Multifamily Determination of Phytohormones and Acidic Herbicides in Fruits and Vegetables by Liquid Chromatography–Tandem Mass Spectrometry under Accredited Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Sample Preparation
2.3. Extraction Procedure and Sample Analysis
2.4. UHPLC–MS/MS
2.5. Validation
- RTW: Defined as the average retention time ± six standard deviations of the retention time (RT ± 6SD), with a tolerance of ±0.1 min [37]). RTW values were calculated by analyzing 10 blank samples spiked at 50 µg/kg.
- Specificity: Responses for reagent blanks and blank control samples had to be less than 30% LOQ.
- Linearity and working range: Linearity was studied in the range of 10 to 150 µg/Kg using matrix-matched standard calibration to overcome the matrix effect. The determination coefficient (r2) must be higher than 0.98 for all the studied compounds, and deviation of the residuals of each calibration point must be in the range of ±20%.
- Trueness: Expressed as the mean recovery in %, it was evaluated by spiking blank samples (n = 10) at two different spiking levels (10 and 50 µg/Kg); values must be in the range 70–120%. Recovery of TPP was also checked, and values must be in the range 70–130%.
- Precision study: Repeatability (intraday precision) and intermediate precision (interday precision) data were calculated at the same concentrations tested for trueness (10 and 50 µg/Kg). Intraday precision data were obtained from the analysis of spiked blank samples (n = 10) on the same day and by the same analyst, while interday precision values were obtained over ten different days by three different analysts. In both cases, the obtained values must be lower than or equal to 20%, expressed as relative standard deviation (RSD).
- Limit of Quantification: LOQ was established as the lowest spike level meeting recoveries in the range 70–120% and precision values lower or equal to 20%.
- Expanded uncertainty: Expanded uncertainty (U) was estimated based on intralaboratory validation data for individual analytes contained in the target matrices (cucumber and orange) at two concentration levels (10 and 50 μg/Kg, respectively); n = 10. In order to simplify the uncertainty estimation (u’), u´Precision and u´bias were considered as main contributor variabilities. They included the uncertainty associated with the precision method and the uncertainty associated with the preparation of standards and the trueness of the method, respectively. Calculations were based on Equation (1).
3. Results and Discussion
3.1. Optimization of UHPLC–MS/MS
3.2. Optimization of Extraction Method
3.3. Method Validation
3.3.1. Specificity
3.3.2. Linearity and Working Range
3.3.3. Trueness (Trueness Assessment)
3.3.4. Precision study
3.3.5. Limit of Quantification
3.3.6. Uncertainty
3.4. Sample Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Floková, K.; Tarkowska, D.; Miersch, O.; Strnad, M.; Wasternack, C.; Novak, O. UHPLC–MS/MS based target profiling of stress-induced phytohormones. Phytochemistry 2014, 105, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Fong, F.J.; Hong, S.X.; De, W.J.; Fang, C.J.; Yu, Y.C. Progress in quantitative analysis of plant hormones. Chin. Sci. Bull. 2011, 56, 355–366. [Google Scholar]
- Du, F.; Ruan, G.; Liu, H. Analytical methods for tracing plant hormones. Anal. Bioanal. Chem. 2012, 403, 55–74. [Google Scholar] [CrossRef]
- Shi, X.; Jin, F.; Huang, Y.; Du, X.; Li, C.; Wang, M.; Shao, H.; Jin, M.; Wang, J. Simultaneous determination of five plant growth regulators in fruits by modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and liquid chromatography–tandem mass spectrometry. J. Agric. Food Chem. 2012, 60, 60−65. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wang, S.; You, X.; Dong, J.; Han, L.; Liu, F. Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 3289–3297. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Du, F.; Bai, Y.; Liu, H. Determination strategies of phytohormones: Recent advances. Anal. Methods 2010, 2, 1867–1873. [Google Scholar] [CrossRef]
- Han, Z.; Liu, G.; Rao, Q.; Bai, B.; Zhao, Z.; Liu, H.; Wu, A. A liquid chromatography tandem mass spectrometry method for simultaneous determination of acid/alkaline phytohormones in grapes. J. Chromatogr. B 2012, 881–882, 83–89. [Google Scholar]
- Commission Regulation (EC) N° 149/2008, of 29 January 2008, amending Regulation (EC) N° 396/2005 of the European Parliament and of the Council by establishing Annexes II, III and IV setting maximum residue levels for products covered by Annex I thereto. Off. J. Eur. Union L 58 1.3.2008. 2008, 51, 1–398, 2008R0149-EN-01.09.2008-000.002. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32008R0149 (accessed on 8 July 2020).
- Steinborn, A.; Alder, L.; Spitzke, M.; Dörk, D.; Anastassiades, M. Development of a QuEChERS-based method for the simultaneous determination of acidic pesticides, their esters, and conjugates following alkaline hydrolysis. J. Agric. Food Chem. 2017, 65, 1296−1305. [Google Scholar] [CrossRef] [Green Version]
- Porfírio, S.; da Silva, M.D.R.G.; Peixe, A.; Cabrita, M.J.; Azadi, P. Current analytical methods for plant auxin quantification—A review. Anal. Chim. Acta 2016, 902, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Jiao, B.; Su, X.; Zhao, Q.; Sun, D. Dissipation and residue of 2,4-D in citrus under field condition. Environ. Monit. Assess. 2015, 5, 187–302. [Google Scholar] [CrossRef] [PubMed]
- Cai, B.D.; Zhu, J.X.; Shi, Z.G.; Yuan, B.F.; Feng, Y.Q. A simple sample preparation approach based on hydrophilic solid-phase extraction coupled with liquid chromatography–tandem mass spectrometry for determination of endogenous cytokinins. J. Chromatogr. B 2013, 942, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Tarkowski, P.; Ge, L.; Yong, J.W.H.; Tan, S.N. Analytical methods for cytokinins. TrAC Trends Anal. Chem. 2009, 28, 323–335. [Google Scholar] [CrossRef]
- Manzi, M.; Gómez-Cadenas, A.; Arbona, V. Rapid and reproducible determination of active gibberellins in citrus tissues by UPLC/ESI-MS/MS. Plant Physiol. Biochem. 2015, 94, 1–9. [Google Scholar] [CrossRef]
- Urbanová, T.; Tarkowská, D.; Novák, O.; Hedden, P.; Strnad, M. Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta 2013, 112, 85–94. [Google Scholar]
- Shida, S.S.; Nemoto, S.; Matsuda, R. Simultaneous determination of acidic pesticides in vegetables and fruits by liquid chromatography–tandem mass spectrometry. J. Environ. Sci. Health Part B 2015, 50, 151–162. [Google Scholar] [CrossRef]
- Sack, C.; Vonderbrink, J.; Smoker, M.; Smith, R.E. Determination of acid herbicides using modified QuEChERS with fast switching ESI+/ESI− LC-MS/MS. J. Agric. Food Chem. 2015, 63, 9657−9665. [Google Scholar] [CrossRef]
- Ghoniem, I.R.; Attallah, E.R.; Abo-Aly, M.M. Determination of acidic herbicides in fruits and vegetables using liquid chromatography tandem mass spectrometry (LC-MS/MS). Int. J. Environ. Anal. Chem. 2017, 97, 301–312. [Google Scholar] [CrossRef]
- Yan, Z.; Nie, J.; Cheng, Y.; Li, Z.; Xu, G.; Li, H. Simultaneous determination of plant growth regulators in fruit by ultra-performance liquid chromatography-tandem mass spectrometry coupled with modified QuEChERS procedure. Chin. J. Anal. Chem. 2017, 45, 1719–1725. [Google Scholar] [CrossRef]
- Delatorre, C.; Rodríguez, A.; Rodríguez, L.; Majada, J.P.; Ordás, R.J.; Feito, I. Hormonal profiling: Development of a simple method to extract and quantify phytohormones in complex matrices by UHPLC–MS/MS. J. Chromatogr. B 2016, 1040, 239–249. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, S.N.; Teo, C.H.; Yew, Y.R.; Ge, L.; Chen, X.; Yong, J.W.H. Analysis of phytohormones in vermicompost using a novel combinative sample preparation strategy of ultrasound-assisted extraction and solid-phase extraction coupled with liquid chromatography–tandem mass spectrometry. Talanta 2015, 139, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zhou, X.; Li, X.; Tang, B.; Ding, X.; Xi, C.; Hu, J.; Chen, Z. Determination of 17 plant growth regulator residues by ultra-high performance liquid chromatography-triple quadrupole linear ion trap mass spectrometry based on modified QuEChERS method. Food Anal. Methods 2017, 10, 3158–3165. [Google Scholar] [CrossRef]
- Shuiying, R.; Yun, G.; Shun, F.; Yi, L. Simultaneous determination of 10 plant growth promoters in fruits and vegetables with a modified QuEChERS based liquid chromatography tandem mass spectrometry method. Anal. Methods 2015, 7, 9130–9136. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, H.; Xu, W.; He, X.; Yang, L.; Luo, Y.; Huang, K. Simultaneous determination of 15 plant growth regulators in bean sprout and tomato with liquid chromatography–triple quadrupole tandem mass spectrometry. Food Anal. Methods 2013, 6, 941–951. [Google Scholar] [CrossRef]
- Analysis of Acidic Pesticides Entailing Conjugates and/or Esters in Their Residue Definitions, 1st ed.; Last update: 4 March 2020; Single Reidue Methods (EURL-SRM); EU Reference Laboratories for Residues of Pesticides: Sttugart, Germany, 2020.
- Rejczak, T.; Tuzimski, T. A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem. 2015, 13, 980–1010. [Google Scholar] [CrossRef]
- Liu, S.; He, H.; Huang, X.; Jin, Q.; Zhu, G. Comparison of extraction solvents and sorbents in the quick, easy, cheap, effective, rugged, and safe method for the determination of pesticide multiresidue in fruits by ultra high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2015, 38, 3525–3532. [Google Scholar] [CrossRef]
- Zieglera, J.; Qwegwer, J.; Schubert, M.; Erickson, J.L.; Schattat, M.; Bürstenbinder, K.; Grubb, C.D.; Abel, S. Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization. J. Chromatogr. A 2014, 1362, 102–109. [Google Scholar] [CrossRef]
- Fu, J.; Chu, J.; Sun, X.; Wang, J.; Yan, C. Simple, rapid, and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by UPLC-MS/MS using single SPE purification and isotope dilution. Anal. Sci. 2012, 28, 1081–1087. [Google Scholar] [CrossRef] [Green Version]
- Danezis, G.P.; Anagnostopoulos, C.J.; Liapis, K.; Koupparis, M.A. Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using HILIC chromatography – MS/MS in various food matrices. Anal. Chim. Acta 2016, 942, 121–138. [Google Scholar] [CrossRef]
- Zhang, F.J.; Jin, Y.J.; Xu, X.Y.; Lu, R.C.; Chen, H.J. Study on the extraction, purification and quantification of jasmonic acid, abscisic acid and indole-3-acetic acid in plants. Phytochem. Anal. 2008, 19, 560–567. [Google Scholar] [CrossRef]
- Giannarelli, S.; Muscatello, B.; Bogani, P.; Spiriti, M.M.; Buiatti, M.; Fuoco, R. Comparative determination of some phytohormones in wild-type and genetically modified plants by gas chromatography–mass spectrometry and high-performance liquid chromatography–tandem mass spectrometry. Anal. Biochem. 2010, 398, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Santilio, A.; Stefanelli, P.; Girolimetti, S.; Dommarco, R. Determination of acidic herbicides in cereals by QuEChERS extraction and LC/MS/MS. J. Environ. Sci. Health Part B 2011, 46, 535–543. [Google Scholar]
- Gupta, V.; Kumar, M.; Brahmbhatt, H.; Reddy, C.R.K.; Seth, A.; Jha, B. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquideliquid microextraction method. Plant Physiol. Biochem. 2011, 49, 1259–1263. [Google Scholar] [CrossRef]
- Macías, J.M.; Pournavab, R.F.; Reyes-Valdés, M.H.; Benavides-Mendoza, A. Rapid and efficient liquid chromatography method for determination of gibberellin a4 in plant tissue, with solid phase extraction for purification and quantification. Am. J. Plant Sci. 2014, 5, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Lu, S.; Wu, H.; Chen, G.; Liu, S.; Kong, X.; Kong, W.; You, J. Determination of multiple phytohormones in fruits by high-performance liquid chromatography with fluorescence detection using dispersive liquid–liquid microextraction followed by precolumn fluorescent labeling. J. Sep. Sci. 2015, 38, 187–196. [Google Scholar] [CrossRef]
- European Commission Directorate General Health and Consumer Protection. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed. SANTE/12682/2019; Implemented by 1 January 2020; European Commission Directorate General Health and Consumer Protection; EU Reference Laboratories for Residues of Pesticides: Sttugart, Germany, 2020; Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 8 July 2020).
- International Organization for Standardization. ISO 21748:2017, Guidance for the Use of Repeatability, Reproducibility and Trueness Estimates in Measurement Uncertainty Evaluation; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Rodríguez, L.C.; Torres, M.E.H.; López, E.A.; González, F.J.E.; Arrebola, F.J.; Martínez-Vidal, J.L. Assessment of uncertainty in pesticide multiresidue analytical methods: Main sources and estimation. Anal. Chim. Acta 2002, 454, 297–314. [Google Scholar] [CrossRef]
Precursor Ion (m/z) | Product Ion (m/z) | Declustering Potential (DP) (V) | Entrance Potential (EP) (V) | Collision Energy (CE) (V) | Collision Cell Exit Potential (CXP) (V) | ||
---|---|---|---|---|---|---|---|
Naphthylacetamide | 186.1 | 141.2 | a | 3.5 | 1 | 10 | 29 |
186.1 | 115.2 | b | 3.5 | 1 | 10 | 10 | |
2,4,5-trichlorophenoxyacetic acid [2,4,5-T] | 253.2 | 158.6 | a | 4.6 | −55 | −10 | −46 |
253.2 | 194.4 | b | 4.6 | −55 | −10 | −13 | |
2,4-Dichlorophenoxyacetic acid [2,4-D] | 218.9 | 161.0 | a | 4.3 | −65 | −10 | −20 |
220.9 | 163.0 | b | 4.3 | −65 | −10 | −14 | |
2,4-dichlorophenoxy butyric acid [2,4-DB] | 247.0 | 160.9 | a | 4.7 | −35 | −10 | −14 |
247.0 | 124.8 | b | 4.7 | −35 | −10 | −9 | |
2-(4-Chlorophenoxy)acetic acid [4-CPA] | 185.0 | 127.0 | a | 3.8 | −55 | −10 | −20 |
187.0 | 128.8 | b | 3.8 | −100 | −10 | −7 | |
4-(3-indolyl)butyric acid [IBA] | 203.0 | 186.0 | a | 3.8 | 41 | 10 | 19 |
203.0 | 130.0 | b | 3.8 | 41 | 10 | 12 | |
Gibberellic acid | 345.1 | 239.0 | a | 2.8 | −60 | −10 | −20 |
345.1 | 227.2 | b | 2.8 | −150 | −10 | −10 | |
Bentazon | 239.0 | 132.0 | a | 3.8 | −100 | −10 | −38 |
239.0 | 175.0 | b | 3.8 | −100 | −10 | −4 | |
2-naphthyloxyacetic acid (BNOA) | 201.0 | 142.9 | a | 4.1 | −100 | −10 | −40 |
201.0 | 115.0 | b | 4.1 | −100 | −10 | −17 | |
Bromoxynil | 275.7 | 80.9 | a | 4.1 | −40 | −10 | −30 |
275.7 | 78.9 | b | 4.1 | −40 | −10 | −9 | |
Clomazone | 240.0 | 125.0 | a | 4.3 | 66 | 12 | 30 |
240.0 | 89.0 | b | 4.3 | 66 | 10 | 6,5 | |
Dicamba | 219.0 | 174.8 | a | 3.6 | −5 | −10 | −8 |
221.0 | 177.0 | b | 3.6 | −5 | −10 | −9 | |
Dichlorprop [2,4-DP] | 232.9 | 160.9 | a | 4.5 | −25 | −10 | −18 |
232.9 | 124.9 | b | 4.5 | −25 | −10 | −13 | |
Fenoprop [2,4,5-TP] | 269.0 | 196.8 | a | 4.8 | −70 | −10 | −14 |
269.0 | 160.9 | b | 4.8 | −70 | −10 | −15 | |
Fenoxaprop P | 362.0 | 288.0 | a | 5.2 | 126 | 10 | 25 |
362.0 | 119.0 | b | 5.2 | 126 | 10 | 18 | |
Flamprop | 320.1 | 121.0 | a | 4.4 | −75 | −10 | −22 |
320.1 | 247.7 | b | 4.4 | −75 | −10 | −45 | |
Fluazifop | 328.0 | 254.0 | a | 4.5 | 126 | 10 | 35 |
328.0 | 282.0 | b | 4.5 | 126 | 10 | 16 | |
Fluroxypyr | 253.1 | 194.8 | a | 3.6 | −120 | −10 | −18 |
253.1 | 232.8 | b | 3.6 | −120 | −10 | −13 | |
Haloxyfop | 360.1 | 287.8 | a | 4.9 | −95 | −10 | −20 |
360.1 | 195.8 | b | 4.9 | −95 | −10 | −13 | |
Haloxyfop-etoxyl | 434.1 | 315.9 | a | 5.2 | 11 | 12 | 25 |
434.1 | 288.0 | b | 5.2 | 121 | 10 | 6,5 | |
Haloxyfop-methyl | 376.0 | 316.0 | a | 5.1 | 131 | 10 | 30 |
376.0 | 288.0 | b | 5.1 | 126 | 10 | 12 | |
Imazamox | 306.1 | 261.1 | a | 3.0 | 71 | 10 | 25 |
306.1 | 245.9 | b | 3.0 | 71 | 10 | 28 | |
Imazapyr | 274.1 | 186.9 | a | 3.0 | −30 | −10 | −18 |
274.1 | 230.0 | b | 3.0 | −30 | −10 | −13 | |
Imazethapyr | 287.6 | 243.9 | a | 3.4 | −75 | −10 | −18 |
287.6 | 186.1 | b | 3.4 | −75 | −10 | −21 | |
Ioxynil | 369.9 | 126.9 | a | 4.3 | −90 | −5 | −25 |
369.9 | 116.0 | b | 4.3 | −90 | −5 | −10 | |
2-methyl−4-chlorophenoxy acetic acid (MCPA) | 199.0 | 141.0 | a | 4.3 | −65 | −10 | −20 |
201.0 | 143.0 | b | 4.3 | −65 | −10 | −12 | |
2-methyl−4-chlorophenoxy butyric acid (MCPB) | 227.0 | 141.0 | a | 4.7 | −55 | −10 | −20 |
229.0 | 143.0 | b | 4.7 | −55 | −10 | −12 | |
Mecoprop (MCPP) | 212.9 | 140.9 | a | 4.6 | −45 | −10 | −18 |
212.9 | 70.9 | b | 4.6 | −45 | −10 | −9 | |
Quimerac | 222.1 | 141.1 | a | 2.9 | 36 | 10 | 45 |
222.1 | 114.1 | b | 2.9 | 36 | 10 | 8 | |
Quinclorac | 241.9 | 223.9 | a | 3.5 | 26 | 10 | 21 |
241.9 | 161.0 | b | 3.5 | 26 | 10 | 16 | |
Sulcotrione | 328.9 | 139.1 | a | 3.5 | 111 | 10 | 25 |
328.9 | 111.1 | b | 3.5 | 130 | 10 | 10 | |
Triclopyr | 255.7 | 197.7 | a | 4.5 | −15 | −10 | −14 |
255.7 | 217.8 | b | 4.5 | −15 | −10 | −11 |
Compound | Repeatability | Intermediate Precision | Uncertainty | RTW | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rec (%) a | RSD (%) a | Rec (%) b | RSD (%) b | Rec (%) a | RSD (%) a | Rec (%) b | RSD (%) b | (%) a | (%) b | (min.) | |
Gibberellic acid | 109 | 6 | 75 | 4 | 93 | 17 | 85 | 6 | 28 | 14 | 2.75–2.85 |
Imazamox | 101 | 3 | 116 | 3 | 97 | 19 | 103 | 15 | 46 | 27 | 2.95–3.15 |
Imazapyr | 115 | 6 | 71 | 2 | 100 | 14 | 82 | 8 | 25 | 18 | 2.98–3.08 |
Quimerac | 109 | 3 | 94 | 4 | 108 | 13 | 81 | 18 | 25 | 32 | 3.14–3.24 |
Imazethapyr | 114 | 9 | 117 | 6 | 107 | 16 | 103 | 15 | 29 | 27 | 3.38–3.48 |
Quinclorac | 104 | 4 | 99 | 4 | 103 | 19 | 86 | 12 | 37 | 21 | 3.46–3.56 |
Naphthylacetamide | 92 | 5 | 120 | 2 | 90 | 18 | 111 | 7 | 35 | 14 | 3.47–3.57 |
Sulcotrione | 95 | 4 | 102 | 2 | 94 | 12 | 90 | 10 | 24 | 18 | 3.7–3.57 |
Fluroxypyr | 114 | 6 | 91 | 3 | 94 | 17 | 86 | 9 | 28 | 17 | 3.52–3.62 |
Dicamba | 97 | 6 | 86 | 5 | 82 | 17 | 82 | 14 | 30 | 27 | 3.56–3.66 |
2-(4-Chlorophenoxy)acetic acid (4-CPA) | 102 | 4 | 82 | 4 | 88 | 13 | 82 | 11 | 22 | 22 | 3.73–3.83 |
Bentazon | 102 | 6 | 108 | 1 | 89 | 10 | 93 | 9 | 18 | 16 | 3.73–3.83 |
4-(3-indolyl)butyric acid (IBA) | 86 | 14 | 120 | 4 | 93 | 20 | 92 | 20 | 42 | 33 | 3.78–3.88 |
2-naphthyloxyacetic acid (BNOA) | 104 | 6 | 89 | 3 | 91 | 13 | 85 | 7 | 23 | 12 | 4.02–4.12 |
Bromoxynil | 108 | 6 | 109 | 2 | 94 | 13 | 92 | 10 | 23 | 16 | 4.02–4.12 |
Clomazone | 96 | 6 | 118 | 4 | 84 | 17 | 116 | 8 | 30 | 10 | 4.22–4.32 |
2-methyl-4-chlorophenoxy acetic acid (MCPA) | 107 | 8 | 92 | 3 | 85 | 18 | 86 | 15 | 28 | 28 | 4.24–4.34 |
Ioxynil | 110 | 10 | 83 | 4 | 87 | 19 | 86 | 8 | 30 | 17 | 4.26–4.36 |
Flamprop | 101 | 14 | 103 | 11 | 92 | 18 | 96 | 14 | 32 | 26 | 4.28–4.38 |
2,4-Dichlorophenoxyacetic acid (2,4-D) | 99 | 7 | 99 | 3 | 92 | 13 | 88 | 11 | 24 | 19 | 4.34–4.44 |
Triclopyr | 105 | 9 | 101 | 6 | 92 | 13 | 89 | 13 | 23 | 24 | 4.37–4.47 |
Fluazifop | 107 | 7 | 94 | 2 | 104 | 20 | 99 | 14 | 38 | 29 | 4.38–4.48 |
Dichlorprop (2,4-DP) | 103 | 9 | 103 | 4 | 94 | 15 | 95 | 12 | 28 | 22 | 4. 45–4.55 |
Mecoprop (MCPP) | 105 | 7 | 101 | 4 | 87 | 15 | 93 | 11 | 25 | 20 | 4.48–4.58 |
2,4,5-trichlorophenoxyacetic acid (2,4,5-T) | 113 | 10 | 102 | 4 | 103 | 20 | 89 | 12 | 36 | 22 | 4.54–4.64 |
2,4-dichlorophenoxy butyric acid (2,4-DB) | 110 | 11 | 102 | 16 | 113 | 18 | 85 | 20 | 38 | 33 | 4.63–4.73 |
2-methyl-4-chlorophenoxy butyric acid (MCPB) | 106 | 12 | 107 | 11 | 105 | 16 | 90 | 14 | 33 | 23 | 4.66–4.76 |
Fenoprop (2,4,5-TP) | 113 | 7 | 105 | 4 | 93 | 14 | 91 | 11 | 24 | 20 | 4.75–4.85 |
Haloxyfop | 102 | 11 | 79 | 7 | 98 | 20 | 89 | 17 | 39 | 38 | 4.79–4.89 |
Haloxyfop-methyl | 107 | 14 | 101 | 11 | 92 | 14 | 84 | 20 | 24 | 33 | 4.95–5.05 |
Haloxyfop-etoxyl | 104 | 19 | 118 | 13 | 85 | 19 | 76 | 19 | 32 | 24 | 5.07–5.17 |
Fenoxaprop P | 97 | 20 | 119 | 10 | 87 | 20 | 92 | 19 | 35 | 34 | 5.10–5.20 |
Compound | Repeatability | Intermediate Precision | Uncertainty | RTW | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rec (%) a | RSD (%) a | Rec (%) b | RSD (%) b | Rec (%) a | RSD (%) a | Rec (%) b | RSD (%) b | (%) a | (%) b | (min.) | |
Imazamox | 90 | 1 | 109 | 2 | 86 | 8 | 98 | 9 | 15 | 16 | 2.96–3.06 |
Quimerac | 73 | 2 | 81 | 2 | 80 | 14 | 77 | 14 | 30 | 27 | 3.12–3.24 |
Naphthylacetamide | 108 | 2 | 120 | 2 | 101 | 10 | 107 | 6 | 20 | 10 | 3.47–3.57 |
Quinclorac | 85 | 1 | 83 | 1 | 91 | 10 | 78 | 12 | 21 | 23 | 3.47–3.57 |
Sulcotrione | 95 | 4 | 106 | 1 | 93 | 12 | 91 | 9 | 24 | 16 | 3.47–3.57 |
Fluroxypyr | 101 | 6 | 112 | 6 | 99 | 10 | 98 | 8 | 19 | 14 | 3.53–3.63 |
Bentazon | 96 | 6 | 120 | 11 | 100 | 10 | 97 | 4 | 21 | 7 | 3.74–3.84 |
2-(4-Chlorophenoxy)acetic acid (4-CPA) | 88 | 3 | 104 | 6 | 89 | 15 | 85 | 13 | 30 | 21 | 3.75–3.85 |
4-(3-indolyl)butyric acid (IBA) | 101 | 2 | 120 | 3 | 106 | 13 | 105 | 9 | 27 | 16 | 3.79–3.89 |
2-naphthyloxyacetic acid (BNOA) | 80 | 4 | 112 | 8 | 91 | 19 | 94 | 6 | 44 | 10 | 4.03–4.13 |
Bromoxynil | 103 | 4 | 117 | 7 | 106 | 13 | 104 | 5 | 27 | 9 | 4.03–4.13 |
Clomazone | 119 | 1 | 119 | 2 | 114 | 8 | 109 | 6 | 15 | 11 | 4.23–4.33 |
2-methyl-4-chlorophenoxy acetic acid (MCPA) | 83 | 7 | 109 | 4 | 91 | 19 | 94 | 9 | 42 | 16 | 4.25–4.35 |
Ioxynil | 117 | 4 | 114 | 6 | 118 | 11 | 108 | 8 | 22 | 16 | 4.28–4.38 |
Flamprop | 107 | 9 | 106 | 3 | 113 | 12 | 111 | 6 | 25 | 13 | 4.29–4.39 |
2,4-Dichlorophenoxyacetic acid (2,4-D) | 78 | 8 | 107 | 8 | 91 | 17 | 93 | 5 | 39 | 9 | 4.36–4.46 |
Triclopyr | 94 | 9 | 98 | 4 | 102 | 13 | 103 | 8 | 29 | 17 | 4.38–4.48 |
Dichlorprop (2,4-DP) | 84 | 8 | 115 | 5 | 91 | 16 | 99 | 8 | 35 | 13 | 4.46–4.56 |
Mecoprop (MCPP) | 91 | 8 | 114 | 4 | 88 | 20 | 98 | 8 | 40 | 15 | 4.49–4.59 |
2,4,5-trichlorophenoxyacetic acid (2,4,5-T) | 92 | 5 | 115 | 7 | 99 | 12 | 98 | 8 | 26 | 14 | 4.55–4.65 |
2,4-dichlorophenoxy butyric acid (2,4-DB) | 106 | 2 | 111 | 9 | 102 | 18 | 107 | 19 | 35 | 37 | 4.64–4.74 |
2-methyl-4-chlorophenoxy butyric acid (MCPB) | 90 | 6 | 120 | 7 | 100 | 14 | 106 | 12 | 31 | 21 | 4.66–4.76 |
Fenoprop (2,4,5-TP) | 110 | 5 | 117 | 5 | 107 | 10 | 94 | 10 | 19 | 15 | 4.76–4.86 |
Haloxyfop | 119 | 17 | 107 | 8 | 119 | 11 | 109 | 9 | 20 | 18 | 4.90–5.00 |
Haloxyfop-methyl | 120 | 3 | 113 | 1 | 107 | 11 | 92 | 11 | 19 | 17 | 4.95–5.05 |
Haloxyfop-etoxyl | 107 | 14 | 106 | 12 | 112 | 14 | 86 | 13 | 30 | 22 | 5.08–5.18 |
Fenoxaprop P | 105 | 14 | 118 | 11 | 110 | 19 | 93 | 18 | 40 | 28 | 5.10–5.20 |
Compound Detected | Tomato | Orange | ||
---|---|---|---|---|
MRL (mg/kg) | Concentration (mg/kg) | MRL (mg/kg) | Concentration (mg/kg) | |
2,4-Dichlorophenoxyacetic acid (2,4-D) | 0.01 | 0.012 to 0.016 | 1 | 0.014 to 0.670 |
Dichlorprop (2.4-DP) | 0.05 | Not detected | 0.3 | 0.014 to 0.097 |
2-methyl-4-chlorophenoxy acetic acid (MCPA) | 0.05 | Not detected | 0.05 | 0.013 to 0.074 |
Triclopyr | 0.01 | Not detected | 0.1 | 0.017 to 0.066 |
4-(3-indolyl)butyric acid (IBA) | 0.1 | 0.012 to 0.052 | 0.1 | Not detected |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grande Martínez, Á.; Arrebola Liébanas, F.J.; Santiago Valverde, R.; Hernández Torres, M.E.; Ramírez Casinello, J.; Garrido Frenich, A. Multifamily Determination of Phytohormones and Acidic Herbicides in Fruits and Vegetables by Liquid Chromatography–Tandem Mass Spectrometry under Accredited Conditions. Foods 2020, 9, 906. https://doi.org/10.3390/foods9070906
Grande Martínez Á, Arrebola Liébanas FJ, Santiago Valverde R, Hernández Torres ME, Ramírez Casinello J, Garrido Frenich A. Multifamily Determination of Phytohormones and Acidic Herbicides in Fruits and Vegetables by Liquid Chromatography–Tandem Mass Spectrometry under Accredited Conditions. Foods. 2020; 9(7):906. https://doi.org/10.3390/foods9070906
Chicago/Turabian StyleGrande Martínez, Ángel, Francisco Javier Arrebola Liébanas, Rosario Santiago Valverde, María Elena Hernández Torres, Juan Ramírez Casinello, and Antonia Garrido Frenich. 2020. "Multifamily Determination of Phytohormones and Acidic Herbicides in Fruits and Vegetables by Liquid Chromatography–Tandem Mass Spectrometry under Accredited Conditions" Foods 9, no. 7: 906. https://doi.org/10.3390/foods9070906
APA StyleGrande Martínez, Á., Arrebola Liébanas, F. J., Santiago Valverde, R., Hernández Torres, M. E., Ramírez Casinello, J., & Garrido Frenich, A. (2020). Multifamily Determination of Phytohormones and Acidic Herbicides in Fruits and Vegetables by Liquid Chromatography–Tandem Mass Spectrometry under Accredited Conditions. Foods, 9(7), 906. https://doi.org/10.3390/foods9070906