On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of ZnO-NP@SiO2-NP
2.2. Preparation of the Particle Suspensions
2.3. Morphological and Surface Characterization
2.4. Experimental Design
2.5. In Vitro and In Vivo Hazard Assessment
2.6. Cell Viability and Inflammatory Markers Release
2.7. Animal Care
2.8. Fish Embryo Acute Toxicity Test (FET)
2.9. Statistical Analysis
3. Results
3.1. ZnO-NP@SiO2-NP Characterization
3.2. In Vitro Toxicity
3.3. Aquatic Toxicity on Zebrafish Embryos—FET Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Nanoparticles | Biological Material | Reference |
---|---|---|
Organic and inorganic nanoparticles (NPs) | Adult Stem Cells (ASCs) | [50] |
Iron oxide nanoparticles (IONPs) | Primary cultures of brain cells | [51] |
Various types of nanoparticles | Cardiac stem cells | [52] |
Gold nanoparticles | breast cancer SK-BR-3 cells | [53] |
titanium dioxide (TiO2) nanoparticles | A549 cells | [54] |
ZnO nanoparticles | Caco-2 cells | [41] |
biosynthesized silver nanoparticles (ScAgNPs) | THP-1 cells | [55] |
Cerium dioxide nanoparticles (CeO2 NPs) | A549 cells and THP-1 cells (co-culture) | [56] |
Silver (Ag), titanium dioxide (TiO2), and zinc oxide (ZnO) nanoparticles | THP-1 cells | [57] |
Tantalum (Ta) and Titanium (TiO2) NPs | THP-1 cells | [58] |
Silver nanoparticle (AgNP) | THP-1 cells | [59] |
Polystyrene NP (PLNP) | A549 cells and THP-1 cells | [60] |
Amino-functionalized silicon nanoparticle (NH2SiNP) | MC3T3-E1 and PC12 cells and Danio rerio (embryos) | [61] |
Iron nanoparticles | Xenopus laevis (embryos) | [62] |
Titanium dioxide NPs (n-TiO(2)) | Danio rerio (embryos) | [63] |
Silicon dioxide nanoparticles (nano-SiO(2)) | Danio rerio (embryos) | [64] |
Ag nanoparticles (NPs), CuO NPs, silica NPs, polymeric NPs, quantum dots | Danio rerio (embryos) | [65] |
Zirconia oxide nanoparticles (ZrO2NPs) | Danio rerio (embryos) | [66] |
Polyethylene glycol (PEG)-modified SiNPs | Danio rerio (embryos) | [67] |
Silver (AgNPs), copper nanoparticles (CuNPs) | Danio rerio (embryos) | [68] |
Silver nanoparticles (Ag NPs) of three different sizes (10, 40, and 100 nm) | Danio rerio (embryos) | [69] |
Hollow selenium nanoparticles (hSeNPs) | Danio rerio (embryos) | [70] |
Copper oxide nanoparticles (CuO NPs) | Danio rerio (embryos) | [71] |
Synthetic silver nanoparticles (AgNPs) | Danio rerio (embryos) | [72] |
Fluorescently-labeled SiO2 NPs of 25 and 115 nm | Danio rerio (embryos) | [73] |
Citrate-functionalized IONPs (γ-Fe2O3) NPs | Danio rerio (embryos) | [74] |
Silver nanoparticles (AgNPs) | Danio rerio (embryos) | [48] |
Metal nanoparticles (Au, Ag, Cu), and metal oxide nanoparticles (TiO2, Al2 O3, CuO, NiO, ZnO) | Danio rerio (embryos) | [75] |
Zinc oxide nanoparticles (ZnONPs) | Danio rerio (embryos) | [76] |
Sliver nanoparticles (AgNPs) | Danio rerio (embryos) | [77] |
Zinc oxide nanoparticles (ZnONPs) | Marine Crustaceans | [78] |
References
- Il’in, V.M.; Rezova, A.K. Styrene Butadiene Rubber: Production Worldwide. Int. Polym. Sci. Technol. 2015, 42, 35–44. [Google Scholar] [CrossRef]
- Ranimol, S.; Thomas, S. Nanocomposites: State of the Art, New Challenges and Opportunities. In Rubber Nanocomposites: Preparation, Properties and Applications; Sabu, T., Ranimol, S., Eds.; John Wiley & Sons: Singapore, 2010. [Google Scholar]
- Varnava, C.K.; Patrickios, C.S. Polymer Networks One Hundred Years after the Macromolecular Hypothesis: A Tutorial Review. Polymer 2021, 215, 123322. [Google Scholar] [CrossRef]
- Kumar, S.K.; Benicewicz, B.C.; Vaia, R.A.; Winey, K.I. 50th Anniversary Perspective: Are Polymer Nanocomposites Practical for Applications? Macromolecules 2017, 50, 714–731. [Google Scholar] [CrossRef]
- Heinrich, G.; Klüppel, M.; Vilgis, T.A. Reinforcement of Elastomers. Curr. Opin. Solid State Mater. Sci. 2002, 6, 195–203. [Google Scholar] [CrossRef]
- Redaelli, M.; D’Arienzo, M.; Brus, J.; Di Credico, B.; Geppi, M.; Giannini, L.; Matejka, L.; Martini, F.; Panattoni, F.; Spirkova, M.; et al. On the Key Role of SiO2@POSS Hybrid Filler in Tailoring Networking and Interfaces in Rubber Nanocomposites. Polym. Test. 2018, 65, 429–439. [Google Scholar] [CrossRef]
- Scotti, R.; D’Arienzo, M.; Di Credico, B.; Giannini, L.; Morazzoni, F. Silica−Polymer Interface and Mechanical Reinforcement in Rubber Nanocomposites. In Hybrid Organic-Inorganic Interfaces: Towards Advanced Functional Materials; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Wang, Z.; Liu, J.; Wu, S.; Wang, W.; Zhang, L. Novel Percolation Phenomena and Mechanism of Strengthening Elastomers by Nanofillers. Phys. Chem. Chem. Phys. 2010, 12, 3014–3030. [Google Scholar] [CrossRef]
- Rishi, K.; Beaucage, G.; Kuppa, V.; Mulderig, A.; Narayanan, V.; McGlasson, A.; Rackaitis, M.; Ilavsky, J. Impact of an Emergent Hierarchical Filler Network on Nanocomposite Dynamics. Macromolecules 2018, 51, 7893–7904. [Google Scholar] [CrossRef]
- Coran, A.Y. Chemistry of the Vulcanization and Protection of Elastomers: A Review of the Achievements. J. Appl. Polym. Sci. 2003, 87, 24–30. [Google Scholar] [CrossRef]
- Junkong, P.; Morimoto, R.; Miyaji, K.; Tohsan, A.; Sakaki, Y.; Ikeda, Y. Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes. RSC Adv. 2020, 10, 4772–4785. [Google Scholar] [CrossRef] [Green Version]
- Mantecca, P.; Sancini, G.; Moschini, E.; Farina, F.; Gualtieri, M.; Rohr, A.; Miserocchi, G.; Palestini, P.; Camatini, M. Lung toxicity induced by intratracheal instillation of size-fractionated tire particles. Toxicol Lett. 2009, 189, 206–214. [Google Scholar] [CrossRef]
- Gualtieri, M.; Andrioletti, M.; Vismara, C.; Milani, M.; Camatini, M. Toxicity of tire debris leachates. Environ. Int. 2005, 31, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, M.; Andrioletti, M.; Mantecca, P.; Vismara, C.; Camatini, M. Impact of tire debris on in vitro and in vivo systems. Part Fibre Toxicol. 2005, 2, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baensch-Baltruschat, B.; Kocher, B.; Stock, F.; Reifferscheid, G. Tyre and road wear particles (TRWP)—A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment. Sci Total Environ. 2020, 733, 137823. [Google Scholar] [CrossRef] [PubMed]
- Magni, L.F.; Castro, L.N.; Rendina, A.E. Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: A case study in the Matanza-Riachuelo Basin, Argentina. Environ Res. 2021, 197, 110979. [Google Scholar] [CrossRef]
- EPA 745-B-00-017 (2000). Emergency Planning and Community Right to Know Act Section 313 Reporting Guidance for Rubber and Plastics Manufacturing. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1001V6L.txt (accessed on 10 November 2022).
- Mostoni, S.; Milana, P.; Di Credico, B.; D’Arienzo, M.; Scotti, R. Zinc-Based Curing Activators: New Trends for Reducing Zinc Content in Rubber Vulcanization Process. Catalysts 2019, 9, 664. [Google Scholar] [CrossRef] [Green Version]
- Mostoni, S.; D’Arienzo, M.; Di Credico, B.; Armelao, L.; Rancan, M.; Dirè, S.; Callone, E.; Donetti, R.; Susanna, A.; Scotti, R. Design of a Zn Single-Site Curing Activator for a More Sustainable Sulfur Cross-Link Formation in Rubber. Ind. Eng. Chem. Res. 2021, 60, 10180–10192. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, Y.; Xiong, Y. A functional modified graphene oxide/nanodiamond/nano zinc oxide composite for excellent vulcanization properties of natural rubber. RSC Adv. 2020, 10, 41857–41870. [Google Scholar] [CrossRef]
- Boopasiri, S.; Thaptong, P.; Sae-Oui, P.; Siriwong, C. Fabrication of zinc oxide-coated microcrystalline cellulose and its application in truck tire tread compounds. J. Appl. Polym. Sci. 2022, 139, e52701. [Google Scholar] [CrossRef]
- Susanna, A.; Armelao, L.; Callone, E.; Dirè, S.; D’Arienzo, M.; Di Credico, B.; Giannini, L.; Hanel, T.; Morazzoni, F.; Scotti, R. ZnO nanoparticles anchored to silica filler. A curing accelerator for isoprene rubber composites. Chem. Eng. J. 2015, 275, 245–252. [Google Scholar] [CrossRef]
- Susanna, A.; D’Arienzo, M.; Di Credico, B.; Giannini, L.; Hanel, T.; Grandori, R.; Morazzoni, F.; Mostoni, S.; Santambrogio, C.; Scotti, R. Catalytic effect of ZnO anchored silica nanoparticles on rubber vulcanization and cross-link formation. Eur. Polym. J. 2017, 93, 63–74. [Google Scholar] [CrossRef]
- REACH No. 1907/2006; European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Dehn: Neumarkt, Germany, 2006; pp. 1–849.
- OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials; No. 85. Evaluation of In Vitro Methods for Human Hazard Assessment Applied in the Oecd Testing Programme for the Safety of Manufactured Nanomaterials; OECD: Paris, France, 2018.
- OECD Environment Directorate Chemicals and Biotechnology Committee, Important Issues on Risk Assessment of Manufactured Nanomaterials Series on the Safety of Manufactured Nanomaterials No. 103; OECD: Paris, France, 2022.
- Gebel, T.; Foth, H.; Damm, G.; Freyberger, A.; Kramer, P.J.; Lilienblum, W.; Röhl, C.; Schupp, T.; Weiss, C.; Wollin, K.M.; et al. Manufactured nanomaterials: Categorization and approaches to hazard assessment. Arch. Toxicol. 2014, 88, 2191–2211. [Google Scholar] [CrossRef] [PubMed]
- Di Ianni, E.; Erdem, J.S.; Møller, P.; Sahlgren, N.M.; Poulsen, S.S.; Knudsen, K.B.; Zienolddiny, S.; Saber, A.T.; Wallin, H.; Vogel, U.; et al. In vitro-in vivo correlations of pulmonary inflammogenicity and genotoxicity of MWCNT. Part Fibre Toxicol. 2021, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, B.; Harper, B.; Brander, S.; Harper, S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. J. Hazard. Mater. 2022, 429, 128319. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Sekido, N.; Akahoshi, T.; Wada, T.; Mukaida, N.; Matsushima, K. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 1994, 56, 559–564. [Google Scholar] [CrossRef]
- Suffee, N.; Richard, B.; Hlawaty, H.; Oudar, O.; Charnaux, N.; Sutton, A. Angiogenic properties of the chemokine RANTES/CCL5. Biochem. Soc. Trans. 2011, 39, 1649–1653. [Google Scholar] [CrossRef] [Green Version]
- Haque, E.; Ward, A.C. Zebrafish as a Model to Evaluate Nanoparticle Toxicity. Nanomaterials 2018, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- OECD Guidelines for the Testing of Chemicals Fish Embryo Acute Toxicity (FET) Test; N. 236; OECD: Paris, France, 2013.
- Chen, E.Y.; Liu, W.F.; Megido, L.; Díez, P.; Fuentes, M.; Fager, C.; Olsson, E.; Gessner, I.; Mathur, S. Chapter 3—Understanding and Utilizing the Biomolecule/Nanosystems Interface. In Micro and Nano Technologies, Nanotechnologies in Preventive and Regenerative Medicine; Uskoković, V., Uskoković, D.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 207–297. ISBN 9780323480635. [Google Scholar] [CrossRef]
- Ahsan, S.M.; Rao, C.M.; Ahmad, M.F. Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. Adv. Exp. Med. Biol. 2018, 1048, 175–198. [Google Scholar] [CrossRef]
- Chahardehi, A.M.; Arsad, H.; Lim, V. Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants. Plants 2020, 9, 1345. [Google Scholar] [CrossRef]
- Scholz, S.; Fischer, S.; Gündel, U.; Küster, E.; Luckenbach, T.; Voelker, D. The zebrafish embryo model in environmental risk assessment-applications beyond acute toxicity testing. Environ. Sci. Pollut. Res. Int. 2008, 15, 394–404. [Google Scholar] [CrossRef]
- Braunbeck, T.; Kais, B.; Lammer, E.; Otte, J.; Schneider, K.; Stengel, D.; Strecker, R. The fish embryo test (FET): Origin, applications, and future. Environ. Sci. Pollut. Res. Int. 2015, 22, 16247–16261. [Google Scholar] [CrossRef]
- Molkenova, A.; Oteulina, Z.; Atabaev, T.S. Europium (III)-doped mesoporous silica nanoparticles (SiO2-Eu NPs) prepared via the soaking method. Results Mater. 2021, 11, 100209. [Google Scholar] [CrossRef]
- Shahabi, S.; Treccani, L.; Dringen, R.; Rezwan, K. Modulation of Silica Nanoparticle Uptake into Human Osteoblast Cells by Variation of the Ratio of Amino and Sulfonate Surface Groups: Effects of Serum. ACS Appl. Mater. Interfaces 2015, 7, 13821–13833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, G.; Cortinovis, C.; Moschini, E.; Bellitto, N.; Perego, M.C.; Albonico, M.; Astori, E.; Dalle-Donne, I.; Bertero, A.; Gedanken, A.; et al. Cytotoxic and proinflammatory responses induced by ZnO nanoparticles in in vitro intestinal barrier. J. Appl. Toxicol. 2019, 39, 1155–1163. [Google Scholar] [CrossRef] [PubMed]
- Vo, N.T.; Bufalino, M.R.; Hartlen, K.D.; Kitaev, V.; Lee, L.E. Cytotoxicity evaluation of silica nanoparticles using fish cell lines. In Vitro Cell. Dev. Biol. Anim. 2014, 50, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, F.; Samaei, M.R.; Hashemi, H.; Savardashtaki, A.; Azhdarpoor, A.; Fallahi, M.J.; Jalili, M.; Billet, S. The toxicity of SiO2 NPs on cell proliferation and cellular uptake of human lung fibroblastic cell line during the variation of calcination temperature and its modeling by artificial neural network. J. Environ. Health Sci. Eng. 2021, 19, 985–995. [Google Scholar] [CrossRef]
- Schiavo, S.; Oliviero, M.; Li, J.; Manzo, S. Testing ZnO nanoparticle ecotoxicity: Linking time variable exposure to effects on different marine model organisms. Environ. Sci. Pollut. Res. Int. 2018, 25, 4871–4880. [Google Scholar] [CrossRef]
- Lacave, J.M.; Retuerto, A.; Vicario-Parés, U.; Gilliland, D.; Oron, M.; Cajaraville, M.P.; Orbea, A. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos. Nanotechnology 2016, 27, 325102. [Google Scholar] [CrossRef]
- Kim, R.O.; Choi, J.S.; Kim, B.C.; Kim, W.K. Comparative Analysis of Transcriptional Profile Changes in Larval Zebrafish Exposed to Zinc Oxide Nanoparticles and Zinc Sulfate. Bull. Environ. Contam. Toxicol. 2017, 98, 183–189. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Li, N.-J.; Cheng, F.-Y.; Hsueh, J.-F.; Huang, C.-C.; Lu, F.-I.; Fu, T.-F.; Yan, S.-J.; Lee, Y.-H.; Wang, Y.-J. The Effect of the Chorion on Size-Dependent Acute Toxicity and Underlying Mechanisms of Amine-Modified Silver Nanoparticles in Zebrafish Embryos. Int. J. Mol. Sci. 2020, 21, 2864. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Tian, S.; Cai, Z. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS ONE 2012, 7, e46286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinho, S.; Macedo, M.H.; Rebelo, C.; Sarmento, B.; Ferreira, L. Stem cells as vehicles and targets of nanoparticles. Drug Discov. Today 2018, 23, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Willmann, W.; Dringen, R. How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don’t Forgets. Neurochem. Res. 2019, 44, 1330–1345. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Melnichenko, A.A.; Orekhov, A.N.; Bobryshev, Y.V. Engineered Nanoparticles: Their Properties and Putative Applications for Therapeutic Approaches Utilizing Stem Cells for the Repair of Atherosclerotic Disease. Curr. Drug Targets 2018, 19, 1639–1648. [Google Scholar] [CrossRef]
- Savage, D.T.; Hilt, J.Z.; Dziubla, T.D. In Vitro Methods for Assessing Nanoparticle Toxicity. Methods Mol. Biol. 2019, 1894, 1–29. [Google Scholar] [CrossRef]
- Bengalli, R.; Ortelli, S.; Blosi, M.; Costa, A.; Mantecca, P.; Fiandra, L. In Vitro Toxicity of TiO2:SiO2 Nanocomposites with Different Photocatalytic Properties. Nanomaterials 2019, 21, 1041. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, G.; Sundaramoorthy, A.; Shanmugam, N. Biosynthesis of Silver Nanoparticles from Leaf Extract of Salvia coccinea and Its Effects of Anti-inflammatory Potential in Human Monocytic THP-1 Cells. ACS Appl. Bio Mater. 2021, 20, 4–8442. [Google Scholar] [CrossRef]
- Cappellini, F.; Di Bucchianico, S.; Karri, V.; Latvala, S.; Malmlöf, M.; Kippler, M.; Elihn, K.; Hedberg, J.; Odnevall Wallinder, I.; Gerde, P.; et al. Dry Generation of CeO2 Nanoparticles and Deposition onto a Co-Culture of A549 and THP-1 Cells in Air-Liquid Interface-Dosimetry Considerations and Comparison to Submerged Exposure. Nanomaterials 2020, 10, 618. [Google Scholar] [CrossRef] [Green Version]
- Ndika, J.; Seemab, U.; Poon, W.L.; Fortino, V.; El-Nezami, H.; Karisola, P.; Alenius, H. Silver, titanium dioxide, and zinc oxide nanoparticles trigger miRNA/isomiR expression changes in THP-1 cells that are proportional to their health hazard potential. Nanotoxicology 2019, 13, 1380–1395. [Google Scholar] [CrossRef]
- Zhang, L.; Haddouti, E.M.; Beckert, H.; Biehl, R.; Pariyar, S.; Rüwald, J.M.; Li, X.; Jaenisch, M.; Burger, C.; Wirtz, D.C.; et al. Investigation of Cytotoxicity, Oxidative Stress, and Inflammatory Responses of Tantalum Nanoparticles in THP-1-Derived Macrophages. Mediat. Inflamm. 2020, 2020, 3824593. [Google Scholar] [CrossRef]
- Kettler, K.; Giannakou, C.; de Jong, W.H.; Hendriks, A.J.; Krystek, P. Uptake of silver nanoparticles by monocytic THP-1 cells depends on particle size and presence of serum proteins. J. Nanopart. Res. 2016, 18, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.H.; Thielbeer, F.; Jeong, J.; Han, Y.; Chankeshwara, S.V.; Bradley, M.; Cho, W.S. Dual contribution of surface charge and protein-binding affinity to the cytotoxicity of polystyrene nanoparticles in nonphagocytic A549 cells and phagocytic THP-1 cells. J. Toxicol. Environ. Health A 2016, 79, 925–937. [Google Scholar] [CrossRef] [PubMed]
- Calienni, M.N.; Lillo, C.R.; Prieto, M.J.; Gorojod, R.M.; Alonso, S.D.; Kotler, M.L.; Gonzalez, M.C.; Montanari, J. Comparative toxicity of PEG and folate-derived blue-emitting silicon nanoparticles: In vitro and in vivo studies. Nanomedicine 2019, 2019 14, 375–385. [Google Scholar] [CrossRef]
- Bonfanti, P.; Colombo, A.; Saibene, M.; Fiandra, L.; Armenia, I.; Gamberoni, F.; Gornati, R.; Bernardini, G.; Mantecca, P. Iron nanoparticle bio-interactions evaluated in Xenopus laevis embryos, a model for studying the safety of ingested nanoparticles. Nanotoxicology 2020, 14, 196–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Han, J.; Yang, L.; Li, S.; Guo, Y.; Zhou, B.; Wu, H. Impact of co-exposure to titanium dioxide nanoparticles and Pb on zebrafish embryos. Chemosphere 2019, 233, 579–589. [Google Scholar] [CrossRef]
- Zhu, B.; He, W.; Hu, S.; Kong, R.; Yang, L. The fate and oxidative stress of different sized SiO2 nanoparticles in zebrafish (Danio rerio) larvae. Chemosphere 2019, 225, 705–712. [Google Scholar] [CrossRef]
- Jia, H.R.; Zhu, Y.X.; Duan, Q.Y.; Chen, Z.; Wu, F.G. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J. Control Release 2019, 311–312, 301–318. [CrossRef]
- Karthiga, P.; Ponnanikajamideen, M.; Rajendran, S.; Gurusamy, A.; Rajeshkumar, S. Characterization and toxicology evaluation of zirconium oxide nanoparticles on the embryonic development of zebrafish, Danio rerio. Drug Chem. Toxicol. 2019, 42, 104–111. [Google Scholar] [CrossRef]
- Liang, S.; Chen, Y.; Zhang, S.; Cao, Y.; Duan, J.; Wang, Y.; Sun, Z. RhB-encapsulating silica nanoparticles modified with PEG impact the vascular endothelial function in endothelial cells and zebrafish model. Sci. Total Environ. 2020, 711, 134493. [Google Scholar] [CrossRef]
- Yen, H.J.; Horng, J.L.; Yu, C.H.; Fang, C.Y.; Yeh, Y.H.; Lin, L.Y. Toxic effects of silver and copper nanoparticles on lateral-line hair cells of zebrafish embryos. Aquat. Toxicol. 2019, 215, 105273. [Google Scholar] [CrossRef]
- Liu, X.; Dumitrescu, E.; Kumar, A.; Austin, D.; Goia, D.; Wallace, K.N.; Andreescu, S. Differential lethal and sublethal effects in embryonic zebrafish exposed to different sizes of silver nanoparticles. Environ. Pollut. 2019, 248, 627–634. [Google Scholar] [CrossRef]
- Chandramohan, S.; Sundar, K.; Muthukumaran, A. Hollow selenium nanoparticles from potato extract and investigation of its biological properties and developmental toxicity in zebrafish embryos. IET Nanobiotechnol. 2019, 13, 275–281. [Google Scholar] [CrossRef]
- Aksakal, F.I.; Ciltas, A. Impact of copper oxide nanoparticles (CuO NPs) exposure on embryo development and expression of genes related to the innate immune system of zebrafish (Danio rerio). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 223, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Ottoni, C.A.; Lima Neto, M.C.; Léo, P.; Ortolan, B.D.; Barbieri, E.; De Souza, A.O. Environmental impact of biogenic silver nanoparticles in soil and aquatic organisms. Chemosphere 2020, 239, 124698. [Google Scholar] [CrossRef]
- Vranic, S.; Shimada, Y.; Ichihara, S.; Kimata, M.; Wu, W.; Tanaka, T.; Boland, S.; Tran, L.; Ichihara, G. Toxicological Evaluation of SiO2; Nanoparticles by Zebrafish Embryo Toxicity Test. Int. J. Mol. Sci. 2019, 20, 882. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.C.; Gonçalves, B.B.; Brito, R.D.S.; Vieira, L.G.; Lima, E.C.O.; Rocha, T.L. Comparative developmental toxicity of iron oxide nanoparticles and ferric chloride to zebrafish (Danio rerio) after static and semi-static exposure. Chemosphere 2020, 254, 126792. [Google Scholar] [CrossRef]
- Bai, C.; Tang, M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J. Appl. Toxicol. 2020, 40, 37–63. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Y.; Yang, Y.C.; Wang, B.J.; Cheng, F.Y.; Lee, Y.L.; Lee, Y.H.; Wang, Y.J. Comparing different surface modifications of zinc oxide nanoparticles in the developmental toxicity of zebrafish embryos and larvae. Ecotoxicol. Environ. Saf. 2022, 243, 113967. [Google Scholar] [CrossRef]
- Lu, C.; Lv, Y.; Kou, G.; Liu, Y.; Liu, Y.; Chen, Y.; Wu, X.; Yang, F.; Luo, J.; Yang, X. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2022, 243, 113993. [Google Scholar] [CrossRef] [PubMed]
- Vimercati, L.; Cavone, D.; Caputi, A.; De Maria, L.; Tria, M.; Prato, E.; Ferri, G.M. Nanoparticles: An Experimental Study of Zinc Nanoparticles Toxicity on Marine Crustaceans. General Overview on the Health Implications in Humans. Front. Public Health 2020, 8, 192. [Google Scholar] [CrossRef] [PubMed]
ZnO-NP@SiO2-NPs Concentrations Used | |
A | 10 µg/mL of ZnO-NP@SiO2-NP (equivalent to 0.8 µg/mL of ZnO and 9.2 µg/mL of SiO2) |
B | 50 µg/mL of ZnO-NP@SiO2-NP—only in Zebrafish |
C | 100 µg/mL of ZnO-NP@SiO2-NP (equivalent to 8 µg/mL of ZnO and 92 µg/mL of SiO2) |
ZnO-NP Concentrations Used | |
A | 0.8 µg/mL of ZnO |
B | 4 µg/mL of ZnO—only in Zebrafish |
C | 8 µg/mL of ZnO |
SiO2-NPs Concentrations Used | |
A | 9.2 µg/mL of SiO2 |
B | 46 µg/mL of SiO2—only in Zebrafish |
C | 92 µg/mL of SiO2 |
ZnO-NP + SiO2-NPs Concentrations Used | |
A | 10 µg/mL of ZnO-NP + SiO2-NP (equivalent to 0.8 µg/mL of ZnO + 9.2 µg/mL of SiO2) |
B | 50 µg/mL of ZnO-NP + SiO2-NP—only in Zebrafish (equivalent to 4 µg/mL of ZnO + 46 µg/mL of SiO2) |
C | 100 µg/mL of ZnO-NP + SiO2-NP (equivalent to 8 µg/mL of ZnO + 92 µg/mL of SiO2) |
NPs (100 µg/mL) | Medium | Time (h) | z-Average (nm) ± SD | PdI ± SD |
---|---|---|---|---|
ZnO-NP@SiO2-NP | mQ | 0 | 331 ± 8 | 0.51 ± 0.08 |
FET | 0 | 330 ± 20 | 0.49 ± 0.04 | |
DMEM 1% FBS | 0 | 258 ± 1 | 0.48 ± 0.01 | |
2 | 330 ± 30 | 0.54 ± 0.05 | ||
Opti-MEM 1% FBS | 0 | 270 ± 10 | 0.47 ± 0.07 | |
2 | 240 ± 6 | 0.42 ± 0.02 | ||
ZnO-NP | mQ | 0 | 350 ± 30 | 0.58 ± 0.04 |
FET | 0 | 920 ± 40 | 0.5 ± 0.2 | |
DMEM 1% FBS | 0 | 400 ± 40 | 0.57 ± 0.03 | |
2 | 316 ± 4 | 0.41 ± 0.05 | ||
Opti-MEM 1% FBS | 0 | 390 ± 10 | 0.56 ± 0.03 | |
2 | 384 ± 6 | 0.56 ± 0.02 | ||
SiO2-NP | mQ | 0 | 229 ± 4 | 0.214 ± 0.002 |
FET | 0 | 225 ± 3 | 0.214 ± 0.002 | |
DMEM 1% FBS | 0 | 730 ± 20 | 0.54 ± 0.04 | |
2 | 2030 ± 30 | 0.46 ± 0.04 | ||
Opti-MEM 1% FBS | 0 | 420 ± 20 | 0.294 ± 0.006 | |
2 | 1150 ± 30 | 0.63 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bragato, C.; Mostoni, S.; D’Abramo, C.; Gualtieri, M.; Pomilla, F.R.; Scotti, R.; Mantecca, P. On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process. Toxics 2022, 10, 781. https://doi.org/10.3390/toxics10120781
Bragato C, Mostoni S, D’Abramo C, Gualtieri M, Pomilla FR, Scotti R, Mantecca P. On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process. Toxics. 2022; 10(12):781. https://doi.org/10.3390/toxics10120781
Chicago/Turabian StyleBragato, Cinzia, Silvia Mostoni, Christian D’Abramo, Maurizio Gualtieri, Francesca Rita Pomilla, Roberto Scotti, and Paride Mantecca. 2022. "On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process" Toxics 10, no. 12: 781. https://doi.org/10.3390/toxics10120781
APA StyleBragato, C., Mostoni, S., D’Abramo, C., Gualtieri, M., Pomilla, F. R., Scotti, R., & Mantecca, P. (2022). On the In Vitro and In Vivo Hazard Assessment of a Novel Nanomaterial to Reduce the Use of Zinc Oxide in the Rubber Vulcanization Process. Toxics, 10(12), 781. https://doi.org/10.3390/toxics10120781