The Effect of Mixing Milk of Different Species on Chemical, Physicochemical, and Sensory Features of Cheeses: A Review
Abstract
:1. Introduction
2. Effect on Biochemical and Physicochemical Cheese Characteristics
2.1. Cheese Proximate Composition
2.2. Lipolysis and Proteolysis in Cheese
2.3. Acidity and pH of Cheese
3. Sensory and Rheology Features of Cheese
4. Microbial Ecosystems of Cheese
5. Conclusions: Limitations and Future Trends
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2018. Available online: http://www.fao.org/faostat/fr/#data/QL (accessed on 16 September 2020).
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2014. Available online: http://www.fao.org/faostat/en/#data (accessed on 14 March 2019).
- Roberfroid, M. Functional food concept and its application to prebiotics. Dig. Liver Dis. 2002, 34, 105–110. [Google Scholar] [CrossRef]
- Ahmad, S.; Gaucher, I.; Rousseau, F.; Beaucher, E.; Piot, M.; Grongnet, J.F.; Gaucheron, F. Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow’s milk. Food Chem. 2008, 106, 11–17. [Google Scholar] [CrossRef]
- Fundora, O.G.; Lezcano, M.E.; Montejo, O.; Pompa, A.; Enriquez, N. A comparative study of milk composition and stability of Murrah river buffaloes and Holstein cows grazing star grass. Cuba. J. Agric. Sci. 2001, 35, 219–222. [Google Scholar]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010, 120, 544–551. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. The nutritional value of sheep milk. Int. J. Anim. Sci. 2001, 16, 253–268. [Google Scholar]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Albenzio, M.; Santillo, A. Biochemical characteristics of ewe and goat milk: Effect on the quality of dairy products. Small Rumin. Res. 2011, 101, 33–40. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Raynal-Ljutovac, K.; Gaborit, P.; Lauret, A. The relationship between quality criteria of goat milk, its technological properties and the quality of the final products. Small Rumin. Res. 2005, 60, 167–177. [Google Scholar] [CrossRef]
- Sheehan, J.J.; Patel, A.D.; Drake, M.A.; McSweeney, P.L.H. Effect of partial or total substitution of bovine for caprine milk on the compositional, volatile, non-volatile and sensory characteristics of semi-hard cheeses. Int. Dairy J. 2009, 19, 498–509. [Google Scholar] [CrossRef]
- Haenlein, G.F.W.; Anke, M. Mineral and trace element research in goats: A review. Small Rumin. Res. 2011, 95, 2–19. [Google Scholar] [CrossRef]
- Park, Y.W. Goat milk—Chemistry and nutrition. In Handbook of Milk of Non-Bovine Mammals, 2nd ed.; Park, Y.W., Min, D., Haenlein, G.F.W., Eds.; Blackwell Publishing: Oxford, UK, 2006; pp. 34–58. [Google Scholar]
- Silanikove, N.; Leitner, G.; Merin, U.; Prosser, C.G. Recent advances in exploiting goat’s milk: Quality, safety and production aspects. Small Rumin. Res. 2010, 89, 110–124. [Google Scholar] [CrossRef]
- Wendorff, W.L.; Haenlein, G.F.W. Sheep Milk–Composition and Nutrition. In Handbook of Milk of Non-Bovine Mammal; Park, Y.W., Min, D., Haenlein, G.F.W., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 210–221. [Google Scholar]
- Park, Y.W. Proteolysis and lipolysis of goat milk cheese. J. Dairy Sci. 2001, 84, 84–92. [Google Scholar] [CrossRef]
- Kindstedt, P.; Carić, M.; Milanović, S. Pasta-filata cheeses. Cheese Chem. Phys. Microbiol. 2004, 2, 251–277. [Google Scholar]
- Farah, Z.; Rettenmaier, R.; Atkins, D. Vitamin content of camel milk. Int. J. Vitam. Nutr. Res. 1992, 62, 30–33. [Google Scholar]
- Sawaya, W.N.; Khalil, J.K.; Al-Shalhat, A.; Al-Mohammad, H. Chemical composition and nutritional quality of camel milk. J. Food Sci. 1984, 49, 744–747. [Google Scholar] [CrossRef]
- Khalesi, M.; Salami, M.; Moslehishad, M.; Winterburn, J.; Moosavi-Movahedi, A.A. Biomolecular content of camel milk: A traditional superfood towards future healthcare industry. Trends Food Sci. Technol. 2017, 62, 49–58. [Google Scholar] [CrossRef]
- Derar, A.M.A.; El Zubeir, I.E.M. Evaluation of microbiological quality of white soft cheese manufactured from camel and sheep milk. Ann. Food Sci. Technol. 2013, 14, 304–311. [Google Scholar]
- Al-Saleh, A.A.; Metwalli, A.A.M.; Ismail, E.A. Physicochemical properties of probiotic frozen yoghurt made from camel milk. Int. J. Dairy Technol. 2011, 64, 557–562. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Alhammadi, A.; Gharsallaoui, A.; Hamed, F.; Ghnimi, S. Physicochemical, rheological, and micro-structural properties of yogurts produced from mixtures of camel and bovine milks. NFS J. 2020, 19, 26–33. [Google Scholar] [CrossRef]
- Faye, B.; Konuspayeva, G. The sustainability challenge to the dairy sector—The growing importance of non-cattle milk production worldwide. Int. Dairy J. 2012, 24, 50–56. [Google Scholar] [CrossRef]
- Scarpa, R.; Notaro, S.; Louviere, J.; Raffaelli, R. Exploring scale effects of best/worst rank ordered choice data to estimate benefits of tourism in Alpine grazing commons. Am. J. Agric. Econ. 2010, 93, 809–824. [Google Scholar] [CrossRef]
- López-Expósito, I.; Amigo, L.; Recio, I. A mini-review on health and nutritional aspects of cheese with a focus on bioactive peptides. Dairy Sci. Technol. 2012, 92, 419–438. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-López, C.; Vélez-Ruiz, J.F. Effect of Goat and Cow Milk Ratios on the Physicochemical, Rheological, and Sensory Properties of a Fresh Panela Cheese. J. Food Sci. 2018, 83, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, A.M.S.; Bezerril, F.F.; Madruga, M.S.; Batista, A.S.M.; Magnani, M.; Souza, E.L.; Queiroga, R.C.R.E. Nutritional and sensory characteristics of Minas fresh cheese made with goat milk, cow milk, or a mixture of both. J. Dairy Sci. 2013, 96, 7442–7453. [Google Scholar] [CrossRef]
- Do Egypto, R.D.C.R.; Santos, B.M.; Gomes, A.M.P.; Monteiro, M.J.; Teixeira, S.M.; De Souza, E.L.; Pereira, C.J.D.; Pintado, M.M.E. Nutritional, textural and sensory properties of Coalho cheese made of goats’, cows’ milk and their mixture. LWT Food Sci. Technol. 2013, 50, 538–544. [Google Scholar]
- Niro, S.; Fratianni, A.; Tremonte, P.; Sorrentino, E.; Tipaldi, L. Innovative Caciocavallo cheeses made from a mixture of cow milk with ewe or goat milk. J. Dairy Sci. 2014, 97, 1296–1304. [Google Scholar] [CrossRef] [Green Version]
- Shahein, M.R.; Hassanein, A.M.; Zayan, A.F. Evaluation of Soft Cheese Manufactured from Camel and Buffalo Milk. World J. Dairy Food Sci. 2014, 9, 213–219. [Google Scholar]
- Derar, A.M.A.; El Zubeir, I.E.M. Compositional Content of White Cheese Manufactured from mixtures of camel and sheep milk during storage. J. Food Nutr. Disord. 2014, 3, 1–5. [Google Scholar] [CrossRef]
- Siddig, S.M.; Sulieman, A.M.E.; Salih, Z.A.; Abdelmuhsin, A.A. Quality characteristics of white cheese (Jibnabeida) produced using camel milk and mixture of camel milk and cow milk. Int. J. Food Sci. Nutr. Eng. 2016, 6, 49–54. [Google Scholar]
- Mallatou, H.; Pappas, C.P.; Voutsinas, L.P. Manufacture of Feta Cheese from Sheep’s Milk, Goats’ Milk or Mixtures of these Milks. Int. Dairy J. 1994, 4, 641–664. [Google Scholar] [CrossRef]
- Freitas, A.C.; Malcata, F.X. Effects of different ripening procedures on the final characteristics of Picante cheese. Eur. J. Nutr. 1998, 207, 281–291. [Google Scholar] [CrossRef]
- Niro, S.; Succi, M.; Tremonte, P.; Sorrentino, E.; Coppola, R.; Panfili, G.; Fratianni, A. Evolution of free amino acids during ripening of Caciocavallo cheeses made with different milks. J. Dairy Sci. 2017, 100, 9521–9531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chacon-Villalobos, A.; Pineda-Castro, M.L. Chemical, physical and sensorial characteristics of goat cheese elaborated from a” Crottin de Chavignol” modified recipe. Agron. Mesoam. 2009, 20, 297–309. [Google Scholar]
- Freitas, C.; Malcata, F.X. Technological optimisation of Picante cheese using microbiological, chemical and physical criteria. J. Food Eng. 1999, 41, 163–175. [Google Scholar] [CrossRef]
- Freitas, A.C.; Fresno, J.M.; Prieto, B.; Malcata, F.X.; Carballo, J. Effects of ripening time and combination of ovine and caprine milks on proteolysis of Picante cheese. Food Chem. 1997, 60, 219–229. [Google Scholar] [CrossRef]
- Jenness, R. Composition and Characteristics of Goat Milk: Review 1968−1979. J. Dairy Sci. 1980, 63, 1605–1630. [Google Scholar] [CrossRef]
- Remeuf, F.; Lenoir, J. Relationship between the physico-chemical characteristics of goat’s milk and its rennetability. Int. Dairy Bull. 1986, 202, 68–72. [Google Scholar]
- Tziboula-Clarke, A. Goat milk. In Encyclopedia of Dairy Sciences; Roginski, H., Fuquay, J.W., Fox, P.F., Eds.; Academic Press: Cornwall, UK, 2003; pp. 1270–1279. [Google Scholar]
- Chandan, R.C.; Parry, R.M.; Shahani, K.M. Lysozyme, Lipase, and Ribonuclease in Milk of Various Species. J. Dairy Sci. 1968, 51, 606–607. [Google Scholar] [CrossRef]
- Juarez, M.; Ramos, M. Physico-chemical characteristics of goat’s milk as distinct from those of cow’s milk. Int. Dairy Fed. 1986, 202, 54–67. [Google Scholar]
- Farah, Z.; Ruegg, M. The Size Distribution of Casein Micelles in Camel Milk. Food Struct. 1989, 8, 211–216. [Google Scholar]
- Ramet, J.-P. The Technology of Making Cheese from Camel Milk (Camelus Dromedarius); Food & Agriculture Organization: Rome, Italy, 2001. [Google Scholar]
- Mehaia, M. Manufacture of fresh soft white cheese (Domiati type) from dromedary camel’s milk using ultrafiltration process. J. Food Technol. 2006, 4, 206–212. [Google Scholar]
- El Zubeir, I.E.; Jabreel, S.O. Fresh cheese from camel milk coagulated with Camifloc. Int. J. Dairy Technol. 2008, 61, 90–95. [Google Scholar] [CrossRef]
- El-Zeini, H.M. Microstructure, rheological and geometrical properties of fat globules of milk from different animal species. Polish J. Food Nutr. Sci. 2006, 15, 147–153. [Google Scholar]
- Walter, L.; Shrestha, P.; Fry, R.; Leury, B.J.; Logan, A. Lipid metabolic differences in cows producing small or large milk fat globules: Fatty acid origin and degree of saturation. J. Dairy Sci. 2020, 103, 1920–1930. [Google Scholar] [CrossRef]
- Horne, D.S.; Banks, J.M. Rennet-induced coagulation of milk. Cheese Chem. Phys. Microbiol. 2004, 1, 47–70. [Google Scholar]
- Vyhmeister, S.; Geldsetzer-Mendoza, C.; Medel-Marabolí, M.; Fellenberg, A.; Vargas-Bello-Pérez, E.; Ibáñez, R.A. Influence of using different proportions of cow and goat milk on the chemical, textural and sensory properties of Chanco–style cheese with equal composition. Food Sci. Technol. 2019, 112, 1–8. [Google Scholar] [CrossRef]
- Mallatou, H.; Pappa, E.; Massouras, T. Changes in free fatty acids during ripening of Teleme cheese made with ewes’, goats’, cows’ or a mixture of ewes’ and goats’ milk. Int. Dairy J. 2003, 13, 211–219. [Google Scholar] [CrossRef]
- Lucas, A.; Coulon, J.B.; Agabriel, C.; Chilliard, Y.; Rock, E. Relationships between the conditions of goat’s milk production and the contents of some components of nutritional interest in Rocamadour cheese. Small Rumin. Res. 2008, 74, 91–106. [Google Scholar] [CrossRef]
- Ceballos, L.S.; Morales, E.R.; De la Torre Adarve, G.; Castro, J.D.; Martínez, L.P.; Sampelayo, M.R.S. Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. J. Food Compos. Anal. 2009, 22, 322–329. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 2003, 86, 1751–1770. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Glasser, F.; Ferlay, A.; Bernard, L.; Rouel, J.; Doreau, M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci. Technol. 2007, 109, 828–855. [Google Scholar] [CrossRef]
- Barlowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional Value and Technological Suitability of Milk from Various Animal Species Used for Dairy Production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Saroha, V.; Kumar, D.; Sharma, A.; Jayakumar, S.; Tyagi, A.K.; Nagda, R.K.; Dixit, S.P. Sources of variation of fatty acids in milk of Indian goat. Double Helix Res. J. Biomed. Life Sci. 2014, 5, 352–361. [Google Scholar]
- Soyeurt, H.; Dardenne, P.; Gillon, A.; Croquet, C.; Vanderick, S.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation in fatty acid contents of milk and milk fat within and across breeds. J. Dairy Sci. 2006, 89, 4858–4865. [Google Scholar] [CrossRef]
- Qureshi, M.S.; Jan, S.; Mushtaq, A.; Rahman, I.U.; Jan, M. Effect of age on milk fatty acids in dairy bufffaloes. J. Anim. Plant. Sci. 2012, 22, 108–112. [Google Scholar]
- Chen, H.H.; Lee, Y.C.; Liu, C.S. Integrability of nonlinear hamiltonian systems by inverse scattering method. Phys. Scr. 1979, 20, 490–492. [Google Scholar] [CrossRef]
- Gnädig, S.; Chamba, J.-F.; Perreard, E.; Chappaz, S.; Chardigny, J.-M.; Rickert, R.; Steinhart, H.; Sébédio, J.-L. Influence of manufacturing conditions on the conjugated linoleic acid content and the isomer composition in ripened French Emmental cheese. J. Dairy Res. 2004, 71, 367–371. [Google Scholar] [CrossRef]
- El-Salam, M.H.A.; Alichanidis, E.; Zerfiridis, G.K. Domiati and Feta type cheeses. Cheese Chem. Phys. Microbiol. 1993, 301–335. [Google Scholar]
- Chandan, R.C.; Shahani, K.M.; Holly, R.G. Lysozyme content of human milk. Nature 1964, 204, 76–77. [Google Scholar] [CrossRef]
- Vlaemynck, G. Study of lipolytic activity of the lipoprotein lipase in lunch cheese of the Gouda type. Milchwissenschaft 1992, 47, 164–167. [Google Scholar]
- Pavia, M.; Trujillo, A.J.; Sendra, E.; Guamis, B.; Ferragut, V. Free fatty acid content of Manchego-type cheese salted by brine vacuum impregnation. Int. Dairy J. 2000, 10, 563–568. [Google Scholar] [CrossRef]
- Urbach, G. The flavour of milk and dairy products: II. Cheese: Contribution of volatile compounds. Int. J. Dairy Technol. 1997, 50, 79–89. [Google Scholar] [CrossRef]
- Freitas, A.C.; Malcata, F.X. Influence of milk type, coagulant, salting procedure and ripening time on the final characteristics of Picante cheese. Int. Dairy J. 1996, 6, 1099–1116. [Google Scholar] [CrossRef]
- Freitas, A.C.; Malcata, F.X.; Fresno, J.M.; Prieto, B.; Carballo, J. Proteolysis of Picante cheese: Effects of ripening time and combination of ovine and caprine milks. Basis Qual. Typ. Mediterr. Anim. Prod. 1998, 60, 277–282. [Google Scholar] [CrossRef]
- Mallatou, H.; Pappa, E.C.; Boumba, V.A. Proteolysis in Teleme cheese made from ewes’, goats’ or a mixture of ewes’ and goats’ milk. Int. Dairy J. 2004, 14, 977–987. [Google Scholar] [CrossRef]
- Molina, E.; Ramos, M.; Alonso, L.; Lo, R. Contribution of low molecular weight water soluble compounds to the taste of cheeses made of cows’, ewes’ and goats’ milk. Int. Dairy J. 1999, 9, 613–621. [Google Scholar] [CrossRef]
- Imm, J.Y.; Oh, E.J.; Han, K.S.; Oh, S.; Park, Y.W.; Kim, S.H. Functionality and Physico-Chemical Characteristics of Bovine and Caprine Mozzarella Cheeses during Refrigerated Storage. J. Dairy Sci. 2003, 86, 2790–2798. [Google Scholar] [CrossRef] [Green Version]
- Alichanidis, E.; Anifantakis, E.M.; Polychroniadou, A.; Nanou, M. Suitability of some microbial coagulants for Feta cheese manufacture. J. Dairy Res. 1984, 51, 141–147. [Google Scholar] [CrossRef]
- Hayaloglu, A.A.; Guven, M.; Fox, P.F. Microbiological, biochemical and technological properties of Turkish White cheese ‘Beyaz Peynir’. Int. Dairy J. 2002, 12, 635–648. [Google Scholar] [CrossRef]
- Grosclaude, F. Le polymorphisme génétique des principales lactoprotéines bovines. Relations avec la quantité, la composition et les aptitudes fromagères du lait. Prod. Anim. 1988, 1, 5–17. [Google Scholar] [CrossRef]
- Pierre, A.; Michel, F.; Le Graër, Y.; Zahoute, L. Casein micelle size in relation with casein composition and αs1, αs2, β and κ casein contents in goat milk. Lait 1998, 78, 591–605. [Google Scholar] [CrossRef] [Green Version]
- Trujillo, A.J.; Jordana, J.; Guamis, B.; Serradilla, J.M.; Amills, M. Polymorphism of the caprine α s1-casein gene and its effect on the production, composition and technological properties of milk and on cheese making and ripening. Food Sci. Technol. Int. 1998, 4, 217–235. [Google Scholar] [CrossRef]
- Abdelgawad, A.R.; Guamis, B.; Castillo, M. Using a fiber optic sensor for cutting time prediction in cheese manufacture from a mixture of cow, sheep and goat milk. J. Food Eng. 2014, 125, 157–168. [Google Scholar] [CrossRef]
- Yonas, H.; Eyassu, S.; Zelalem, Y. Physicochemical properties and consumer acceptability of soft unripened cheese made from camel milk using crude extract of ginger (Zingiber officinale) as coagulant. Afr. J. Food Sci. 2014, 8, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Haider, K.; Izhar, H.A.; Muhammad, A. Evaluation of Cheese Prepared by Processing Camel Milk. Pak. J. Zool. 2004, 36, 323–326. [Google Scholar]
- Tsigkros, D.; Folland, E.; Moate, R.; Brennan, C.S. Feta cheese texture: The effect of caprine and ovine milk concentration. Int. J. Dairy Technol. 2003, 56, 233–236. [Google Scholar] [CrossRef]
- Lucey, J.A.; Johnson, M.E.; Horne, D.S. Invited review: Perspectives on the basis of the rheology and texture properties of cheese. J. Dairy Sci. 2003, 86, 2725–2743. [Google Scholar] [CrossRef] [Green Version]
- Creamer, L.K.; Olson, N.F. Rheological Evaluation of Maturing Cheddar Cheese. J. Food Sci. 1982, 47, 631–636. [Google Scholar] [CrossRef]
- Kehagias, C.; Koulouris, S.; Samona, A.; Malliou, S.; Koumoutsos, G. Effect of various starters on the quality of cheese in brine. Food Microbiol. 1995, 12, 413–420. [Google Scholar] [CrossRef]
- Ahmed, N.H.; El Soda, M.; Hassan, A.N.; Frank, J. Improving the textural properties of an acid-coagulated (Karish) cheese using exopolysaccharide producing cultures. Food Sci. Technol. 2005, 38, 843–847. [Google Scholar] [CrossRef]
- Bugaud, C.; Buchin, S.; Coulon, J.-B.; Hauwuy, A.; Dupont, D. Influence of the nature of alpine pastures on plasmin activity, fatty acid and volatile compound composition of milk. Lait 2001, 81, 401–414. [Google Scholar] [CrossRef]
- Tunick, M.H. Rheology of dairy foods that gel, stretch, and fracture. J. Dairy Sci. 2000, 83, 1892–1898. [Google Scholar] [CrossRef]
- Niki, R.; Arima, S. Effects of size of casein micelle on firmness of rennet curd. Jpn. J. Zootech. Sci. 1984, 55, 409–415. [Google Scholar]
- Grandison, A.S.; Ford, G.D. Effects of variations in somatic cell count on the rennet coagulation properties of milk and on the yield, composition and quality of Cheddar cheese. J. Dairy Res. 1986, 53, 645–655. [Google Scholar] [CrossRef]
- Ekstrand, B.; Larsson-Raźnikiewicz, M.; Perlmann, C. Casein micelle size and composition related to the enzymatic coagulation process. Biochim. Biophys. Acta 1980, 630, 361–366. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Brinkhuis, J.; Payens, T.A.J. The Coagulation of Differently Sized Casein Micelles by Rennet. Eur. J. Biochem. 1981, 119, 257–261. [Google Scholar] [CrossRef]
- Kalantzopoulos, G. État de la recherche sur le lait de chèvre en Grèce. Lait 1993, 73, 431–441. [Google Scholar] [CrossRef]
- Remeuf, F. Physico-chemical properties of goat milk in relation to processing characteristics. In Proceedings of the National Symposium on Dairy Goat Production and Marketing, Oklahoma City, OK, USA, 12 August 1992; pp. 98–110. [Google Scholar]
- Karademir, E.; Atamer, M.; Tamucay, B.; Yaman, S. Some properties of goat milk yoghurts produced by different fortification methods. Milchwissenschaft 2002, 57, 261–263. [Google Scholar]
- Álvarez, S.; Fresno, M.; Méndez, P.; Castro, N.; Fernández, J.R.; Sampelayo, M.R.S. Alternatives for improving physical, chemical, and sensory characteristics of goat cheeses: The use of arid-land forages in the diet. J. Dairy Sci. 2007, 90, 2181–2188. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.F.; Cogan, T.M. Factors that Affect the Quality of Cheese. Cheese Chem. Phys. Microbiol. 2004, 1, 583–608. [Google Scholar]
- Verdier-Metz, I.; Pradel, P.; Monsallier, F.; Montel, M.-C. Effect of post-milking treatment on teat skin and milk microbial diversity of dairy cows. In Proceedings of the JM FAO 2014: Forages Resources and Ecosystem Services Provided by Mountain and Mediterranean Grasslands and Rangelands, Clermont-Ferrand, France, 24–26 June 2014. [Google Scholar]
- Metzger, S.A.; Hernandez, L.L.; Suen, G.; Ruegg, P.L. Understanding the milk microbiota. Vet. Clin. Food Anim. Pract. 2018, 34, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandraki, V.; Kazou, M.; Angelopoulou, A.; Arena, M.P.; Capozzi, V.; Russo, P.; Fiocco, D.; Spano, G.; Papadimitriou, K.; Tsakalidou, E. The microbiota of non-cow milk and products. In Non-Bovine Milk and Milk Products; Tsakalidou, E., Papadimitriou, K., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 117–159. [Google Scholar]
- Lamichhane, P.; Kelly, A.L.; Sheehan, J.J. Symposium review: Structure-function relationships in cheese. J. Dairy Sci. 2018, 101, 2692–2709. [Google Scholar] [CrossRef]
- Lei, T.; Sun, D.W. Developments of nondestructive techniques for evaluating quality attributes of cheeses: A review. Trends Food Sci. Technol. 2019, 88, 527–542. [Google Scholar] [CrossRef]
- Fugl, A.; Berhe, T.; Kiran, A.; Hussain, S.; Laursen, M.F.; Bahl, M.I.; Hansen, E.B. Characterization of lactic acid bacteria in spontaneously fermented caml milk and selection of strains for fermentation of camel milk. Int. Dairy J. 2017, 73, 19–24. [Google Scholar] [CrossRef]
- Nedović, V.; Raspor, P.; Lević, J.; Šaponjac, V.T.; Barbosa-Cánovas, G.V. (Eds.) Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Springer International Publishing: New York, NY, USA, 2016; pp. 257–268. [Google Scholar]
- Ranadheera, C.S.; Naumovski, N.; Ajlouni, S. Non-bovine milk products as emerging probiotic carriers: Recent developments and innovations. Curr. Opin. Food Sci. 2018, 22, 109–114. [Google Scholar] [CrossRef]
Product | Country | Milk Mixture | Milk Ratios Studied | Breed | Coagulation | Ripening/Storage | Weight | Cheese Shape/Mold Shape | Reference |
---|---|---|---|---|---|---|---|---|---|
Fresh Panela cheese | Mexico | CM and GM | 9CM:1GM, 1CM:1GM, 1.5CM:1GM, 1CM:1.5GM, 1CM:9GM (v/v) 1 | - | CHY-MAX and 10% CaCl2 | 15 days 4 °C | 280 g | Molds (14.5 × 10.5 × 0.8 cm) | Ramirez-Lopez and Vélez-Ruiz [28] |
Minas Fresh cheese | Brazil | CM and GM | Pure CM, pure GM and 1CM:1GM (v/v) 1 | Cow (Girolando breed) Goat (Alpine breed) | Starter culture DVS (R-704 Lactococcus lactis ssp. lactis and Lactococcus lactis ssp. Cremoris calcium chloride (0.5 mL/L) and 0.8 mL/L of commercial rennet (Hala) | 21 days at 4 °C | - | - | Sant’Ana et al. [29] |
Coalho cheese | Brazilian cheese | CM and EM | 1CM:1GM (v/v) 1 | - | Direct acidification (0.25 mL/L lactic acid), Calcium Chloride (0.5 mL/L), commercial rennet 0.9 mL/L HaLa, starter mesophilic lactic cultures (R-704 Lactococcus lactis subsp. Cremoris and L. lactis subsp. Lactis) | 28 days at 4 °C | 250 g | Rectangular container | Queiroga et al. [30] |
Semi-hard cheese | - | CM and GM | Pure CM, pure GM, 3CM:1GM, 1CM:1GM and 1CM:3GM (v/v) 1 | - | 0.15 g/L CHN-19 (Lactococcus lactis subsp. cremoris, L. lactis subsp. lactis, Leuconostoc mesenteroides subsp. cremoris and L. lactis subsp. Diacetylactis) and 0.067 g/L ST-M5 (Streptococcus thermophiles) Chymosin (Chymax plus) | 120 days at 12 °C | 2.5 kg molds | - | Sheehan et al. [12] |
Caciocavallo cheeses | - | CM, EM and GM | Pure CM, 4.55CM:1EM and 1.86CM:1GM (v/v) 1 | - | Innoculum with 1 U/100 L (commercial starter: Streptococcus thermophilus, Lactococcus lactis ssp. lactis and ssp. cremoris, Lactobacillus helveticus, Lactobacillus casei, and Lactobacillus delbrueckii ssp. bulgaricus), rennet (50 mL/100 L) | 60 days at 10 °C with a RH of 80% | 2 kg | Pear like shape | Niro et al. [31] |
Soft pickled cheese (i.e., Domiati) | Egypt | CaM and BM | Pure CaM, pure BM, 9CaM:1BM, 4CaM:1BM, 2,33CaM:1BM and 1.5CaM:1BM (v/v) 1 | - | 0.04% CaCl2 and rennet at a rate of 4 g/100 kg of milk | 60 days at 5 °C | - | - | Shahein et al. [32] |
Soft cheeses | Sudan | CaM and EM | Pure CaM, pure GM, 3CaM:1GM, 1CM:1EM and 1CM:3EM (v/v) 1 | - | Camifloc enzyme, calcium chloride, and sodium chloride | 21 days in the whey at room temperature (37 °C–40 °C). | - | - | Derar and El Zubeir [33] |
White soft cheese (Jibna-beida) | Sudan | CaM and CM | 1CaM:1CM (v/v) 1 | - | Citric acid or LAB starter culture, rennet was added at the rate of 0.15 mL/L of milk | 60–120 days at 4 °C | - | Blocks | Siddig et al. [34] |
Feta Cheese | Greece | GM and EM | Pure GM, pure EM, 1GM:1EM, 3GM:1EM and 1GM:3EM (v/v) 1 | - | Yogurt starter culture (Str. thermophilus and L. bulgaricus 1:1), HALA was added at 0.5% at 37–38 °C and left to ripen for 10 min. CaCl2 solution (10%) was added at a rate of 1 mL/kg of milk, followed by the addition of HALA commercial powder rennet. | 120 days at 2–3 °C | 1.2–1.3 kg | mold (12 × 10 × 10 cm) | Mallatou et al. [35] |
Picante cheese | Portugal | GM and EM | Pure GM, pure EM, 1GM:1EM, 3GM:1EM and 1GM:3EM (v/v) 1 | Goat (Chamequeira breed) ewe (Frfzia breed) | Animal rennet (without addition of a starter culture) | 0, 9, 25, 40, 55, 83, 110, 140, and 180 days | - | - | Freitas and Malcata [36] |
Product | Principal Conclusions | Reference |
---|---|---|
Caciocavallo cheese |
| Niro et al. [31], Niro et al. [37] |
Crottin de Chavignol cheese |
| Chacón-Villalobos and Pineda-Castro [38] |
Semi hard cheese |
| Queiroga et al. [30] |
| Sheehan et al. [12] | |
| Ramirez-Lopez and Vélez-Ruiz [28] | |
Soft Pickled cheese |
| Shahein et al. [32] |
White cheese |
| Derar and El Zubeir [22] |
| Siddig et al. [34] | |
Caciocavallo cheese |
| Niro et al. [37] |
Picante cheese |
| Freitas and Malcata [36], Freitas and Malcata [39] |
Minas fresh cheese |
| Sant’Ana et al. [29] |
Products | Principal Conclusion | Reference |
---|---|---|
Caciocavallo cheese |
| Niro et al. [31] |
Feta cheese |
| Mallatou et al. [35] |
Minas fresh cheese |
| Sant’Ana et al. [29] |
Caolho cheese |
| Queiroga et al. [30] |
Semi hard cheese |
| Ramirez-Lopez and Vélez-Ruiz [28], Sheehan et al. [12] |
Picante cheese |
| Freitas et al. [40] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boukria, O.; El Hadrami, E.M.; Boudalia, S.; Safarov, J.; Leriche, F.; Aït-Kaddour, A. The Effect of Mixing Milk of Different Species on Chemical, Physicochemical, and Sensory Features of Cheeses: A Review. Foods 2020, 9, 1309. https://doi.org/10.3390/foods9091309
Boukria O, El Hadrami EM, Boudalia S, Safarov J, Leriche F, Aït-Kaddour A. The Effect of Mixing Milk of Different Species on Chemical, Physicochemical, and Sensory Features of Cheeses: A Review. Foods. 2020; 9(9):1309. https://doi.org/10.3390/foods9091309
Chicago/Turabian StyleBoukria, Oumayma, El Mestafa El Hadrami, Sofiane Boudalia, Jasur Safarov, Françoise Leriche, and Abderrahmane Aït-Kaddour. 2020. "The Effect of Mixing Milk of Different Species on Chemical, Physicochemical, and Sensory Features of Cheeses: A Review" Foods 9, no. 9: 1309. https://doi.org/10.3390/foods9091309
APA StyleBoukria, O., El Hadrami, E. M., Boudalia, S., Safarov, J., Leriche, F., & Aït-Kaddour, A. (2020). The Effect of Mixing Milk of Different Species on Chemical, Physicochemical, and Sensory Features of Cheeses: A Review. Foods, 9(9), 1309. https://doi.org/10.3390/foods9091309