmi, D.; et al. Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model. Toxics 2022, 10, 742. https://doi.org/10.3390/toxics10120742
Samrot AV, Bavanilatha M, Krithika Shree S, Sathiyasree M, Vanjinathan J, Shobana N, Thirugnanasambandam R, Kumar C, Wilson S, Rajalakshmi D, et al. Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model. Toxics. 2022; 10(12):742. https://doi.org/10.3390/toxics10120742
Chicago/Turabian StyleSamrot, Antony V., Muthiah Bavanilatha, Sivasuriyan Krithika Shree, Mahendran Sathiyasree, Jayaram Vanjinathan, Nagarajan Shobana, Rajendran Thirugnanasambandam, Chandrasekaran Kumar, Samraj Wilson, Deenadhayalan Rajalakshmi, and et al. 2022. "Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model" Toxics 10, no. 12: 742. https://doi.org/10.3390/toxics10120742
APA StyleSamrot, A. V., Bavanilatha, M., Krithika Shree, S., Sathiyasree, M., Vanjinathan, J., Shobana, N., Thirugnanasambandam, R., Kumar, C., Wilson, S., Rajalakshmi, D., Noel Richard Prakash, L. X., & Sanjay Preeth, R. S. (2022). Evaluation of Heavy Metal Removal of Nanoparticles Based Adsorbent Using Danio rerio as Model. Toxics, 10(12), 742. https://doi.org/10.3390/toxics10120742