Application of Recombined Milk to Produce Crescenza-Type Cheese in Laboratory-Scale Cheesemaking: Implications on Technology and Sensory Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Evaluation of Renneting Properties of the Milk Powder (MP)
2.2. Preparation of Recombined Milk (RM)
2.3. Set Up of a Laboratory Cheesemaking System
2.4. Crescenza-Type Cheeses with 40% RM and Technology Optimization
2.5. Cheese Composition and Yield
2.6. Sensory Analysis
2.7. Statistical Analysis
3. Results
3.1. Validation of the Lab-Cheesemaking System
3.2. Evaluation of the Renneting Properties of RM
3.3. Effect of Different Blends of RM: Fresh Milk on the Cheese-Making Process and Cheese Composition
3.4. Crescenza-Type Cheeses with 40% RM and Technology Adaptation
3.5. Sensory Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Korotkaya, E.V.; Korotkiy, I.A.; Uchaykin, A.V. Water purification by separate freezing in reconstituted milk production. Food Process. Tech. Technol. 2018, 50, 133–139. [Google Scholar]
- Sharma, A.; Jana, A.H.; Chavan, R.S. Functionality of milk powders and milk-based powders for end use applications—A Review. Compr. Rev. Food Sci. Saf. 2012, 11, 518–528. [Google Scholar] [CrossRef]
- Hofi, A.A.; Magdoub, M.N.I.; Abd’el-Hamid, L.B.; Osman, S.G. A new type of semi-hard cheese from recombined milk. Int. J. Food Sci. Technol. 2007, 18, 711–718. [Google Scholar] [CrossRef]
- El Shiekh, M.; Ducruet, P.; Maubois, J.L. Manufacture of Ras cheese from fresh and recombined milks. Lait 1994, 74, 297–305. [Google Scholar] [CrossRef]
- Ismail, M.M. Manufacture of Domiatti cheese from reconstituted skim milk and different types of cream. Egypt. J. Dairy Sci. 2005, 33, 247–259. [Google Scholar]
- Garem, A.; Schuck, P.; Maubois, J.L. Cheesemaking properties of a new dairy-based powder made by a combination of microfiltration and ultrafiltration. Lait 2000, 80, 25–32. [Google Scholar] [CrossRef]
- Lelievre, J.; Shaker, R.R.; Taylor, M.W. The role of homogenization in the manufacture of halloumi and mozzarella cheese from recombined milk. J. Soc. Dairy Technol. 1990, 43, 21–24. [Google Scholar] [CrossRef]
- Jensen, G.K.; Nielsen, P. Reviews of the progress of dairy science: Milk powder and recombination of milk and milk products. J. Dairy Res. 1982, 49, 515–554. [Google Scholar] [CrossRef]
- Kelly, P.M. Innovation in milk powder technology. Int. J. Dairy Technol. 2006, 59, 70–75. [Google Scholar] [CrossRef]
- Lamano, R.J.L.; Oliveros, M.C.R.; Sarmago, I.G.; Magpantay, V.A.; Lapitan, R.M. Chemical, functional and sensory qualities of mozzarella cheese made from combinations of buffalo’s milk and reconstituted skim milk. Philipp. J. Vet. Anim. Sci. 2013, 39, 229–236. [Google Scholar]
- Davide, C.L.; Sarmago, I.G.; Rocafort, R.F. Developments of natural part skim mozzarella-type cheese for the pizza industry. Philipp. Agric. 1993, 76, 21–34. [Google Scholar]
- Assolatte. Industria Lattiero-Caseari Italiana—Rapporto 2018. Available online: http://www.assolatte.it/zpublish/4/uploads/4/news_down/15641362883148578112_RAPPORTO%20ASSOLATTE%202018.pdf (accessed on 19 June 2019).
- Kuramoto, S.; Jenness, R.; Coulter, S.T.; Choi, R.P. Standardization of the Harland-Ashworth test for whey protein nitrogen. J. Dairy Sci. 1959, 42, 28–38. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990; Volume 1. [Google Scholar]
- Aleandri, R.; Schneider, J.C.; Buttazzoni, L. Evaluation of milk for cheese production based on milk characteristics and Formagraph measures. J. Dairy Sci. 1989, 72, 1967–1975. [Google Scholar] [CrossRef]
- ISO 5534: 2004. Cheese and processed cheese—Determination of the total solids content (Reference Method). Available online: www.iso.org/standard/35249.html (accessed on 19 June 2019).
- Bouzas, J.; Kantt, C.A.; Bodyfelt, F.; Torres, J.A. Simultaneous determination of sugars and organic acids in Cheddar cheese by High Performance Liquid Chromatography. J. Food Sci. 1991, 56, 276–278. [Google Scholar] [CrossRef]
- Alinovi, M.; Cordioli, M.; Francolino, S.; Locci, F.; Ghiglietti, R.; Monti, L.; Tidona, F.; Mucchetti, G.; Giraffa, G. Effect of fermentation-produced camel chymosin on quality of Crescenza cheese. Int. Dairy J. 2018, 84, 72–78. [Google Scholar] [CrossRef]
- Lawless, H.T.; Heymann, H. Discrimination testing. In Sensory Evaluation of Food: Principles and Practices; Lawless, T.H., Heymann, H., Eds.; Chapman & Hall: New York, NY, USA, 1998; pp. 79–100. [Google Scholar]
- UNI (Ente italiano di unificazione) 10535. Formaggio Crescenza o Stracchino—Definizione, Composizione, Caratteristiche; UNI: Milan, Italy, 2013. [Google Scholar]
- Sikand, V.; Tong, P.S.; Walker, J. Impact of protein standardization of milk powder with lactose or permeate on whey protein itrogen index and heat classification. Dairy Sci. Technol. 2008, 88, 105–120. [Google Scholar] [CrossRef]
- Kelly, A.L.; Huppertz, T.; Sheehan, J.J. Pre-treatment of cheese milk: Principles and developments. Dairy Sci. Technol. 2008, 88, 549–572. [Google Scholar] [CrossRef]
- Martin, G.J.O.; Williams, R.P.W.; Dunstan, D.E. Comparison of casein micelles in raw and reconstituted skim milk. J. Dairy Sci. 2007, 90, 4543–4551. [Google Scholar] [CrossRef]
- Ong, L.; Dagastine, R.R.; Kentish, S.E.; Gras, S.L. The effect of calcium chloride addition on the microstructure and composition of Cheddar cheese. Int. Dairy J. 2013, 33, 135–141. [Google Scholar] [CrossRef]
- Cattaneo, T.M.P.; Giardina, C.; Sinelli, N.; Riva, M.; Giangiacomo, R. Application of FT-NIR and FT-IR spectroscopy to study the shelf-life of Crescenza cheese. Int. Dairy J. 2005, 15, 693–700. [Google Scholar] [CrossRef]
- Singh, H.; Waungana, A. Influence of heat treatment of milk on cheesemaking properties. Int. Dairy J. 2001, 11, 543–551. [Google Scholar] [CrossRef]
- Lucey, J.A.; Gorry, C.; Fox, P.F. Methods for improving the rennet coagulation properties of heated milk. In Cheese Yield and Factors Affecting Its Control; International Dairy Federation: Brussels, Belgium, 1993; pp. 448–456. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Enzymatic coagulation of milk. In Fundamentals of Cheese Science; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Eds.; Aspen Publisher Inc.: Gaithersburg, MD, USA, 2000; pp. 98–137. [Google Scholar]
- | Moisture % | Fat % | Protein % | Ash % | Lactose % | Galactose % | Lactic Acid % | pH | F/P |
---|---|---|---|---|---|---|---|---|---|
Control | 56.98 | 23.49 | 15.21 | 2.21 | 0.86 | 0.92 | 0.88 | 5.15 | 1.54 |
cheese-1 | 59.99 | 23.83 | 12.17 | 1.86 | 1.32 | 0.71 | 0.68 | 5.25 | 1.95 |
cheese-2 | 58.40 | 23.19 | 14.73 | 1.90 | 0.62 | 0.91 | 0.74 | 5.15 | 1.57 |
cheese-3 | 61.28 | 20.36 | 13.98 | 1.82 | 0.74 | 1.03 | 0.74 | 5.22 | 1.46 |
cheese-4 | 55.48 | 27.72 | 12.47 | 2.19 | 1.03 | 0.74 | 0.65 | 5.23 | 2.22 |
Sample | r (min) | K20 (min) | A30 (mm) |
---|---|---|---|
Raw milk | 10.77 | 4.00 | 43.61 |
s. d. | (0.37) | (0.32) | (2.42) |
Pasteurized milk | 11.56 | 4.04 | 43.58 |
s. d. | (0.32) | (0.40) | (3.69) |
RM | 16.6 * | 8.38 * | 30.31 * |
s. d. | (0.73) | (0.97) | (3.13) |
RM + CPC | 9.04 * | 6.04 * | 31.68 * |
s. d. | (0.38) | (0.82) | (2.99) |
RM + CaCl2 | 11.61 | 9.29 * | 30.32 * |
s. d. | (0.44) | (1.08) | (2.06) |
- | CT | Time to Reach pH 5.2 | Moisture | Fat | Protein | Ya | Ymafpam |
---|---|---|---|---|---|---|---|
- | (min) | (h) | (%) | (%) | (%) | (%) | (%) |
RM 100% | 16.97 * | 4.66 | 61.27 | 19.50 | 14.30 | 18.54 * | 17.06 |
s. d. | (1.77) | (0.66) | (1.86) | (1.24) | (0.72) | (0.70) | (0.71) |
RM 60% | 15.50 * | 4.62 | 60.31 * | 20.05 * | 15.06 | 17.63 | 17.37 |
s. d. | (2.86) | (0.40) | (0.95) | (0.33) | (0.44) | (1.30) | (0.59) |
RM 40% | 13.72 | 4.74 | 59.86 | 20.60 | 14.84 | 18.05 | 17.68 |
s. d. | (0.71) | (1.21) | (1.88) | (1.21) | (0.84) | (1.65) | (0.40) |
Control cheese | 12.09 | 4.49 | 58.13 | 22.37 | 15.29 | 17.09 | 17.32 |
s. d. | (0.81) | (0.51) | (1.88) | (1.05) | (0.91) | (0.83) | (0.21) |
- | Clotting Time | Syneresis (% w/w) | Ya | Ymafpam | ||||
---|---|---|---|---|---|---|---|---|
- | (min) | Molding | 1 Turning | 2 Turning | 3 Turning | Total | (%) | (%) |
RM 40% + CPC | 13.52 | 49.23 | 14.07 | 9.47 | 6.39 | 79.16 | 16.76 | 16.81 |
s. d. | (1.62) | (1.60) | (0.94) | (0.12) | (1.52) | (2.19) | (0.50) | (0.64) |
RM 40% + CaCl2 + Cut change | 14.29 | 51.82 | 15.60 | 9.17 | 3.97 | 80.56 | 16.59 | 16.86 |
s. d. | (0.95) | (3.17) | (1.26) | (0.49) | (0.69) | (1.87) | (1.10) | (0.29) |
Controls | 13.57 | 49.99 | 15.18 | 9.16 | 4.12 | 79.01 | 16.57 | 17.04 |
s. d. | (0.49) | (3.05) | (1.88) | (1.76) | (1.76) | (1.55) | (0.79) | (0.54) |
- | Whey Drained (%) | Cheeses (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
- | Moisture | Fat | Protein | Lactose | Moisture | Fat | Protein | Ash | Lactose | Galactose | Lactic acid |
RM 40% + CPC | 92.23 | 0.31 | 0.94 | 5.23 | 56.73 | 23.80 | 15.11 | 2.33 | 1.01 | 0.83 | 0.75 |
s. d. | (0.05) | (0.03) | (0.01) | (0.09) | (0.74) | (0.66) | (0.22) | (0.30) | (0.08) | (0.12) | (0.13) |
RM 40% + CaCl2 + cut change | 92.22 | 0.34 | 0.92 | 5.24 | 57.21 | 23.04 | 15.46 | 2.49 | 1.00 | 0.80 | 0.71 |
s. d. | (0.15) | (0.03) | (0.02) | (0.08) | (0.83) | (1.49) | (0.61) | (0.26) | (0.07) | (0.06) | (0.04) |
Control | 92.40 | 0.27 | 0.95 | 5.12 | 57.01 | 23.09 | 15.55 | 2.40 | 0.90 | 0.81 | 0.75 |
s. d. | (0.11) | (0.04) | (0.04) | (0.08) | (1.50) | (1.78) | (0.57) | (0.28) | (0.06) | (0.05) | (0.06) |
Differences Detected (%) | Significance (p < 0.05) | |
---|---|---|
RM 100% vs. C | 67.12 | *** |
RM 60% vs. C | 72.06 | ** |
RM 40% vs. C | 57.53 | ** |
RM 40% + CPC vs. C | 58.44 | ** |
RM 40% + CaCl2 + Cut vs. C | 43.37 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tidona, F.; Francolino, S.; Ghiglietti, R.; Locci, F.; Brusa, G.; Alinovi, M.; Mucchetti, G.; Giraffa, G. Application of Recombined Milk to Produce Crescenza-Type Cheese in Laboratory-Scale Cheesemaking: Implications on Technology and Sensory Properties. Foods 2020, 9, 928. https://doi.org/10.3390/foods9070928
Tidona F, Francolino S, Ghiglietti R, Locci F, Brusa G, Alinovi M, Mucchetti G, Giraffa G. Application of Recombined Milk to Produce Crescenza-Type Cheese in Laboratory-Scale Cheesemaking: Implications on Technology and Sensory Properties. Foods. 2020; 9(7):928. https://doi.org/10.3390/foods9070928
Chicago/Turabian StyleTidona, Flavio, Salvatore Francolino, Roberta Ghiglietti, Francesco Locci, Gianluca Brusa, Marcello Alinovi, Germano Mucchetti, and Giorgio Giraffa. 2020. "Application of Recombined Milk to Produce Crescenza-Type Cheese in Laboratory-Scale Cheesemaking: Implications on Technology and Sensory Properties" Foods 9, no. 7: 928. https://doi.org/10.3390/foods9070928
APA StyleTidona, F., Francolino, S., Ghiglietti, R., Locci, F., Brusa, G., Alinovi, M., Mucchetti, G., & Giraffa, G. (2020). Application of Recombined Milk to Produce Crescenza-Type Cheese in Laboratory-Scale Cheesemaking: Implications on Technology and Sensory Properties. Foods, 9(7), 928. https://doi.org/10.3390/foods9070928