Evaluation of Long Sea Snail Hinia reticulata (Gastropod) from the Middle Adriatic Sea as a Possible Alternative for Human Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Sampling Areas
2.2. Proximate Composition
2.3. Fatty Acid Profile Determination
2.4. Determination of Elements in Meat and Calcium Content in the Shell of the Two Sea Snail Species
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zarai, Z.; Frikha, F.; Balti, R.; Miled, N.; Gargouri, Y.; Mejdoub, H. Nutrient Composition of the Marine Snail (Hexaplex trunculus) from the Tunisian Mediterranean Coasts. J. Sci. Food Agric. 2011, 9, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Balducci, G.M.; Omiccioli, H.; Giannattasio, S.; Minelli, D.; Collevecchio, V.; Vallisneri, M.; Sabelli, B. Studio sulla Biologia e Distribuzione di Nassarius mutabilis (l, 1758) (Gastropoda Prosobranchia) nel Compartimento Marittimo di Pesaro per una Corretta Gestione della Risorsa. Biol. Mar. Medit. 2006, 13, 156–157. [Google Scholar]
- Grati, F.; Polidori, P.; Scarcella, G.; Fabi, G. Estimation of Basket Trap Selectivity for Changeable Nassa (Nassarius mutabilis) in the Adriatic Sea. Fisher. Res. 2010, 101, 100–107. [Google Scholar] [CrossRef]
- Fisher, W.; Bauchot, M.L.; Schneider, M. Fiches FAO d’Identification des Espèces pour le Besoins de la Pêche. In Méditerranée et Mer Noire. Zone de pêche 37; FAO: Rome, Italy, 1987; Volume 1, p. 760. [Google Scholar]
- Felici, A.; Ciarrocchi, G. Il Piceno: La Terra degli Infiniti Sapori; Edizioni Unicam: Camerino, Italy, 2015; pp. 1–60. ISBN 9788867680191. (In Italian) [Google Scholar]
- Fabi, G.; Grati, F.; De Mauro, M.; Polidori, P. Distribuzione Spaziale e Densità di Nassarius mutabilis (L.) e Nassarius reticularis (L.) nel Compartimento Marittimo di Ancona. Biol. Mar. Mediterr. 2006, 13, 240–241. [Google Scholar]
- European Commission. Commission Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy. Off. J. Eur. Union 2013, 354, 22–61. [Google Scholar]
- Fiori, F. Studi per la Valorizzazione del Lumachino Lungo (Hinia reticulata); Coop. Mare: Rimini, Italy, 2008. (In Italian) [Google Scholar]
- Hilborn, R.; Fulton, E.A.; Green, B.S.; Hartmann, K.; Tracey, S.R.; Watson, R.A. When Is a Fishery Sustainable? Can. J. Fish. Aquat. Sci. 2015, 72, 1433–1441. [Google Scholar]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikainen, J.; Saikku, L.; Schosler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Regulation (EU) 2017/893 of 24 May 2017 amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as regards the provisions on processed animal protein. Off. J. Eur. Union 2017, 138, 92–116. [Google Scholar]
- Food and Agriculture Oranization. The State of World Fisheries and Aquaculture. Contributing to Food Security and Nutrition for All; FAO: Rome, Italy, 2016; p. 200. [Google Scholar]
- Food and Agriculture Organization. The State of World Fisheries and Aquaculture. Meeting the Sustainable Development Goals; FAO: Rome, Italy, 2018. [Google Scholar]
- Kienker, S.E.; Colemana, R.A.; Morris, R.L.; Steinberg, P.; Bollarde, B.; Jarvise, R.; Alexander, K.A.; Strainb, E.M.A. Bringing Harbours Alive: Assessing the Importance of Eco-Engineered Coastal Infrastructure for Different Stakeholders and Cities. Mar. Policy 2018, 94, 238–246. [Google Scholar] [CrossRef]
- Chen, C.-L.; Chuanga, Y.-C.; Lee, T.-C.; Liu, C.-H.; Yang, C.-L. Not Out of Sight but Out of Mind: Developing a Multi-Criteria Evaluation Structure for Green Fishery Harbors. Mar. Policy 2019, 100, 324–331. [Google Scholar] [CrossRef]
- Phillips, D.J.H. Use of macroalgae and invertebrates as monitors of metal levels in estuaries and coastal waters. In Heavy Metals in the Marine Environment; Furness, R.W., Rainbow, P.S., Eds.; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; Volume 2. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 60, 497–509. [Google Scholar]
- Christopherson, S.W.; Glass, R.L. Preparation of Milk Methyl Esters by Alcoholysis in an Essentially Non-Alcoholic Solution. J. Dairy Sci. 1969, 52, 1289–1290. [Google Scholar] [CrossRef]
- Yoon, H.; Park, S.; Lee, K.; Park, J. Oyster Shell as Substitute for Aggregate in Mortar. Manag. Res. 2004, 22, 158–170. [Google Scholar] [CrossRef]
- IBM Corp. Released. IBM SPSS Statistics for Windows, Version 25.0; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Serratore, P.; Zavatta, E.; Bignami, G.; Lorito, L. Preliminary Investigation on the Microbiological Quality of Edible Marine Gastropods of the Adriatic Sea Italy. Ital. J. Food Saf. 2019, 8, 7691. [Google Scholar] [CrossRef] [Green Version]
- Polidori, P.; Grati, F.; Bolognini, L.; Domenichetti, F.; Scarcella, G.; Fabi, G. Towards a Better Management of Nassarius mutabilis (Linnaeus, 1758). Biom. Biol. Integr. Study Acta Adriat. 2015, 56, 233–244. [Google Scholar]
- Celik, M.Y.; Türk Culha, S.; Culha, M.; Yildiz, H.; Acarli, S.; Celik, I.; Celik, P. Comparative Study on Biochemical Composition of Some Edible Marine Molluscs at Canakkale Coasts Turkey. J. Mar. Sci. 2014, 4, 601–606. [Google Scholar]
- Saito, H.; Aono, H. Characteristics of Lipid and Fatty Acid of Marine Gastropod Turbo cornutus: High Levels of Arachidonic and n-3 docosapentaenoic acid. Food Chem. 2014, 145, 135–144. [Google Scholar] [CrossRef]
- Pereira, D.M.; Valentão, P.; Teixeira, N.; Andrade, P.B. Amino Acids Fatty Acids and Sterols Profile of Some Marine Organisms from Portuguese Waters. Food Chem. 2013, 141, 2412–2417. [Google Scholar] [CrossRef]
- Modica, M.V.; Holford, M. The Neogastropoda: Evolutionary Innovations of Predatory Marine Snails with Remarkable Pharmacological Potential. In Evolutionary Biology Concepts, Molecular and Morphological Evolution; Springer: Berlin/Heidelbrg, Germany, 2010; pp. 249–270. [Google Scholar] [CrossRef]
- Sajjadi, E.A. Determination of Fatty Acid Compositions as Biomarkers in the Diet of Turbo coronatus in Chabahar Bay. J. Persian Gulf Mar. Sci. 2011, 2, 35–42. [Google Scholar]
- Go, J.V.; Rˇezanka, R.; Srebnik, M.; Dembitsky, V.M. Variability of Fatty Acid Components of Marine and Freshwater Gastropod Species from the Littoral Zone of the Red Sea, Mediterranean Sea, and Sea of Galilee. Biochem. Syst. Ecol. 2002, 30, 819–835. [Google Scholar] [CrossRef]
- Saito, H.; Hashimoto, J. Characteristic of the Fatty Acid Composition of the Deep–Sea Vent Gastropod Ifremeria nautilei. Lipids 2010, 45, 537–548. [Google Scholar] [CrossRef] [PubMed]
- Miniero, R.; Abate, V.; Brambilla, G.; Davoli, E.; De Felip, E.; De Filippis, S.P.; Dellatte, E.; De Luca, S.; Fanelli, R.; Fattore, E.; et al. Persistent Toxic Substances in Mediterranean Aquatic Species. Sci. Total Environ. 2014, 494, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.O.; Simões, T.; Novais, S.C.; Pimparel, I.; Granada, L.; Soares, A.M.V.M.; Barata, C.; Lemos, M.F.L. Fatty Acid profile of the Sea Snail Gibbula umbilicalis as a Biomarker for Coastal Metal Pollution. Sci. Total Environ. 2017, 586, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Bilanzcic, N.; Sedaka, M.; Čalopeka, B.; Đokića, M.; Vareninaa, I.; Kolanović, B.S.; Luburić, D.B.; Varga, I.; Miroslav, B.; Roncarati, A. Element Contents in Commercial Fish Species from the Croatian Market. J. Food Compos. Anal. 2018, 71, 77–86. [Google Scholar] [CrossRef]
- European Aquaculture Society. Towards Sustainable Aquaculture in Europe. CONSENSUS. A Multi-Stakeholder Platform for Sustainable Aquaculture; European Aquaculture Society: Oostende, Belgium, 2012; p. 12. [Google Scholar]
- Yamashita, Y.; Yamashita, M.; Haruka, I. Selenium Content in Seafood in Japan. Nutrients 2013, 5, 388–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iamiceli, A.L.; Ubaldi, A.; Lucchetti, D.; Brambilla, G.; Abate, V.; De Felip, E.; De Filippis, S.P.; Dellatte, E.; De Luca, S.; Ferri, F.; et al. Metals in Mediterranean aquatic species. Mar. Poll. Bull. 2015, 94, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives (Text with EEA relevance). Available online: http://data.europa.eu/eli/dir/2008/98/oj (accessed on 30 January 2020).
- Bille, L.; Binato, G.; Cappa, V.; Toson, M.; Dalla, P.M.; Arcangeli, G.; Ricci, A.; Angeletti, R.; Piro, R. Lead Mercury and Cdmium Levels in Edible Marine Molluscs and Echinoderms from the Veneto Region (North-Western Adriatic Sea e Italy). Food Control 2015, 50, 362–370. [Google Scholar] [CrossRef]
- Ragi, A.S.; Leena, P.P.; Eldhose, C.; Nair, S.M. Heavy Metal Concentrations in Some Gastropods and Bivalves Collected from the Fishing Zone of South India. Mar. Pollut. Bull. 2017, 118, 452–458. [Google Scholar] [CrossRef]
- Felici, A.; Vittori, S.; Meligrana, M.C.T.; Roncarati, A. Quality Traits of Raw and Cooked Cupped Oysters. Eur. Food Res. Technol. 2019, 246, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Iribarren, D.; Moreira, M.T.; Feijoo, G. Implementing by-Product Management into the Life Cycle Assessment of the Mussel Sector. Conserv. Recycl. 2010, 54, 1219–1230. [Google Scholar] [CrossRef]
- Barros, M.C.; Bello, P.M.; Bao, M.; Torrado, J.J. From Waste to Commodity: Transforming Shells into High Purity Calcium Carbonate. J. Clean. Prod. 2009, 17, 400–407. [Google Scholar] [CrossRef]
- Quintans-Fondo, A.; Ferreira-Coelho, G.; Paradelo-Núnez, R.; Novoa-Munoz, J.C.; Arias-Estevez, M.; Fernandez-Sanjurjo, M.J.; Alvarez-Rodríguez, E.; Núnez-Delgado, A. Promoting Sustainability in the Mussel Industry: Mussel Shell Recycling to Fight Fluoride Pollution. J. Clean. Prod. 2016, 131, 485–490. [Google Scholar] [CrossRef]
- Moss, A.S.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Dawood, M.A.O. Effects of Different Levels of Marine Snail Shells in the Diets of Juvenile Kuruma Shrimps Marsupenaeus japonicus as a Source of Calcium. N. Am. J. Aquac. 2019, 81, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Schiavone, A.; Guo, K.; Gasco, L.; Hernandez, E.; Denti, R.; Zoccarato, I. Effects of a Natural Extract of Chestnut Wood on Digestibility, Performance Traits, and Nitrogen Balance of Boiler Chicks. Poult. Sci. 2008, 87, 521–527. [Google Scholar] [CrossRef]
- Gasco, L.; Acuti, G.; Bani, P.; Dalle Zotte, A.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and Fish by-Products as Sustainable Alternatives to Conventional Animal Proteins in Animal Nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Halim, N.R.A.; Yusof, H.M.; Sarbon, N.M. Functional and bioactive properties of fish protein hydolysates and peptides: A comprehensive review. Trends Food Sci. Technol. 2018, 51, 24–33. [Google Scholar] [CrossRef]
Month of Sampling (SE) | Species (SP) | Error | ||||||
---|---|---|---|---|---|---|---|---|
November | March | N. mutabilis | H. reticulata | MSE | SE | SP | SE × SP | |
Shell height (mm) | 25.5 ± 0.3 | 29.8 ± 0.5 | 28.6 ± 0.4 | 30.2 ± 0.6 | 1.350 | 2.19 | 0.282 | n.s. |
Total weight (g) | 2.43 ± 0.9 B | 3.45 ± 0.6 A | 2.84 ± 0.6 B | 3.86 ± 0.8 A | 0.304 | 0.001 | 0.001 | n.s. |
Shell weight (g) | 1.38 ± 0.8 B | 2.53 ± 0.9 A | 1.46 ± 0.9 B | 2.89 ± 0.9 A | 0.037 | 0.001 | 0.001 | n.s. |
Meat weight (g) | 1.05 ± 0.3 | 0.92 ± 0.4 | 1.38 ± 0.3 A | 0.97 ± 0.2 B | 0.042 | 0.098 | 0.019 | n.s. |
Shell yield (%) | 56.79 ± 2.4 B | 73.33 ± 1.5 A | 51.41 ± 1.4 B | 74.87 ± 1.7 A | 0.02 | 0.001 | 0.001 | n.s. |
Meat yield (%) | 43.21 ± 1.1 A | 26.67 ± 1.3 B | 48.59 ± 1.6 A | 25.13 ± 1.5 B | 0.04 | 0.001 | 0.004 | n.s. |
Month of Sampling (SE) | Species (SP) | Error | ||||||
---|---|---|---|---|---|---|---|---|
November | March | N. mutabilis | H. reticulata | MSE | SE | SP | SE × SP | |
Moisture | 73.95 ± 0.9 | 73.72 ± 1.1 | 73.73 ± 1.2 | 72.65 ± 1.4 | 0.205 | 0.33 | 0.62 | n.s. |
Protein | 21.13 ± 1.4 | 22.28 ± 1.3 | 21.24 ± 1.2 | 22.02 ± 1.1 | 0.445 | 0.05 | 0.68 | n.s. |
Lipids | 1.95 ± 0.8 | 1.76 ± 0.7 | 1.79 ± 0.6 | 1.53 ± 0.9 | 0.877 | 1.4 | 0.16 | n.s. |
Ash | 1.81 ± 0.4 | 1.83 ± 0.3 | 1.71 ± 0.6 | 1.72 ± 0.8 | 0.007 | 0.07 | 0.06 | n.s. |
Month of Sampling (SE) | Species (SP) | Error | ||||||
---|---|---|---|---|---|---|---|---|
November | March | N. mutabilis | H. reticulata | MSE | SE | SP | SE × SP | |
SFA | ||||||||
14:0 | 6.98 | 7.52 | 6.90 | 6.84 | 0.7230 | 0.2140 | 0.4320 | n.s. |
15:0 | 0.41 | 0.49 | 0.46 | 0.52 | 0.0734 | 0.0400 | 0.0120 | n.s. |
16:0 | 29.08 | 26.29 | 29.14 | 27.72 | 0.9611 | 0.930 | 0.0400 | n.s. |
17:0 | 1.22 | 1.08 | 1.33 | 1.62 | 0.3223 | 0.014 | 0.0140 | n.s. |
18:0 | 8.20 | 9.49 | 8.98 | 9.45 | 0.5514 | 0.246 | 0.0820 | n.s. |
20:0 | 0.34 | 0.35 | 0.30 | 0.28 | 0.1504 | 0.160 | 0.1000 | n.s. |
Total SFA | 46.24 | 45.22 | 47.11 | 46.43 | 0.243 | 0.147 | 0.0036 | n.s. |
MUFA | ||||||||
14:1 | 0.20 | 0.22 | 0.02 | 0.28 | 0.14 | 0.022 | 0.0220 | n.s. |
16:1 | 7.90 | 7.81 | 6.93 | 7.04 | 0.87 | 0.385 | 0.4950 | n.s. |
17:1 | 1.23 | 1.19 | 1.48 | 1.04 | 0.14 | 0.013 | 0.0420 | n.s. |
18:1 | 10.72 | 12.45 | 11.75 | 9.24 | 1.70 | 0.570 | 1.1600 | n.s. |
20:1 | 2.39 | 2.24 | 2.51 | 2.57 | 0.20 | 0.121 | 0.1020 | n.s. |
Total MUFA | 22.44 | 23.91 | 22.69 | 20.17 | 1.95 | 0.137 | 0.0245 | n.s. |
PUFA n6 | ||||||||
18:2 n6 | 1.51 | 1.42 | 1.54 | 1.05 | 0.23 | 0.199 | 0.1730 | n.s. |
18:3 n6 | 0.25 | 0.25 | 0.27 | 0.16 | 0.18 | 0.047 | 0.0310 | n.s. |
20:4 n6 ARA | 3.90 B | 6.86 A | 2.83 B | 6.92 A | 1.04 | 0.001 | 0.0009 | n.s. |
Total PUFAn6 | 5.66 B | 8.53 A | 4.64 B | 8.13 A | 0.23 | 0.0001 | 0.0001 | n.s. |
PUFA n3 | ||||||||
18:3 n3 | 2.92 | 2.63 | 3.01 | 3.08 | 0.40 | 0.005 | 0.4050 | n.s. |
20:5 n3 EPA | 14.13 A | 12.04 B | 13.86 A | 12.89 B | 1.02 | 0.0003 | 0.0005 | n.s. |
22:5 n3 DPA | 0.99 | 0.87 | 0.81 | 0.86 | 0.10 | 0.0260 | 0.0260 | n.s. |
22:6 n3 DHA | 5.20 | 4.73 | 5.45 | 5.00 | 0.54 | 0.3850 | 0.1050 | n.s. |
Total PUFAn3 | 23.24 A | 20.27 B | 23.13 | 21.83 | 0.78 | 0.0001 | 0.2382 | n.s. |
Others | 2.42 | 2.07 | 2.43 | 3.08 | 0.25 | 0.4782 | 0.4710 | n.s. |
n3/n6 | 4.10 A | 2.38 B | 4.98 A | 2.68 B | 0.26 | 0.0001 | 0.0001 | n.s. |
N. mutabilis | H. reticulata | ||
---|---|---|---|
Selenium | µg/100 g | 24 ± 7 | 35 ± 6 |
Iron | mg/100 g | 3.1 ± 2 | 4.4 ± 3 |
Calcium | mg/100 g | 32 ± 2 | 33 ± 2 |
Zinc | mg/100 g | 1.7 ± 0.3 | 1.5 ± 0.5 |
Magnesium | mg/100 g | 51 ± 4 | 54 ± 6 |
Potassium | mg/100 g | 290 ±13 | 310 ± 17 |
Lead | µg/100 g | 26 ± 2 B | 30 ± 3 A |
Cadmium | µg/100 g | 31 ± 5 B | 42 ± 3 A |
Chromium | µg/100 g | 26 ± 2 B | 36 ± 5 A |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Felici, A.; Bilandžić, N.; Magi, G.E.; Iaffaldano, N.; Fiordelmondo, E.; Doti, G.; Roncarati, A. Evaluation of Long Sea Snail Hinia reticulata (Gastropod) from the Middle Adriatic Sea as a Possible Alternative for Human Consumption. Foods 2020, 9, 905. https://doi.org/10.3390/foods9070905
Felici A, Bilandžić N, Magi GE, Iaffaldano N, Fiordelmondo E, Doti G, Roncarati A. Evaluation of Long Sea Snail Hinia reticulata (Gastropod) from the Middle Adriatic Sea as a Possible Alternative for Human Consumption. Foods. 2020; 9(7):905. https://doi.org/10.3390/foods9070905
Chicago/Turabian StyleFelici, Alberto, Nina Bilandžić, Gian Enrico Magi, Nicolaia Iaffaldano, Elisa Fiordelmondo, Gerardo Doti, and Alessandra Roncarati. 2020. "Evaluation of Long Sea Snail Hinia reticulata (Gastropod) from the Middle Adriatic Sea as a Possible Alternative for Human Consumption" Foods 9, no. 7: 905. https://doi.org/10.3390/foods9070905