Emission Factors of CO2 and Airborne Pollutants and Toxicological Potency of Biofuels for Airplane Transport: A Preliminary Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Line
2.2. Emission Characterization
2.3. Emission Index Determination
2.4. Cell Culture and Exposure
2.5. Toxicological Evaluation
2.6. Human Exposure Assessment
2.7. Statistical Analyses
3. Results
3.1. Emission Characterization: Online Monitors
3.2. Emission Characterization of Airborne Pollutants: Offline Analyses
3.3. Emission Indexes
3.4. Toxicological Effects
3.5. Human Exposure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Parameter | Limit Values for Jet A-1 Fuel Type | Value | Test Method |
---|---|---|---|
Reference Values | |||
Color | none | +28 | ASTM D 156 |
Density at 15 °C (Kg/m3) | 775.0–840.0 | 793.3 | ASTM D4052 |
Distillation initial point (°C) | none | 158 | ASTM D86 |
Distillation initial point (10%) (°C) | ≤205 | 173 | ASTM D86 |
Distillation initial point (50%) (°C) | none | 198 | ASTM D86 |
Distillation initial point (50%) (°C) | none | 236 | ASTM D86 |
Distillation final point (°C) | ≤300 | 262 | ASTM D86 |
Distillation residual (% volume) | ≤1.5 | 1.0 | ASTM D86 |
Distillation losses (% volume) | ≤1.5 | 0.8 | ASTM D86 |
Viscosity at 20 °C (eSt) | ≤8.0 | 3.9 | ASTM D445 |
Flash point (°C) | ≥38 | 45 | ASTM D56 |
Thermal stability at 260 °C: pressure drop (mmHg) | ≤25 | 0 | ASTM D3241 |
Thermal stability at 260 °C: deposit thickness (nm) | ≤85 | 5 | ASTDM 3241 |
Aromatic hydrocarbons (mL/100mL) | ≤25.0 | 16.7 | ASTM D1319 |
Doctor test | negative | negative | ASTM D4952 |
Corrosion on copper lamina (n) | ≤1 | 1 | ASTM D130 |
Lower calorific value (MJ/Kg) | ≥42.80 | 43.20 | ASTM D3338 |
Smoke point (mm) | ≥19 | 25 | ASTM D1322 |
Total acidity (mg KOH/g) | ≥0.015 | <0.015 | ASTM D3242 |
Electric conductibility (pS/m) | 50–600 | 90 | ASTM D2624 |
TOTAL SULFUR CONTENT: | |||
Total sulfur in the bio-blend 20% (g/100 g) | ≤0.3 | 0.0928 | ASTM D4294 |
Total sulfur in the fossil fuel used for the blend (g/100 g) | ≤0.3 | 0.1175 | ASTM D2622 |
Total sulfur in HEFA fuel (g/100 g) | ≤0.0015 | 0.0012 | ASTM D2622 |
Total sulfur in the fossil fuel used for the first two reference tests (g/100 g) | ≤0.3 | 0.07 | ASTM D4294 |
PAH | Fossil Fuel | Biofuel Blend | ||
---|---|---|---|---|
ng/m3 | ±ng/m3 | ng/m3 | ±ng/m3 | |
Phenanthrene | 60.5 | 6.1 | 28.9 | 2.9 |
Anthracene | 6.3 | 0.6 | 6.1 | 0.6 |
Fluoranthene | 109.5 | 10.9 | 121.4 | 12.1 |
Pyrene | 84.8 | 8.5 | 146.7 | 14.7 |
Benzo[a]anthracene | 92.3 | 9.2 | 54.6 | 5.5 |
Chrysene | 145.2 | 14.5 | 116.4 | 11.6 |
Benzo[b+j]fluoranthene | 363.6 | 36.4 | 314.0 | 31.4 |
Benzo[k]fluoranthene | 152.0 | 15.2 | 126.2 | 12.6 |
Benzo[a]pyrene | 324.8 | 32.5 | 277.0 | 27.7 |
Indeno[1,2,3-cd]pyrene | 407.4 | 40.7 | 323.3 | 32.3 |
Dibenzo[a,h]anthracene | 17.0 | 1.7 | 16.3 | 1.6 |
Benzo[ghi]perylene | 473.6 | 47.4 | 415.5 | 41.6 |
Fuel | TNMHC | Std | SO2 | Std | NO2 | Std | CO2 | Std |
---|---|---|---|---|---|---|---|---|
mg/m3 | mg/m3 | µg/m3 | µg/m3 | µg/m3 | µg/m3 | mg/m3 | mg/m3 | |
Fossil | 2.3 | 0.6 | 6.6 | 1.1 | 27 | 10 | 1046 | 139 |
2.5 | 0.4 | 8.1 | 0.9 | 25 | 6 | 1015 | 95 | |
Biofuel | 1.9 | 0.7 | 6.4 | 0.7 | 24 | 6 | 998 | 55 |
2.2 | 0.5 | 8.9 | 0.8 | 19 | 11 | 983 | 54 | |
2.1 | 0.7 | 6.2 | 1.2 | 27 | 7 | 976 | 109 |
Fuel | Replica | PM0.3 | std | PM(0.3–1.7) | std |
---|---|---|---|---|---|
#/cm3 | #/cm3 | #/cm3 | #/cm3 | ||
Fossil | I | 5522.5 | 741.6 | 18.4 | 2.3 |
II | 5517.8 | 643.9 | 14.2 | 1.6 | |
Biofuel | I | 7258.7 | 3025.7 | 21.4 | 2.2 |
II | 6645.5 | 2768.5 | 24.6 | 2.0 | |
III | 7452.4 | 2444.7 | 22.8 | 3.2 | |
IV | 8873.7 | 1391.3 | 37.7 | 3.8 |
Fuel | OC | err | EC | err | EC/OC |
---|---|---|---|---|---|
µgC/m3 | ± µgC/m3 | µgC/m3 | ± µgC/m3 | ||
Fossil | 9.7 | 1.0 | 3.4 | 0.3 | 0,35 |
Biofuel | 6.9 | 0.7 | 1.8 | 0.2 | 0,26 |
Biofuel IV | 8.6 | 0.9 | 6.5 | 1.1 | 0,76 |
Fuel | Replica | PM2.5 | err | EC | err | OC | err | EC/OC | PAHs | err |
---|---|---|---|---|---|---|---|---|---|---|
µg/m3 | ±µg/m3 | µgC/m3 | ±µgC/m3 | µgC/m3 | ±µgC/m3 | µg/m3 | ±µg/m3 | |||
Fossil | I | 112.6 | 7.0 | 44.0 | 5.8 | 25.2 | 3.5 | 1.75 | 2.2 | 0.2 |
II | 141.8 | 8.6 | 51.4 | 6.7 | 36.7 | 5.0 | 1.40 | 2.3 | 0.2 | |
Biofuel | I | 241.0 | 16.0 | 69.9 | 8.7 | 69.7 | 9.3 | 1.00 | 1.9 | 0.2 |
II | 322.8 | 21.3 | 64.8 | 8.2 | 100.1 | 16.0 | 0.65 | 1.6 | 0.2 | |
III | 290.2 | 19.3 | 65.8 | 8.4 | 143.5 | 19.0 | 0.46 | 2.4 | 0.2 | |
IV | 154.2 | 8.9 | 38.4 | 8.3 | 65.4 | 8.7 | 0.59 | 1.6 | 0.2 | |
Background | Fossil | 19.5 | 1.0 | 3.4 | 0.3 | 9.7 | 1.0 | 0.35 | ||
Bio I-III | 16.5 | 1.0 | 1.8 | 0.2 | 6.9 | 0.7 | 0.26 | |||
Bio IV | 27.0 | 1.4 | 6.5 | 1.1 | 8.6 | 0.9 | 0.76 |
Fuel | Replica | V | Cr | Ni | Sb | Ba | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
µg/m3 | err | µg/m3 | err | µg/m3 | err | µg/m3 | err | µg/m3 | err | ||
Fossil | I | 0.0025 | 0.0004 | 0.12 | 0.01 | 0.08 | 0.01 | 0.12 | 0.02 | 1.0 | 0.1 |
II | 0.0023 | 0.0004 | 0.11 | 0.01 | 0.021 | 0.003 | 0.13 | 0.03 | 1.26 | 0.07 | |
Biofuel | I | 0.0051 | 0.0008 | 0.11 | 0.01 | 0.048 | 0.008 | 0.085 | 0.008 | 0.29 | 0.03 |
II | 0.004 | 0.001 | 0.103 | 0.009 | 0.08 | 0.01 | 0.68 | 0.09 | |||
III | 0.007 | 0.001 | 0.126 | 0.006 | 0.11 | 0.02 | 0.87 | 0.07 | |||
IV | 0.086 | 0.007 | 0.042 | 0.005 | 0.42 | 0.03 |
Biofuel Blends | Fossil Fuel | Ratio Biofuel vs. Fossil | |
---|---|---|---|
PM2.5 mg/Kg | 612.0 (70.4) | 455.6 (39.5) | 1.3 |
OC mgC/Kg | 219.7 (54.1) | 109.9 (21.4) | 2.0 |
EC mgC/Kg | 145.6 (31.8) | 169.4 (31.5) | 0.9 |
PAHs mg/Kg | 4.2 (2.5) | 8.0 (3.9) | 0.53 |
NO2− mg/Kg | 5.1 (0.5) | 65 (4) | 0.08 |
HONO mg/Kg | 4.8 (0.6) | 0.9 (0.1) | 5.4 |
NO3− mg/Kg | 0 (0) | 12.3 (3.6) | - |
HNO3 mg/Kg | 4.2 (0.8) | 6.7 (2.4) | 0.6 |
SO42− mg/Kg | 3.1 (0.5) | 1.4 (0.1) | 2.3 |
H2SO4 mg/Kg | 20 (4) | 27 (3) | 0.7 |
NH4+ mg/Kg | 0.80 (0.08) | - | - |
V mg/Kg | 0.010 (0.001) | 0.008 (0.0005) | 1.3 |
Cr mg/Kg | 0.12 (0.02) | 0.21 (0.03) | 0.57 |
Ni mg/Kg | 0.07 (0.02) | 0.1 (0.02) | 0.7 |
Sb mg/Kg | 0.11 (0.02) | 0.28 (0.07) | 0.39 |
Ba mg/Kg | 0.4 (0.1) | 2.8 (0.7) | 0.25 |
References
- Wu, Y.; Li, S.; Zhao, Q.; Wen, B.; Gasparrini, A.; Tong, S.; Overcenco, A.; Urban, A.; Schneider, A.; Entezari, A.; et al. Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–2019: A three-stage modelling study. Lancet Planet. Health 2022, 6, e410–e421. [Google Scholar] [CrossRef]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinawati, F.; Stein, K.; Lindner, A. Climate Change Impacts on Biodiversity—The Setting of a Lingering Global Crisis. Diversity 2013, 5, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Heller, N.E.; Zavaleta, E.S. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol. Conserv. 2009, 142, 14–32. [Google Scholar] [CrossRef]
- Unfccc. Adoption of the Paris Agreement—Paris Agreement. In Proceedings of the Paris Climate Change Conference, Paris, France, 12 December 2015–22 April 2016. [Google Scholar]
- European Commission. Proposal Amending Regulations (EU) 2018/841 as Regards the Scope, Simplifying the Compliance Rules, Setting out the Targets of the Member States for 2030 and Committing to the Collective Achievement of Climate Neutrality by 2035 in the Land Use, Forestry and Agriculture Sector, and (EU) 2018/1999 as Regards Improvement in Monitoring, REPORTING, Tracking of Progress and Review; European Commission: Brussle, Belgium, 14 July 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0554 (accessed on 15 September 2022).
- European Commission. Proposal Amending Regulation (EU) 2018/842 on Binding Annual Greenhouse Gas Emission Reductions by Member States from 2021 to 2030 Contributing to Climate Action to Meet Commitments under the Paris Agreement; European Commission: Brussle, Belgium, 14 July 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2021%3A555%3AFIN (accessed on 15 September 2022).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council on Ensuring a Level Playing Field for Sustainable Air Transport; European Commission: Brussle, Belgium, 2021; Available online: https://ec.europa.eu/transport/themes/mobilitystrategy_en (accessed on 3 August 2022).
- Dedoussi, I.C. Implications of future atmospheric composition in decision-making for sustainable aviation. Environ. Res. Lett. 2021, 16, 031002. [Google Scholar] [CrossRef]
- Debyser, A. ICAO Agreement on CO2 Emissions from Aviation. Available online: http://www.europarl.europa.eu/thinktank (accessed on 3 August 2022).
- Brasseur, G.P.; Gupta, M.; Anderson, B.E.; Balasubramanian, S.; Barrett, S.R.H.; Duda, D.P.; Fleming, G.G.; Forster, P.; Fuglestvedt, J.S.; Gettelman, A.; et al. Impact of Aviation on Climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II. Bull. Am. Meteorol. Soc. 2016, 97, 561–583. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Chen, C. The climate impact of aviation aerosols. Geophys. Res. Lett. 2013, 40, 2785–2789. [Google Scholar] [CrossRef]
- Harrison, R.M.; Masiol, M.; Vardoulakis, S. Civil aviation, air pollution and human health. Environ. Res. Lett. 2015, 10, 041001. [Google Scholar] [CrossRef] [Green Version]
- Kousoulidou, M.; Lonza, L. Biofuels in aviation: Fuel demand and CO2 emissions evolution in Europe toward. Transp. Res. Part D Transp. Environ. 2016, 46, 166–181. [Google Scholar] [CrossRef]
- Yilmaz, N.; Atmanli, A. Sustainable alternative fuels in aviation. Energy 2017, 140, 1378–1386. [Google Scholar] [CrossRef]
- Prussi, M.; O’Connell, A.; Lonza, L. Analysis of current aviation biofuel technical production potential in EU28. Biomass Bioenergy 2019, 130, 105371. [Google Scholar] [CrossRef]
- O’Connell, A.; Kousoulidou, M.; Lonza, L.; Weindorf, W. Considerations on GHG emissions and energy balances of promising aviation biofuel pathways. Renew. Sustain. Energy Rev. 2019, 101, 504–515. [Google Scholar] [CrossRef]
- Lobo, P.; Hagen, D.E.; Whitefield, P.D. Comparison of PM Emissions from a Commercial Jet Engine Burning Conventional, Biomass, and Fischer–Tropsch Fuels. Environ. Sci. Technol. 2011, 45, 10744–10749. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Karthikeyan, A.; Ramesh Kumar, C.; Ramachandran, S.; Praveenkumar, T.R. Lowest emission sustainable aviation biofuels as the potential replacement for the Jet-A fuels. Aircr. Eng. Aerosp. Technol. 2020, 93, 502–507. [Google Scholar] [CrossRef]
- Moore, R.H.; Shook, M.; Beyersdorf, A.; Corr, C.; Herndon, S.; Knighton, W.B.; Miake-Lye, R.; Thornhill, K.L.; Winstead, E.L.; Yu, Z.; et al. Influence of Jet Fuel Composition on Aircraft Engine Emissions: A Synthesis of Aerosol Emissions Data from the NASA APEX, AAFEX, and ACCESS Missions. Energy Fuels 2015, 29, 2591–2600. [Google Scholar] [CrossRef]
- E. European Union Aviation Safety Agency; E. European Environment Agency. European Aviation Environmental Rerport Executive Summary and Recommendations. 21 September 2022. pp. 1–24. Available online: https://www.eea.europa.eu/highlights/european-aviation-environmental-report-2022 (accessed on 13 October 2022).
- I. Internation Agency for Research on Cancer; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Diesel And Gasoline Engine Exhausts and Some Nitroarenes Volume 105 Iarc Monographs on the Evaluation of Carcinogenic Risks to Humans. Available online: https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono105.pdf (accessed on 13 October 2022).
- Rahim, M.F.; Pal, D.; Ariya, P.A. Physicochemical studies of aerosols at Montreal Trudeau Airport: The importance of airborne nanoparticles containing metal contaminants. Environ. Pollut. 2018, 246, 734–744. [Google Scholar] [CrossRef]
- Lopes, M.; Russo, A.; Monjardino, J.; Gouveia, C.; Ferreira, F. Monitoring of ultrafine particles in the surrounding urban area of a civilian airport. Atmos. Pollut. Res. 2019, 10, 1454–1463. [Google Scholar] [CrossRef]
- Pirhadi, M.; Mousavi, A.; Sowlat, M.H.; Janssen, N.A.; Cassee, F.R.; Sioutas, C. Relative contributions of a major international airport activities and other urban sources to the particle number concentrations (PNCs) at a nearby monitoring site. Environ. Pollut. 2020, 260, 114027. [Google Scholar] [CrossRef]
- Buonanno, G.; Bernabei, M.; Avino, P.; Stabile, L. Occupational exposure to airborne particles and other pollutants in an aviation base. Environ. Pollut. 2012, 170, 78–87. [Google Scholar] [CrossRef]
- Marcias, G.; Casula, M.F.; Uras, M.; Falqui, A.; Miozzi, E.; Sogne, E.; Pili, S.; Pilia, I.; Fabbri, D.; Meloni, F.; et al. Occupational Fine/Ultrafine Particles and Noise Exposure in Aircraft Personnel Operating in Airport Taxiway. Environments 2019, 6, 35. [Google Scholar] [CrossRef]
- Senkayi, S.N.; Sattler, M.L.; Rowe, N.; Chen, V.C. Investigation of an association between childhood leukemia incidences and airports in Texas. Atmos. Pollut. Res. 2014, 5, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Munsie, J.P.; Herdt-Losavio, M.; Hwang, S.A.; Civerolo, K.; McGarry, K.; Gentile, T. Residential proximity to large airports and potential health impacts in New York State. Int. Arch. Occup. Environ. Health 2008, 81, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.T.; Sakiestewa, D.; Titone, D.; Robledo, R.F.; Young, R.S.; Witten, M. Jet fuel-induced immunotoxicity. Toxicol. Ind. Health 2000, 16, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Jonsdottir, H.R.; Delaval, M.; Leni, Z.; Keller, A.; Brem, B.T.; Siegerist, F.; Schönenberger, D.; Durdina, L.; Elser, M.; Burtscher, H.; et al. Non-volatile particle emissions from aircraft turbine engines at ground-idle induce oxidative stress in bronchial cells. Commun. Biol. 2019, 2, 90. [Google Scholar] [CrossRef] [Green Version]
- He, R.-W.; Gerlofs-Nijland, M.E.; Boere, J.; Fokkens, P.; Leseman, D.; Janssen, N.A.; Cassee, F.R. Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air–liquid interface. Toxicol. 2020, 68, 104950. [Google Scholar] [CrossRef]
- Stracquadanio, M.; Petralia, E.; Berico, M.; La Torretta, T.M.; Malaguti, A.; Mircea, M.; Gualtieri, M.; Ciancarella, L. Source Apportionment and Macro Tracer: Integration of Independent Methods for Quantification of Woody Biomass Burning Contribution to PM10. Aerosol. Air Qual. Res. 2019, 19, 711–723. [Google Scholar] [CrossRef]
- Cheng, Y.; He, K.B.; Duan, F.K.; Zheng, M.; Ma, Y.L.; Tan, J.H. Positive sampling artifact of carbonaceous aerosols and its influence on the thermal-optical split of OC/EC. Atmos. Chem. Phys. 2009, 9, 7243–7256. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.; Na, K. Filter- and Denuder-Based Organic Carbon Correction for Positive Sampling Artifacts. Asian J. Atmos. Environ. 2017, 11, 107–113. [Google Scholar] [CrossRef]
- Herndon, S.C.; Shorter, J.H.; Zahniser, M.S.; Nelson, D.D.; Jayne, J.; Brown, R.C.; Miake-Lye, R.C.; Waitz, I.; Silva, P.; Lanni, T.; et al. NO and NO2 Emission Ratios Measured from In-Use Commercial Aircraft during Taxi and Takeoff. Environ. Sci. Technol. 2004, 38, 6078–6084. [Google Scholar] [CrossRef]
- Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E.; Resch, T.J. Aerosol dynamics in near-field aircraft plumes. J. Geophys. Res. Earth Surf. 1996, 101, 22939–22953. [Google Scholar] [CrossRef]
- Moore, R.; Thornhill, K.L.; Weinzierl, B.; Sauer, D.; D’Ascoli, E.; Kim, J.; Lichtenstern, M.; Scheibe, M.; Beaton, B.; Beyersdorf, A.J.; et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 2017, 543, 411–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gualtieri, M.; Grollino, M.G.; Consales, C.; Costabile, F.; Manigrasso, M.; Avino, P.; Aufderheide, M.; Cordelli, E.; Di Liberto, L.; Petralia, E.; et al. Is it the time to study air pollution effects under environmental conditions? A case study to support the shift of in vitro toxicology from the bench to the field. Chemosphere 2018, 207, 552–564. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Hu, S.-W.; Chang, T.-H. Correlation between gene expression of aryl hydrocarbon receptor (AhR), hydrocarbon receptor nuclear translocator (Arnt), cytochromes P4501A1 (CYP1A1) and 1B1 (CYP1B1), and inducibility of CYP1A1 and CYP1B1 in human lymphocytes. Toxicol. Sci. 2003, 71, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Zheng, M.; Kim, S.-K.; Cho, J.J.; Shin, C.H.; Joe, Y.; Chung, H.T. CO/HO-1 Induces NQO-1 Expression via Nrf2 Activation. Immune Netw. 2011, 11, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.E.; Jeong, S.I.; Yang, H.; Park, C.-S.; Jin, Y.-H.; Park, Y.S. Fisetin induces Nrf2-mediated HO-1 expression through PKC-δ and p38 in human umbilical vein endothelial cells. J. Cell. Biochem. 2011, 112, 2352–2360. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, S.; Halstensen, T.S. Increased interleukin-6 expression is associated with poor prognosis and acquired cisplatin resistance in head and neck squamous cell carcinoma. Oncol. Rep. 2016, 35, 3265–3274. [Google Scholar] [CrossRef] [Green Version]
- Durdina, L.; Brem, B.; Abegglen, M.; Lobo, P.; Rindlisbacher, T.; Thomson, K.; Smallwood, G.; Hagen, D.; Sierau, B.; Wang, J. Determination of PM mass emissions from an aircraft turbine engine using particle effective density. Atmos. Environ. 2014, 99, 500–507. [Google Scholar] [CrossRef]
- Hofmann, W.; Winkler-Heil, R.; Balásházy, I. The Effect of Morphological Variability on Surface Deposition Densities of Inhaled Particles in Human Bronchial and Acinar Airways. Inhal. Toxicol. 2006, 18, 809–819. [Google Scholar] [CrossRef]
- Hansen, J.; Kharecha, P.; Sato, M.; Masson-Delmotte, V.; Ackerman, F.; Beerling, D.J.; Hearty, P.J.; Hoegh-Guldberg, O.; Hsu, S.-L.; Parmesan, C.; et al. Assessing “Dangerous Climate Change”: Required Reduction of Carbon Emissions to Protect Young People, Future Generations and Nature. PLoS ONE 2013, 8, e81648. [Google Scholar] [CrossRef] [Green Version]
- Sher, F.; Raore, D.; Klemeš, J.J.; Rafi-Ul-Shan, P.M.; Khzouz, M.; Marintseva, K.; Razmkhah, O. Unprecedented Impacts of Aviation Emissions on Global Environmental and Climate Change Scenario. Curr. Pollut. Rep. 2021, 7, 549–564. [Google Scholar] [CrossRef]
- Dray, L.; Evans, A.; Reynolds, T.; Schäfer, A. Mitigation of Aviation Emissions of Carbon Dioxide. Transp. Res. Rec. J. Transp. Res. Board 2010, 2177, 17–26. [Google Scholar] [CrossRef]
- Krammer, P.; Dray, L.; Köhler, M. Climate-neutrality versus carbon-neutrality for aviation biofuel policy. Transp. Res. Part D Transp. Environ. 2013, 23, 64–72. [Google Scholar] [CrossRef]
- Staples, M.D.; Malina, R.; Suresh, P.; Hileman, J.I.; Barrett, S.R. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 2018, 114, 342–354. [Google Scholar] [CrossRef]
- Beyersdorf, A.; Timko, M.; Ziemba, L.; Bulzan, D.; Corporan, E.; Herndon, S.; Howard, R.; Miake-Lye, R.; Thornhill, K.; Winstead, E. Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels. Atmos. Chem. Phys. 2014, 14, 11–23. [Google Scholar] [CrossRef] [Green Version]
- Brem, B.T.; Durdina, L.; Siegerist, F.; Beyerle, P.; Bruderer, K.; Rindlisbacher, T.; Rocci-Denis, S.; Andac, M.G.; Zelina, J.; Penanhoat, O.; et al. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine. Environ. Sci. Technol. 2015, 49, 13149–13157. [Google Scholar] [CrossRef]
- Corbin, J.C.; Schripp, T.; Anderson, B.E.; Smallwood, G.J.; LeClercq, P.; Crosbie, E.C.; Achterberg, S.; Whitefield, P.D.; Miake-Lye, R.C.; Yu, Z.; et al. Aircraft-engine particulate matter emissions from conventional and sustainable aviation fuel combustion: Comparison of measurement techniques for mass, number, and size. Atmos. Meas. Tech. 2022, 15, 3223–3242. [Google Scholar] [CrossRef]
- Voigt, C.; Kleine, J.; Sauer, D.; Moore, R.H.; Bräuer, T.; Le Clercq, P.; Kaufmann, S.; Scheibe, M.; Jurkat-Witschas, T.; Aigner, M.; et al. Cleaner burning aviation fuels can reduce contrail cloudiness. Commun. Earth Environ. 2021, 2, 114. [Google Scholar] [CrossRef]
- Corporan, E.; DeWitt, M.J.; Belovich, V.; Pawlik, R.; Lynch, A.C.; Gord, J.R.; Meyer, T.R. Emissions Characteristics of a Turbine Engine and Research Combustor Burning a Fischer−Tropsch Jet Fuel. Energy Fuels 2007, 21, 2615–2626. [Google Scholar] [CrossRef]
- Herndon, S.C.; Jayne, J.T.; Lobo, P.; Onasch, T.B.; Fleming, G.; Hagen, D.E.; Kaufmann, S.; Scheibe, M.; Jurkat-Witschas, T.; Miake-Lye, R.C. Commercial Aircraft Engine Emissions Characterization of in-Use Aircraft at Hartsfield-Jackson Atlanta International Airpor. Environ. Sci. Technol. 2008, 42, 1877–1883. [Google Scholar] [CrossRef]
- Kapadia, Z.Z.; Spracklen, D.V.; Arnold, S.R.; Borman, D.J.; Mann, G.W.; Pringle, K.J.; Monks, S.A.; Reddington, C.L.; Benduhn, F.; Rap, A.; et al. Impacts of aviation fuel sulfur content on climate and human health. Atmos. Chem. Phys. 2016, 16, 10521–10541. [Google Scholar] [CrossRef]
- Zhang, X.; Karl, M.; Zhang, L.; Wang, J. Influence of Aviation Emission on the Particle Number Concentration near Zurich Airport. Environ. Sci. Technol. 2020, 54, 14161–14171. [Google Scholar] [CrossRef] [PubMed]
- Møller, K.L.; Thygesen, L.C.; Schipperijn, J.; Loft, S.; Bonde, J.P.; Mikkelsen, S.; Brauer, C. Occupational Exposure to Ultrafine Particles among Airport Employees—Combining Personal Monitoring and Global Positioning System. PLoS ONE 2014, 9, e106671. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, S.; Loraine, T.; Howard, C.V. Ultrafine particle levels measured on board short-haul commercial passenger jet aircraft. Environ. Health 2021, 20, 89. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Liu, J.; Cao, X.; Li, F.; Li, J. Ultrafine particles in the cabin of a waiting commercial airliner at Tianjin International Airport, China. Indoor Built Environ. 2017, 27, 1247–1258. [Google Scholar] [CrossRef]
- Barrett, S.R.H.; Britter, R.E.; Waitz, I.A. Global Mortality Attributable to Aircraft Cruise Emissions. Environ. Sci. Technol. 2010, 44, 7736–7742. [Google Scholar] [CrossRef]
- Cavallo, D.; Ursini, C.L.; Carelli, G.; Iavicoli, I.; Ciervo, A.; Perniconi, B.; Rondinone, B.M.; Gismondi, M.; Iavicoli, S. Occupational exposure in airport personnel: Characterization and evaluation of genotoxic and oxidative effects. Toxicology 2006, 223, 26–35. [Google Scholar] [CrossRef]
- Eastham, S.D.; Barrett, S.R. Aviation-attributable ozone as a driver for changes in mortality related to air quality and skin cancer. Atmos. Environ. 2016, 144, 17–23. [Google Scholar] [CrossRef]
- Grilli, A.; Bengalli, R.; Longhin, E.; Capasso, L.; Proverbio, M.C.; Forcato, M.; Bicciato, S.; Gualtieri, M.; Battaglia, C.; Camatini, M.; et al. Transcriptional profiling of human bronchial epithelial cell BEAS-2B exposed to diesel and biomass ultrafine particles. BMC Genom. 2018, 19, 302. [Google Scholar] [CrossRef] [Green Version]
- Lawal, A.O.; Zhang, M.; Dittmar, M.; Lulla, A.; Araujo, J.A. Heme oxygenase-1 protects endothelial cells from the toxicity of air pollutant chemicals. Toxicol. Appl. Pharmacol. 2015, 284, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Bendtsen, K.M.; Brostrøm, A.; Koivisto, A.J.; Koponen, I.; Berthing, T.; Bertram, N.; Kling, K.I.; Dal Maso, M.; Kangasniemi, O.; Poikkimäki, M.; et al. Airport emission particles: Exposure characterization and toxicity following intratracheal instillation in mice. Part. Fibre Toxicol. 2019, 16, 23. [Google Scholar] [CrossRef]
- Riley, K.; Cook, R.; Carr, E.; Manning, B. A systematic review of the impact of commercial aircraft activity on air quality near airports. City Environ. Interact. 2021, 11, 100066. [Google Scholar] [CrossRef] [PubMed]
- Othman, M.; Latif, M.T.; Hamid, H.H.A.; Uning, R.; Khumsaeng, T.; Phairuang, W.; Daud, Z.; Idris, J.; Sofwan, N.M.; Lung, S.-C.C. Spatial–temporal variability and health impact of particulate matter during a 2019–2020 biomass burning event in Southeast Asia. Sci. Rep. 2022, 12, 7630. [Google Scholar] [CrossRef] [PubMed]
Property | Prop. Info | Components | Comp. Info | Performance | Perf. Info |
---|---|---|---|---|---|
Type | Low-bypass turbofan | Compressor | Axial flow, 5-stage LP, 12-stage HP | Maximum thrust | 54 kN, with reheat 91.2 kN |
Length | 5.2 m | Combustors | 10 can-annular combustion chambers | Air mass flow | 92.53 kg/s |
Diameter | 1.1 m | Specific fuel consumption | 55.2 (g/kN)s with after burner, 17.8 (g/kN)s at military thrust | ||
Dry weight | 1856 kg | Turbine | 2-stage LP, 2-stage HP | Thrust-to-weight ratio | 5:1 |
Fuel | Replica | RPM | TNMHC | Std.err | SO2 | Std.err | NO2 | Std.err | CO2 | Std.err |
---|---|---|---|---|---|---|---|---|---|---|
% | mg/m3 | mg/m3 | µg/m3 | µg/m3 | µg/m3 | µg/m3 | mg/m3 | mg/m3 | ||
Fossil | I | 50 | 10.6 | 3.4 | 8.1 | 2.2 | 332 | 61 | 585 | 92 |
I | 70 | 9.8 | 4.7 | 14.9 | 1.4 | 710 | 146 | 1002 | 84 | |
II | 50 | 10.2 | 2.4 | 5.6 | 1.8 | 316 | 54 | 478 | 124 | |
II | 70 | 9.1 | 2.9 | 12.4 | 2.5 | 745 | 228 | 1057 | 219 | |
Biofuel | I | 50 | 10.9 | 2.5 | 105.7 | 9.1 | 467 | 100 | 687 | 212 |
I | 70 | 10.5 | 3.1 | 256.0 | 76.8 | 1231 | 210 | 1465 | 201 | |
II | 50 | 16.9 | 3.2 | 209.5 | 60.0 | 697 | 278 | 788 | 293 | |
II | 70 | 10.6 | 4.2 | 459.9 | 75.4 | 1521 | 190 | 1740 | 157 | |
III | 50 | 19.4 | 4.5 | 406.0 | 86.5 | 826 | 175 | 1069 | 351 | |
III | 70 | 13.7 | 4.9 | 662.6 | 72.8 | 1861 | 166 | 2004 | 121 | |
IV | 60 | 12.0 | 3.3 | 234.6 | 41.9 | 519 | 204 | 621 | 142 | |
IV | 95 | 7.7 | 1.6 | 455.5 | 68.6 | 1108 | 127 | 1334 | 139 |
Fuel | Replica | RPM | PM0.3 | Std.err | GMD | Std.err | PM0.3–1.7 | Std.err |
---|---|---|---|---|---|---|---|---|
% | #/cm3 | #/cm3 | nm | nm | #/cm3 | #/cm3 | ||
Fossil | I | 50 | 1.03 × 106 | 3.20 × 105 | 29.1 | 1.4 | 14.2 | 2.8 |
I | 70 | 1.66 × 106 | 2.47 × 105 | 23.3 | 1.5 | 23.1 | 5.5 | |
II | 50 | 1.17 × 106 | 2.01 × 105 | 28.7 | 1.1 | 13.5 | 2.4 | |
II | 70 | 2.00 × 106 | 3.00 × 105 | 22.9 | 2.4 | 25.8 | 10.6 | |
Biofuel | I | 50 | 2.62 × 106 | 1.93 × 105 | 24.0 | 1.2 | 13.0 | 2.9 |
I | 70 | 6.13 × 106 | 8.14 × 105 | 21.5 | 0.6 | 35.3 | 7.1 | |
II | 50 | 3.54 × 106 | 3.37 × 105 | 22.6 | 1.0 | 22.0 | 5.7 | |
II | 70 | 6.43 × 106 | 2.52 × 106 | 21.5 | 2.0 | 48.2 | 11.3 | |
III | 50 | 5.24 × 106 | 7.70 × 105 | 23.4 | 1.0 | 23.7 | 5.6 | |
III | 70 | 8.60 × 106 | 2.88 × 105 | 23.8 | 0.3 | 67.8 | 14.3 | |
IV | 60 | 2.89 × 106 | 5.12 × 105 | 22.3 | 1.8 | 29.1 | 6.5 | |
IV | 95 | 6.87 × 106 | 5.69 × 105 | 21.7 | 0.6 | 41.8 | 11.4 |
Fuel | Replica | RPM | OC | Std.err | EC | Std.err | TC | Std.err | EC/OC |
---|---|---|---|---|---|---|---|---|---|
% | µgC/m3 | ±µgC/m3 | µgC/m3 | ±µgC/m3 | µgC/m3 | ±µgC/m3 | |||
Fossil | I | 50 | 28.6 | 6.9 | 48.1 | 6.9 | 76.7 | 20.3 | 1.68 |
I | 70 | 35.4 | 11.0 | 25.3 | 11.6 | 60.7 | 34.9 | 0.71 | |
II | 50 | 24.9 | 8.3 | 59.1 | 7.4 | 106.3 | 31.8 | 2.37 | |
II | 70 | 37.6 | 10.4 | 26.3 | 13.8 | 63.9 | 39.6 | 0.70 | |
Biofuel | I | 50 | 64.7 | 8.7 | 52.7 | 7.9 | 117.4 | 23.9 | 0.81 |
I | 70 | 102.4 | 11.8 | 66.2 | 8.9 | 168.6 | 30.0 | 0.65 | |
II | 50 | 50.8 | 6.5 | 39.9 | 6.6 | 90.6 | 19.4 | 0.79 | |
II | 70 | 126.6 | 14.6 | 66.4 | 11.6 | 193.0 | 40.7 | 0.52 | |
III | 50 | 148.7 | 12.0 | 66.0 | 8.1 | 214.6 | 31.7 | 0.44 | |
III | 70 | 154.6 | 17.7 | 52.1 | 10.8 | 206.7 | 49.3 | 0.34 | |
IV | 60 | 101.3 | 9.8 | 37.2 | 6.2 | 138.5 | 27.4 | 0.37 | |
IV | 95 | 95.2 | 13.4 | 32.9 | 8.4 | 128.2 | 38.5 | 0.35 |
Fuel | Replica | NO2− | Std.err | NO3− | Std.err | SO42− | Std.err | NH4+ | Std.err |
---|---|---|---|---|---|---|---|---|---|
µg/m3 | ±µg/m3 | µg/m3 | ±µg/m3 | µg/m3 | ±µg/m3 | µg/m3 | ±µg/m3 | ||
Fossil | I | 36.0 | 1.0 | 7.5 | 0.4 | 0.35 | 0.01 | nd | nd |
II | 0.42 | 0.03 | nd | nd | |||||
Biofuel | I | 6.1 | 0.6 | 1.0 | 0.2 | nd | nd | ||
II | 1.9 | 0.3 | 0.43 | 0.03 | |||||
III | 1.5 | 0.2 | 0.38 | 0.02 | |||||
IV | 2.1 | 0.5 | 3.5 | 0.4 | 1.48 | 0.05 | |||
Background | 0.114 | 0.003 | 0.71 | 0.08 | 0.79 | 0.04 |
Fuel | Replica | NO2− | Std.err | NO3− | Std.err | SO42− | Std.err | NH4+ | Std.err |
---|---|---|---|---|---|---|---|---|---|
µg/m3 | ±µg/m3 | µg/m3 | ±µg/m3 | µg/m3 | ±µg/m3 | µg/m3 | ±µg/m3 | ||
Fossil | I | 15.8 | 0.3 | 7.8 | 0.4 | 17 | 0.4 | nd | nd |
II | 3.8 | 0.2 | 7 | 1 | 18 | 1 | nd | nd | |
Biofuel | I | 2.12 | 0.09 | 7 | 1 | 17 | 2 | nd | nd |
II | 13.7 | 0.3 | 9 | 1 | 18 | 0.4 | nd | nd | |
III | 33.2 | 0.7 | 17.9 | 0.4 | 21 | 0.5 | nd | nd | |
IV | 11.0 | 0.3 | 5.9 | 0.3 | 13 | 0.3 | nd | nd | |
Background | 7.34 | 0.2 | 4.3 | 0.2 | 8.7 | 0.7 | nd | nd |
Biofuel Blend | Fossil Fuel | Ratio Bio/Fossil | ||||
---|---|---|---|---|---|---|
50% | 70% | 50% | 70% | 50% | 70% | |
Average (quadratic error) | Average (quadratic error) | Average (quadratic error) | Average (quadratic error) | Average (quadratic error) | Average (quadratic error) | |
Total particle number Dp > 7nm (#/Kg) | 1.4 × 1016 (2.6 × 1015) | 1.4 × 1016 (2.6 × 1015) | 6.4 × 1015 (2.3 × 1015) | 5.6 × 1015 (1.2 × 1015) | 2.2 | 2.3 |
Total nanoparticles Dp < 40 nm (#/Kg) | 1.2 × 1016 (2.2 × 1015) | 1.2 × 1016 (2.2 × 1015) | 4.5 × 1015 (1.6 × 1015) | 4.5 × 1015 (1.2 × 1015) | 2.6 | 2.6 |
Total ultrafine particles 40 < Dp<100 nm (#/Kg) | 2.1 × 1015 (7.6 × 1014) | 2.1 × 1015 (7.6 × 1014) | 1.6 × 1015 (6.8 × 1014) | 9.1 × 1014 (2.7 × 1014) | 1.4 | 1.1 |
Accumulation-mode particles 100 < Dp < 300 nm (#/Kg) | 1.4 × 1014 (4.6 × 1013) | 1.4 × 1014 (4.6 × 1013) | 1.2 × 1014 (3.5 × 1013) | 1.0 × 1014 (4.5 × 1013) | 1.1 | 0.7 |
PM0.3, Dp > 300 nm (#/Kg) | 7.3 × 1010 (5.8 × 1010) | 7.3 × 1010 (5.8 × 1010) | 8.0 × 1010 (4.4 × 1010) | 7.5 × 1010 (3.0 × 1010) | 0.9 | 1.2 |
TNMHC (g/Kg) | 58.5 (22.0) | 58.5 (22.0) | 60.1 (23.8) | 28.9 (16.7) | 1 | 0.7 |
NO2 (mg/Kg) | 2460.4 (1229.2) | 2460.4 (1229.2) | 1867.5 (470.5) | 2225.0 (820.4) | 1.3 | 1.3 |
SO2 (mg/Kg) | 842.4 (309.4) | 842.4 (309.4) | 39.1 (16.4) | 41.9 (9.3) | 21.6 | 19.3 |
OC (mgC/Kg) | 313.6 (63.7) | 313.6 (63.7) | 153.7 (63.2) | 111.7 (46.3) | 2.0 | 2.1 |
EC (mgC/Kg) | 199.1 (50.8) | 115.2 (34.8) | 312.8 (59.7) | 78.9 (55.0) | 0.6 | 1.5 |
Exposure Dose (#/cm2) | Exposure Dose (µg/cm2) | ||||||
---|---|---|---|---|---|---|---|
Fuel | Replica | Total PM Dose | UFP Dose | UFP/PM | Total PM Dose | UFP Dose | UFP/PM |
I | 1.38 × 105 | 1.38 × 105 | 0.995 | 2.47 × 10−6 | 1.75 × 10−6 | 0.709 | |
Fossil | II | 1.68 × 105 | 1.67 × 105 | 0.996 | 2.66 × 10−6 | 1.96 × 10−6 | 0.738 |
I | 5.38 × 105 | 5.37 × 105 | 0.998 | 5.21 × 10−6 | 4.31 × 10−6 | 0.827 | |
Biofuel | II | 6.14 × 105 | 6.14 × 105 | 0.998 | 5.85 × 10−6 | 4.91 × 10−6 | 0.840 |
III | 6.79 × 105 | 6.78 × 105 | 0.998 | 7.46 × 10−6 | 6.52 × 10−6 | 0.873 | |
VI | 6.30 × 105 | 6.30 × 105 | 0.999 | 5.00 × 10−6 | 4.46 × 10−6 | 0.892 |
Fuel | Replica | TB Deposition (µg/cm2) | P Deposition (µg/cm2) |
---|---|---|---|
Background | I | 2.43 × 10−6 | 3.09 × 10−8 |
Fossil | I | 1.61 × 10−5 | 2.41 × 10−7 |
II | 1.69 × 10−5 | 2.57 × 10−7 | |
Biofuel | I | 3.18 × 10−5 | 5.00 × 10−7 |
II | 6.90 × 10−5 | 1.09 × 10−6 | |
III | 1.07 × 10−4 | 1.72 × 10−6 | |
Background | II | 2.54 × 10−6 | 3.36 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gualtieri, M.; Berico, M.; Grollino, M.G.; Cremona, G.; La Torretta, T.; Malaguti, A.; Petralia, E.; Stracquadanio, M.; Santoro, M.; Benassi, B.; et al. Emission Factors of CO2 and Airborne Pollutants and Toxicological Potency of Biofuels for Airplane Transport: A Preliminary Assessment. Toxics 2022, 10, 617. https://doi.org/10.3390/toxics10100617
Gualtieri M, Berico M, Grollino MG, Cremona G, La Torretta T, Malaguti A, Petralia E, Stracquadanio M, Santoro M, Benassi B, et al. Emission Factors of CO2 and Airborne Pollutants and Toxicological Potency of Biofuels for Airplane Transport: A Preliminary Assessment. Toxics. 2022; 10(10):617. https://doi.org/10.3390/toxics10100617
Chicago/Turabian StyleGualtieri, Maurizio, Massimo Berico, Maria Giuseppa Grollino, Giuseppe Cremona, Teresa La Torretta, Antonella Malaguti, Ettore Petralia, Milena Stracquadanio, Massimo Santoro, Barbara Benassi, and et al. 2022. "Emission Factors of CO2 and Airborne Pollutants and Toxicological Potency of Biofuels for Airplane Transport: A Preliminary Assessment" Toxics 10, no. 10: 617. https://doi.org/10.3390/toxics10100617
APA StyleGualtieri, M., Berico, M., Grollino, M. G., Cremona, G., La Torretta, T., Malaguti, A., Petralia, E., Stracquadanio, M., Santoro, M., Benassi, B., Piersanti, A., Chiappa, A., Bernabei, M., & Zanini, G. (2022). Emission Factors of CO2 and Airborne Pollutants and Toxicological Potency of Biofuels for Airplane Transport: A Preliminary Assessment. Toxics, 10(10), 617. https://doi.org/10.3390/toxics10100617