The Impact of Different Factors on the Quality and Volatile Organic Compounds Profile in “Bryndza” Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bryndza Cheese Samples
2.2. Determination of Physicochemical Properties
2.3. Microbiological Analysis
2.4. Analysis of Volatile Organic Compounds by Electronic Nose
2.5. Analysis of Volatile Organic Compounds by Gas Chromatography Mass Spectrometry
2.6. Statistical Analysis
3. Results
3.1. Physicochemical Properties of “Bryndza” Cheese
3.2. Microbiological Quality
3.3. Analysis of VOC
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zajác, P.; Martišová, P.; Čapla, J.; Čurlej, J.; Golian, J. Characteristics of textural and sensory properties of Oštiepok cheese. Potr. Slovak J. Food Sci. 2019, 13, 116–130. [Google Scholar] [CrossRef] [Green Version]
- Šnirc, M.; Árvay, J.; Král, M.; Jančo, I.; Zajác, P.; Harangozo, Ľ.; Benešová, L. Content of mineral elements in the traditional Oštiepok cheese. Biol. Trace Elem. Res. 2020, 196, 639–645. [Google Scholar] [CrossRef]
- Commission Regulation (Ec) No 676/2008 of 16 July 2008 registering certain names in the Register of protected designations of origin and protected geographical indications (Ail de la Drôme (PGI), Všestarská cibule (PDO), Slovenská bryndza (PGI), Ajo Morado de Las Pedroñeras (PGI), Gamoneu or Gamonedo (PDO), Alheira de Vinhais (PGI), Presunto de Vinhais Or Presunto Bísaro de Vinhais (PGI)), L189. Off. J. Eur. Union 2008, 51, 19–20.
- Sádecká, J.; Šaková, N.; Pangallo, D.; Koreňová, J.; Kolek, E.; Puškárová, A.; Bučková, M.; Valík, L.; Kuchta, T. Microbial diversity and volatile odour-active compounds of barrelled ewes´ cheese as an intermediate product that determines the quality of winter bryndza cheese. LWT Food Sci. Technol. 2016, 70, 237–244. [Google Scholar] [CrossRef]
- Šaková, N.; Sádecká, J.; Lejková, J.; Puškárová, A.; Koreňová, J.; Kolek, E.; Valík, Ľ.; Kuchta, T.; Pangallo, D. Characterization of May bryndza cheese from various regions in Slovakia based on microbiological, molecular and principal volatile odorants examination. J. Food Nutr. Res. Slovak 2015, 54, 239–251. [Google Scholar]
- Kačániová, M.; Nagyová, Ľ.; Štefániková, J.; Felšöciová, S.; Godočiková, L.; Haščík, P.; Horská, E.; Kunová, S. Characterization of bryndza cheese from different regions of Slovakia based on microbiological quality. Potr. Slovak J. Food Sci. 2020, 14, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Pangallo, D.; Šaková, N.; Koreňová, J.; Puškárová, A.; Kraková, L.; Valík, L.; Kuchta, T. Microbial diversity and dynamics durnig the production of May bryndza cheese. Int. J. Food Microbiol. 2014, 170, 38–43. [Google Scholar] [CrossRef]
- Ozturkoglu-Budak, S.; Wiebenga, A.; Bron, P.A.; de Vries, R.P. Protease and lipase activities of fungal and bacterial strains derived from an artisanal raw ewe’s milk cheese. Int. J. Food Microbiol. 2016, 237, 17–27. [Google Scholar] [CrossRef]
- Čaplová, Z.; Pangallo, D.; Kraková, L.; Puškárová, A.; Drahovská, H.; Bučková, M.; Koreňová, J.; Kuchta, T. Detection of genes prtP, pepN, pepX and bcaT involved in formation of aroma-active compounds in lactic acid bacteria from ewes´ cheese. J. Food Nutr. Res. Slovak 2018, 57, 195–200. [Google Scholar]
- Yvon, M.; Rijnen, L. Cheese flavor formation by amino acid catabolism. Int. Dairy J. 2001, 11, 185–201. [Google Scholar] [CrossRef]
- Dias, B.; Weimer, B. Conversion of methionine to thiols by Lactococci, Lactobacilli, and Brevibacteria. App. Environ. Microbiol. 1998, 64, 3320–3326. [Google Scholar] [CrossRef] [Green Version]
- Dias, B.; Weimer, B. Purification and characterization of L-Methionine g-lyase from Brevibacterium linens BL2. App. Environ. Microbiol. 1998, 64, 3327–3331. [Google Scholar] [CrossRef] [Green Version]
- Rijnen, L.; Delacroix-Buchet, A.; Demaizieres, D.; Le Quéré, J.L.; Gripon, J.C.; Yvon, M. Inactivation of lactococcal aromatic aminotransferase prevents the formation of floral aroma compounds from aromatic amino acids in semi-hard cheese. Int. Dairy J. 1999, 9, 877–885. [Google Scholar] [CrossRef]
- Bourdat-Deschamps, M.; Le Bars, D.; Yvon, M.; Chapot-Chartier, M.P. Autolysis of Lactococcus lactis AM2 stimulates the formation of certain aroma compounds from amino acids in a cheese model. Int. Dairy J. 2004, 14, 791–800. [Google Scholar] [CrossRef]
- Nierop-Groot, M.N.; de Bont, J.A.M. Conversion of phenylalanine to benzaldehyde initiated by an aminotransferase in Lactobacillus plantarum. App. Environ. Microbiol. 1998, 64, 3009–3013. [Google Scholar] [CrossRef] [Green Version]
- Nierop-Groot, M.N.; de Bont, J.A.M. Involvement of manganese in conversion of phenylalanine to benzaldehyde by lactic acid bacteria. App. Environ. Microbiol. 1999, 65, 5590–5593. [Google Scholar] [CrossRef] [Green Version]
- González-Martín, M.I.; Vivar-Quintana, A.M.; Revilla, I.; Salvador-Esteban, J. The determination of fatty acids in cheeses of variable composition (cow, ewe´s, and goat) by means of near infrared spectroscopy. Microchem. J. 2020, 156, 104854. [Google Scholar] [CrossRef]
- Signorelli, F.; Contarini, G.; Annicchiarico, G.; Napolitano, F.; Orrú, L.; Catillo, G.; Haenlein, G.F.W.; Moioli, B. Breed differences in sheep milk fatty acid profiles: Opportunities for sustainable use of animal genetic resources. Small Rumin. Res. 2008, 78, 24–31. [Google Scholar] [CrossRef]
- Erbay, Z.; Koca, N. Effects of using whey and maltodextrin in white cheese powder production on free fatty acid content, nonenzymatic browning and oxidation degree during storage. Int. Dairy J. 2019, 96, 1–9. [Google Scholar] [CrossRef]
- Sádecká, J.; Kolek, E.; Pangallo, D.; Valík, L.; Kuchta, T. Principal volatile odorants and dynamics of their formation during the production of May Bryndza cheese. Food Chem. 2014, 150, 301–306. [Google Scholar] [CrossRef]
- Boltar, I.; Čanžek Majhenič, A.; Jarni, K.; Jug, T.; Bavcon Krajl, M. Research of volatile compounds in cheese affected by different technological parameters. J. Food Nutr. Res. Slovak 2019, 58, 75–84. [Google Scholar]
- Štefániková, J.; Nagyová, V.; Hynšt, M.; Vietoris, V.; Martišová, P.; Nagyová, Ľ. Application of electronic nose for determination of Slovak cheese authentication based on aroma profile. Potr. Slovak J. Food Sci. 2019, 13, 262–267. [Google Scholar] [CrossRef] [Green Version]
- ISO. Cheese—Determination of Fat Content—Van Gulik Method. International Organization for Standardization; ISO 3433:2008; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- ISO. Cheese and Processed Cheese Determination of the Total Solids Content (Reference Method); ISO 5534:2004; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination—Part 5: Specific rules for the Preparation of Milk and Milk Products; ISO 6887-5:2010; International Organization for Standardization: Geneva, Switzerland, 2010. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique; ISO 4832:2006; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- ISO. Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Yeasts and Moulds. Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95; ISO 21527-1:2010; International Organization for Standardization: Geneva, Switzerland, 2010. [Google Scholar]
- ISO. Fermented Milk Products—Bacterial Starter Cultures—Standard of Identity; ISO 27205:2010; International IDF Standard: Brussels, Belgium, 2010. [Google Scholar]
- Tomáška, M.; Čaplová, Z.; Sádecká, J.; Šoltys, K.; Kopuncová, M.; Budiš, J.; Drončovský, M.; Kolek, E.; Koreňová, J.; Kuchta, T. Microorganisms and volatile aroma-active compounds in “nite” and “vojky” cheeses. J. Food Nutr. Res. Slovak 2019, 58, 187–200. [Google Scholar]
- Regulation no. 343/2016 of the Ministry of Agriculture and Rural Development of the Slovak Republic of 8 December 2016 on Certain Dairy Products. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2016/343/ (accessed on 6 July 2020).
- Planý, M.; Kuchta, T.; Šoltýs, K.; Semes, T.; Pangallo, D.; Siekel, P. Metagenomic analysis of Slovak bryndza cheese using nextgeneration 16SrDNA amplicon sequencing. Nova Biotechnol. Chim. 2016, 15, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Sádecká, J.; Čaplová, Z.; Tomáška, M.; Šoltys, K.; Kopuncová, M.; Budiš, J.; Drončovský, M.; Kolek, E.; Koreňová, J.; Kuchta, T. Microorganisms and volatile aroma-active compounds in bryndza cheese produced and marketed in Slovakia. J. Food Nutr. Res. Slovak 2019, 58, 382–392. [Google Scholar]
- Semjon, B.; Reitznerová, A.; Poláková, Z.; Výrostková, J.; Maľová, J.; Koréneková, B.; Dudriková, E.; Lovayová, V. The effect of traditional production methods on microbial, physico-chemical and sensory properties of Slevenska bryndza Pretected Geographical Indication cheese. Int. J. Dairy Technol. 2018, 71, 709–716. [Google Scholar] [CrossRef]
- Dudrikova, E. Hygienic and Technological Aspects of the Collection and Processing of Sheep´s Milk into the Mountain Conditions in Slovakia, 1st ed.; University of Veterinary Medicine and Pharmacy: Košice, Slovakia, 2011; p. 121. (In Slovak) [Google Scholar]
- Martin, N.H.; Trmčić, A.; Hsieh, T.H.; Boor, K.J.; Wiedmann, M. The evolving role of coliforms as indicators of unhygienic processing conditions in dairy foods. Front. Microbiol. 2016, 7, 1–8. [Google Scholar] [CrossRef]
- Vrabec, M.; Lovayová, V.; Dudriková, K.; Gallo, J.; Dudriková, E. Antibiotic reistance and prevalence of Enterococcus sp. and Escherichia coli isolated from bryndza cheese. Ital. J. Anim. Sci. 2015, 4, 609–614. [Google Scholar]
- Cocolin, L.; Foschino, R.; Comi, G.; Grazia Fortina, M. Description of the bacteriocins produced by two strains of Enterococcus faecium isolated from Italian goat milk. Food Microbiol. 2007, 24, 752–758. [Google Scholar] [CrossRef]
- Liu, S.Q.; Holland, R.; Crow, V.L. Esters and their biosynthesis in fermented dairy products: A review. Int. Dairy J. 2004, 14, 923–945. [Google Scholar] [CrossRef]
- Smit, G.; Smit, B.A.; Engels, W.J.M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microb. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef]
- Van Kranenburg, R.; Kleerebezem, M.; van Hylckama Vlieg, J.E.T.; Ursing, B.M.; Boekhorst, J.; Smit, B.A.; Ayad, E.H.E.; Smit, G.; Siezen, R.J. Flavour formation from amino acids by lactic acid bacteria: Predictions from genome sequence analysis. Int. Dairy J. 2002, 12, 111–121. [Google Scholar] [CrossRef]
- Koňuchová, M.; Liptáková, D.; Šípková, A.; Valík, Ľ. Role of Geotrichum candidum in Dairy Industry. Chem. Listy 2016, 110, 491–497. [Google Scholar]
- Jaster, H.; Judacewski, P.; Ribeiro, J.C.B.; Zielinski, A.A.F.; Demiate, I.M.; Los, P.R.; Alberti, A.; Nogueira, A. Quality assessment of the manufacture of new ripened soft cheese by Geotrichum candidum: Physico-chemical and technological properties. Food Sci. Technol. 2018, 39, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Kačániová, M.; Kunová, S.; Štefániková, J.; Felšöciová, S.; Godočíková, L.; Horská, E.; Nagyová, Ľ.; Haščík, P.; Terentjeva, M. Microbiota of the traditional Slovak sheep cheese “Bryndza”. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 482–486. [Google Scholar] [CrossRef]
- Yvon, M.; Thirouin, S.; Rijnen, L.; Fromentier, D.; Gripon, J.C. An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds. App. Environ. Microbiol. 1997, 63, 414–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanous, C.; Gori, A.; Rijnen, L.; Chambellon, E.; Yvon, M. Pathways for α-ketoglutarate formation by Lactococcus lactis and their in amino acid catabolism. Int. Dairy J. 2005, 15, 759–770. [Google Scholar] [CrossRef]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. App. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef]
- Delgado, F.J.; González-Crespo, J.; Cava, R.; García-Parra, J.; Ramírez, R. Characterization of the volatile profile of a Spanish ewe raw milk soft cheese P.D.O. Torta del Casar during ripening by SPME-GC-MS. Food Chem. 2010, 118, 182–189. [Google Scholar] [CrossRef]
- Delgado-Martínez, F.J.; Carrapiso, A.I.; Contador, R.; Rosario Ramírez, M. Volatile compounds and sensory changes after high pressure processing of mature “Torta del Casar” (raw ewe´s milk cheese) during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2019, 52, 34–41. [Google Scholar] [CrossRef]
- Majcher, M.A.; Goderska, K.; Pikul, J.; Jeleń, H.H. Changes in volatile, sensory and microbial profiles during preparation of smoked ewe cheese. J. Sci. Food Agric. 2011, 91, 1416–1423. [Google Scholar] [CrossRef]
- Nájera-Domínguez, C.; Gutiérrz-Méndez, N.; Nevárez-Moorillon, G.; Caro-Canales, I. Comparison of volatile compounds produced by wild Lactococcus lactis in miniature Chihuahua-type cheeses. Dairy Sci. Technol. 2015, 94, 499–516. [Google Scholar] [CrossRef] [Green Version]
- Passerini, D.; Laroute, V.; Coddeville, M.; Le Bourgeois, P.; Loubiere, P.; Ritzenthaler, P.; Cocaign-Bousquet, M.; Daveran-Mingot, M.L. New insights into Lactococcus lactis diacetyl- and acetoin producing strains isolated from diverse origins. Int. J. Food Microbiol. 2013, 160, 329–336. [Google Scholar] [CrossRef]
- Bozoudi, D.; Kondyli, E.; Claps, S.; Hatzikamari, M.; Michaelidou, A.; Biliaderis, C.G.; Litopoulou-Tzanetaki, E. Compositional characteristics and volatile organic compounds of traditional PDO feta cheese made in two different mountainous areas of Greece. Int. J. Dairy Technol. 2018, 71, 673–682. [Google Scholar] [CrossRef]
- Iussig, G.; Renna, M.; Gorlier, A.; Lonati, M.; Lussiana, C.; Battaglini, L.M.; Lombardi, G. Browsing ratio, species intake, and milk fatty acid composition of goats foraging on alpine open grassland and grazable forestland. Small Rumin. Res. 2015, 132, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Moran, L.; Aldezabal, A.; Aldai, N.; Barron, L.J.R. Terpenoid traceability of commercial sheep cheeses produced in mountain and valley farms: From pasture to mature cheeses. Food Res. Int. 2019, 126, 108669. [Google Scholar] [CrossRef]
- Cadwallader, K. Instrumental measurement of milk flavour and colour. In Improving the Safety and Quality of Milk, 1st ed.; Griffiths, M.W., Ed.; Woodhead Publishing: New York, NY, USA, 2010; Volume 2, pp. 181–206. [Google Scholar]
- Wang, H.; Wang, Y.; Huang, A. Influence of Dregea sinensis Hemsl. protease on the quality of mozzarella cheese from buffalo milk. Emir. J. Food Agric. 2017, 29, 539–546. [Google Scholar] [CrossRef]
- Ghasemi-Varnamkhasti, M.; Mohammad-Razdari, A.; Yoosefian, S.H.; Izadi, Z.; Siadat, M. Aging discrimination of French cheese types based on the optimization of an electronic nose using multivariate computational approaches combined with response surface method (RSM). LWT 2019, 111, 85–98. [Google Scholar] [CrossRef]
- Trihaas, J.; Vognsen, L.; Nielsen, P.V. Electronic nose: New tool in modelling the ripening of Danish blue cheese. Int. Dairy J. 2005, 15, 679–691. [Google Scholar] [CrossRef]
- Cevoli, C.; Cerretani, L.; Gori, A.; Caboni, M.F.; Gallina Toschi, T.; Fabbri, A. Classification of Pecorino cheeses using electronic nose combined with artificial neural network and comparison with GC–MS analysis of volatile compounds. Food Chem. 2011, 129, 1315–1319. [Google Scholar] [CrossRef]
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | |
---|---|---|---|---|---|---|---|---|
Ewe’s Milk | 100% | 100% | min 50% | 100% | min 50% or 100% | 100% | 100% | min 50% |
Raw/Pasteurized Milk | R | R | ewes´ R cows´ P | R | P | R | R | P |
Dry Matter | min 44% | UL | min 44% | UL | min 44%, 48% | 44% | min 48% | min 44% |
Fat in Dry Matter | min 48% | UL | min 48% | UL | min 48% | 48% | min 48% | min 48% |
NaCl | max 2.5% | max 2.5% | max 2.5% | UL | max 2.5% | max 2% | max 2.5% | 1.9% |
Producing Area of Slovakia | middle | middle | middle | west | middle | east | middle | middle |
Package | plastic foil | plastic foil | plastic foil | plastic foil | paper + aluminium foil | plastic container | plastic foil | plastic foil |
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | |
---|---|---|---|---|---|---|---|---|
F (%) | 24.8 ± 2.1 | 24.9 ± 1.6 | 19.4 ± 2.5 | 24.8 ± 1.3 | 24.3 ± 3.3 | 26.4 ± 0.4 | 26.3 ± 3.1 | 22.4 ± 0.5 |
DM (%) | 47.7 ± 1.1 | 48.9 ± 1.4 | 42.5 ± 2.0 | 54.1 ± 2.8 | 49.3 ± 2.7 | 52.0 ± 1.4 | 53.1 ± 2.2 | 45.5 ± 1.1 |
FDM (%) | 51.8 ± 3.4 | 50.9 ± 2.2 | 45.6 ± 4.5 | 45.8 ± 1.4 | 49.1 ± 3.9 | 50.8 ± 0.9 | 49.5 ± 4.0 | 49.4 ± 1.3 |
pH | 5.24 ± 0.2 | 5.09 ± 0.1 | 5.34 ± 0.1 | 5.24 ± 0.1 | 5.14 ± 0.1 | 5.21 ± 0.1 | 5.26 ± 0.2 | 5.24 ± 0.1 |
B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | |
---|---|---|---|---|---|---|---|---|
CB | 3.77 | 3.46 | 6.01 | 6.78 | 3.72 | 6.22 | 5.27 | <1 |
E | 5.35 | 7.36 | 7.35 | 7.34 | 4.59 | 7.19 | 6.47 | 2.37 |
PL | 8.36 | 9.15 | 8.98 | 9.03 | 8.98 | 8.52 | 8.59 | 7.17 |
PLb | 7.73 | 8.98 | 8.69 | 8.76 | 8.48 | 8.35 | 8.32 | 6.56 |
Y | 6.62 | 6.21 | 6.26 | 4.65 | 6.52 | 5.96 | 6.19 | 5.80 |
DG | 5.75 | 5.20 | 5.11 | 4.33 | 5.93 | 5.49 | 6.06 | 5.24 |
Volatile Organic Compounds | Kovats´ Retention Index DB-5 Column | Kovats´ Retention Index DB-1701 Column | Sensory Descriptor 1 | |
---|---|---|---|---|
Ketones | 2-butanone | 594 | 690 | butter, cheese, chemical, chocolate, ethereal, gaseous |
2,3-butanonedione | 589 | 690 | butter, caramelized, creamy, fruity, pineapple, spirit | |
Aldehyde | propanal | 489 | 579 | ethereal, plastic, pungent, solvent |
butanal | 578 | 668 | chocolate, green, malty, pungent | |
heptanal | 901 | 986 | citrus, fatty, fruity, green, smoky | |
2-methyl propanal | 522 | 626 | brunt, fruity, green, toasted, spicy, malty, pungent | |
furfural | 836 | 978 | almond, bread, sweet | |
Esters | ethyl acetate | 614 | 677 | acidic, butter, caramelized, fruity, orange, pineapple, pungent, solvent, ethereal, sweet |
butyl acetate | 813 | 879 | banana, bitter, ethereal, green, strong, fruity, pear, pineapple, sweaty, sweet | |
ethyl butanoate | 800 | 865 | acetone, banana, bubblegum, caramelized, fruity, pineapple, strawberry, sweet | |
isoamyl acetate | 876 | 945 | banana, fresh, fruity, pear, sweet | |
ethyl propanoate | 710 | 766 | acetone, fruity, solvent | |
methyl 2-methyl butanoate | 774 | 840 | apple, chewing gum, fruity, solvent, spirit | |
Alcohols | 2-methyl propanol | 626 | 736 | alcoholic, bitter, chemical, glue, leek, lecorice, solvent, winey |
2-propanol | 500 | 602 | alcoholic, ethereal | |
n–butanol | 664 | 779 | cheese, fermented, fruity, medicinal | |
1-hexanol | 868 | 980 | dry, floral, fruity, grassy, green, herbaceous, mild woody | |
Free Fatty Acids | propanoic acid | 739 | 889 | acidic, pungent, rancid, soy |
hexanoic acid | 996 | 1186 | cheese, fatty, goat, pungent, rancid, sweaty | |
Monoterpenes | limonene | 1049 | 1073 | citrus, fruity, minty, orange, peely |
Volatile Organic Compounds (TIC% Area) | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | |
---|---|---|---|---|---|---|---|---|---|
Alcohols | isoamyl alcohol a,2 | 5.20 | 4.64 | 4.07 | 3.22 | 10.6 | 4.34 | 2.86 | 4.56 |
2,7-dimethyl-4,5-octandiol a | 1.19 | 1.39 | 1.01 | 1.06 | ND 3 | 0.93 | 0.72 | 0.94 | |
2,3-butanediol | 1.19 | 1.60 | 3.30 | 3.94 | 2.55 | 2.03 | 1.40 | 2.56 | |
β-phenyl ethanol a,b | 0.72 | 0.75 | 6.73 | 0.97 | 2.40 | 1.52 | 1.07 | 6.82 | |
dl-erythro-1-phenyl-1,2-propanediol a | 1.78 | 0.64 | 0.71 | 0.60 | ND | ND | ND | ND | |
1-methoxy 2-propanol | ND | ND | ND | ND | 1.59 | ND | ND | ND | |
2-butanol | ND | ND | ND | 12.36 | ND | ND | ND | ND | |
Aldehyde | Benzaldehyde a | 2.04 | 0.79 | 0.55 | 0.48 | ND | ND | 0.62 | ND |
Ketones | acetoin | 6.16 | 11.3 | 11.8 | 15.2 | 18.5 | 20.7 | 18.9 | 10.6 |
2,3-butanedione b | ND | 2.55 | 3.55 | 1.95 | 2.39 | 1.31 | 3.15 | 3.24 | |
2-butanone | ND | ND | ND | 16.47 | ND | ND | 2.77 | ND | |
Free fatty acids | acetic acid | 7.42 | 10.4 | 9.87 | 11.3 | 9.42 | 7.97 | 8.95 | 8.74 |
butanoic acid a | 4.33 | 4.02 | 2.00 | 1.80 | 2.45 | 3.01 | 5.88 | ND | |
pentanoic acid a | 1.15 | 1.50 | 1.00 | ND | 0.74 | 0.74 | 1.37 | 2.69 | |
hexanoic acid a | 3.71 | 4.04 | 3.74 | 2.85 | 3.96 | 3.94 | 6.98 | 3.66 | |
octanoic acid | ND | 1.76 | 1.97 | 1.37 | 4.18 | 3.55 | 4.23 | 1.52 | |
n-decanoic acid | ND | ND | ND | ND | 2.51 | ND | 2.37 | ND | |
Esters | ethyl acetate | 3.10 | 5.26 | 6.10 | 3.63 | 3.63 | 8.07 | ND | 4.65 |
2-phenetyl acetate a,b | 0.93 | 1.37 | 8.07 | 0.85 | ND | 0.60 | ND | 3.34 | |
acetoin acetate a | ND | 0.77 | 1.97 | ND | 1.14 | 0.90 | ND | 1.05 | |
isoamyl acetate | ND | ND | 1.76 | ND | ND | ND | ND | 3.04 | |
Monoterpenes | D-limonene a,b | 1.05 | 0.76 | 0.50 | ND | ND | ND | 0.71 | ND |
Oxime | phenyl-methoxy-oxime | 8.54 | 5.69 | 4.40 | 4.33 | 4.20 | 3.74 | 4.46 | 5.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štefániková, J.; Ducková, V.; Miškeje, M.; Kačániová, M.; Čanigová, M. The Impact of Different Factors on the Quality and Volatile Organic Compounds Profile in “Bryndza” Cheese. Foods 2020, 9, 1195. https://doi.org/10.3390/foods9091195
Štefániková J, Ducková V, Miškeje M, Kačániová M, Čanigová M. The Impact of Different Factors on the Quality and Volatile Organic Compounds Profile in “Bryndza” Cheese. Foods. 2020; 9(9):1195. https://doi.org/10.3390/foods9091195
Chicago/Turabian StyleŠtefániková, Jana, Viera Ducková, Michal Miškeje, Miroslava Kačániová, and Margita Čanigová. 2020. "The Impact of Different Factors on the Quality and Volatile Organic Compounds Profile in “Bryndza” Cheese" Foods 9, no. 9: 1195. https://doi.org/10.3390/foods9091195
APA StyleŠtefániková, J., Ducková, V., Miškeje, M., Kačániová, M., & Čanigová, M. (2020). The Impact of Different Factors on the Quality and Volatile Organic Compounds Profile in “Bryndza” Cheese. Foods, 9(9), 1195. https://doi.org/10.3390/foods9091195