Nutrient Composition of Demersal, Pelagic, and Mesopelagic Fish Species Sampled Off the Coast of Bangladesh and Their Potential Contribution to Food and Nutrition Security—The EAF-Nansen Programme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fish Sampling
2.2. Analytical Methods
2.3. Data Management and Presentation of Analytical Data
2.4. Calculation of Potential Contribution to Recommended Nutrient Intakes
3. Results
3.1. Sample Characteristics
3.2. Pelagic Fish Species
3.3. Mesopelagic Fish Species
3.4. Demersal Fish Species
3.5. Potential Contribution to Recommended Nutrient Intakes
4. Discussion
4.1. Pelagic Fish Species
4.2. Mesopelagic Fish Species
4.3. Demersal Fish Species
4.4. Potential Contribution to Recommended Nutrient Intakes
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lund, E.K. Health benefits of seafood; is it just the fatty acids? Food Chem. 2013, 140, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Khalili Tilami, S.; Sampels, S. Nutritional Value of Fish: Lipids, Proteins, Vitamins, and Minerals. Rev. Fish Sci. Aquac. 2018, 26, 243–253. [Google Scholar] [CrossRef]
- FAO; WHO. Report of the Joint FAO/WHO Expert Consultation on the Risks and Benefits of Fish Consumption; Food and Agriculture Organization of the United Nations: Rome, Italy; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Roos, N.; Islam, M.M.; Thilsted, S.H. Small indigenous fish species in Bangladesh: Contribution to vitamin A, calcium and iron intakes. J. Nutr. 2003, 133, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, J.L.; Lividini, K.; Drummond, E.; Thilsted, S.H. Strengthening the contribution of aquaculture to food and nutrition security: The potential of a vitamin A-rich, small fish in Bangladesh. Aquaculture 2016, 452, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Belton, B.; van Asseldonk, I.J.M.; Thilsted, S.H. Faltering fisheries and ascendant aquaculture: Implications for food and nutrition security in Bangladesh. Food Policy 2014, 44, 77–87. [Google Scholar] [CrossRef] [Green Version]
- WorldFish. Bangladesh. Available online: https://www.worldfishcenter.org/country-pages/bangladesh (accessed on 7 October 2019).
- Departement of Fisheries Bangladesh. Yearbook of Fisheries Statistics of Bangladesh 2016–2017; Fisheries Resources Survey System (FRSS), Department of Fisheries Bangladesh, Director General, DoF: Dhaka, Bangladesh, 2017; Volume 34, p. 129.
- ICDDRB; UNICEF; GAIN. The Institute of Public Health and Nutrition; National Micronutrients Status Survey 2011-12; ICDDRB; UNICEF; GAIN: Dhaka, Bangladesh, 2013. [Google Scholar]
- Bogard, J.R.; Farook, S.; Marks, G.C.; Waid, J.; Belton, B.; Ali, M.; Toufique, K.; Mamun, A.; Thilsted, S.H. Higher fish but lower micronutrient intakes: Temporal changes in fish consumption from capture fisheries and aquaculture in Bangladesh. PLoS ONE 2017, 12, e0175098. [Google Scholar] [CrossRef] [Green Version]
- NIPORT; Mitra; Associates; ICF International. Bangladesh Demographic and Health Survey 2014; NIPORT; Mitra; Associated; ICF International: Dhaka, Bangladesh; Rockville, MD, USA, 2016. [Google Scholar]
- WHO; UNICEF. Report of the Fourth Meeting of the WHO-UNICEF Technical Expert Advisory Group on Nutrition Monitoring (TEAM); WHO: Geneva, Switzerland; UNICEF: New York, NY, USA, 2017.
- Magnani, R.; Oot, L.; Sethuraman, K.; Kabir, G.; Rahman, S. USAID Office for Peace; Food Security Country Framework for Bangladesh Fy 2015–2019; FCHI 360/FANTA: Washington, DC, USA, 2015. [Google Scholar]
- Greenfield, H.; Southgate, D.A.T. Food Composition Data—Production, Management and Use, 2nd ed.; FAO: Rome, Italy, 2003. [Google Scholar]
- INFOODS. Food Composition Challenges. Available online: http://www.fao.org/infoods/infoods/food-composition-challenges/en/ (accessed on 7 April 2019).
- Murshed-E-Jahan, K.; Belton, B.; Viswanathan, K.K. Communication strategies for managing coastal fisheries conflicts in Bangladesh. Ocean Coast. Manag. 2014, 92, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, N.; Rahim, A.; Mohiduzzaman, M.; Banu, C.; Bari, L.; Tukun, A.; Mannan, M.; Bhattacharjee, L.; Stadlmayr, B. Food Composition Table for Bangladesh. Available online: http://www.fao.org/fileadmin/templates/food_composition/documents/FCT_10_2_14_final_version.pdf (accessed on 9 October 2018).
- Shamsuzzaman, M.M.; Islam, M.M.; Tania, N.J.; Abdullah Al-Mamun, M.; Barman, P.P.; Xu, X. Fisheries resources of Bangladesh: Present status and future direction. Aquac. Fish. 2017, 2, 145–156. [Google Scholar] [CrossRef]
- Roos, N.; Wahab, M.; Hossain, M.; Thilsted, S. Linking Human Nutrition and Fisheries: Incorporating Micronutrient-Dense, Small Indigenous Fish Species in Carp Polyculture Production in Bangladesh. Food Nutr. Bull. 2007, 28, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Thilsted, S.H. Improved management, increased culture and consumption of small fish species can improve diets of the rural poor. In Sustainable Diets and Biodiversity: Directions and Solutions for Policy, Research and Action; FAO; Biodiversity International: Rome, Italy, 2012; pp. 176–181. [Google Scholar]
- Needham, S.; Funge-Smith, S.J. The Consumption of Fish and Fish Products in the Asia-Pacific Region Based on Household Surveys; RAP Publication 2015/12; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2014; p. 87. [Google Scholar]
- Barange, M.; Fernandes, J.A.; Kay, S.; Hossain, M.A.R.; Ahmed, M.; Lauria, V. Marine Ecosystems and Fisheries: Trends and Prospects. In Ecosystem Services for Well-Being in Deltas: Integrated Assessment for Policy Analysis; Nicholls, R.J., Hutton, C.W., Adger, W.N., Hanson, S.E., Rahman, M.M., Salehin, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 469–488. [Google Scholar]
- IMR. Mesopelagic Initiative: Unleashing New Marine Resources for a Growing Human Population. Available online: https://www.hi.no/filarkiv/2017/rad-bestander_og_ressurser-mesopelagic_initiative-unleashing_new_marine_resources_for_a_growing_human_population.pdf/nb-no (accessed on 9 October 2019).
- 24. Salvanes, A.G.V.; Kristoffersen, J.B. Mesopelagic Fishes, in Encyclopedia of Ocean Sciences; Steele, J.H., Thorpe, S.A., Turekian, K.K., Eds.; Academic Press Ltd.: San Diego, CA, USA, 2001. [Google Scholar]
- Catul, V.; Gauns, M.; Karuppasamy, P.K. A review on mesopelagic fishes belonging to family Myctophidae. Rev. Fish Biol. Fish. 2011, 21, 339–354. [Google Scholar] [CrossRef]
- Fischer, W.; Bianchi, G. (Eds.) FAO Species Identification Sheets for Fishery Purposes. In Western Indian Ocean (Fishing Area 51); Prepared and Printed with the Support of the Danish International Development Agency (DANIDA); FAO: Rome, Italy, 1984; Available online: http://www.fao.org/docrep/009/ad468e/ad468e00.htm (accessed on 3 April 2019).
- Smith, J.L.B.; Smith, M.M.; Heemstra, P.C. Smiths’ Sea Fishes; Penguin Random House: Cape Town, South Africa, 2003. [Google Scholar]
- Fricke, R.; Eschmeyer, W.; Van der Laan, R. Catalog of Fishes: Genera, Species, References; California Academy of Science: San Francisco, CA, USA, 2018. [Google Scholar]
- Reksten, A.M.; Bøkevoll, A.; Frantzen, S.; Lundebye, A.-K.; Kögel, T.; Kolås, K.; Aakre, I.; Kjellevold, M. Sampling protocol for determination of nutrients and contaminants in fish and other seafood—The EAF Nansen Programme. unpublished, under review.
- Norwegian Standard 9402 (Norsk Standard). Atlantic Salmon. Measurement of Fat and Colour, 1st ed.; Atlantisk Laks. Måling av Fett og Farge; Første Utgave: Bergen, Norway, 1994. [Google Scholar]
- AOAC. Official Methods of Analysis. Crude Protein in Meat and Meat Products, Combustion Method, 16th ed.; Method 992.15; AOAC: Arlington, VA, USA, 1995. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Lie, Ø.; Lambertsen, G. Fatty acid composition of glycerophospholipids in seven tissues of cod (Gadus morhua), determined by combined high-performance liquid chromatography and gas chromatography. J. Chromatogr. B 1991, 565, 119–129. [Google Scholar] [CrossRef]
- Torstensen, B.E.; Frøyland, L.; Ørnsrud, R.; Lie, Ø. Tailoring of a cardioprotective muscle fatty acid composition of Atlantic salmon (Salmo salar) fed vegetable oils. Food Chem. 2004, 87, 567–580. [Google Scholar] [CrossRef]
- Comitè Europèen de Normalisation. Foodstuffs—Determination of Vitamin A by High Preformance Liquid Chromatography-Part 1: Measurement of All-Trans-Retinol and 13-Cis-Retinol; NS-EN 12823-1; Comitè Europèen de Normalisation: Brussels, Belgium, 2000. [Google Scholar]
- Comitè Europèen de Normalisation. Foodstuffs—Determination of vitamin D by high performance liquid chromatography-Measurement of cholecalciferol (D3) or ergocalciferol (D2); NS-EN 12821; Comitè Europèen de Normalisation: Brussels, Belgium, 2009. [Google Scholar]
- AOAC. Methods for the Microbiological Analyses of Selected Nutrients; AOAC: Arlington, VA, USA, 1996; pp. 63–65. [Google Scholar]
- Julshamn, K.; Maage, A.; Norli, H.S.; Grobecker, K.H.; Jorhem, L.; Fecher, P. Determination of arsenic, cadmium, mercury, and lead by inductively coupled plasma/mass spectrometry in foods after pressure digestion: NMKL interlaboratory study. J. AOAC Int. 2007, 90, 844–856. [Google Scholar] [CrossRef] [Green Version]
- Julshamn, K.; Dahl, L.; Eckhoff, K. Determination of iodine in seafood by inductively coupled plasma/mass spectrometry. J. AOAC Int. 2001, 84, 1976–1983. [Google Scholar] [CrossRef] [Green Version]
- WHO; FAO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; WHO: Geneva, Switzerland; FAO: Rome, Italy, 2004; Available online: http://www.fao.org/ag/humannutrition/36659-04427f866c8b2539d8e47d408cad5f3f9.pdf (accessed on 20 March 2019).
- EFSA. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- Bogard, J.; Thilsted, S.H.; Marks, G.C.; Wahab, M.A.; Hossain, M.A.R.; Jakobsen, J.; Stangoulis, J. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. J. Food Comp. Anal. 2015, 42, 120–133. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.; Naser, N.; Abdullah, A.T.; Khan, N. Nutrient contents of some popular freshwater and marine fish species of Bangladesh. J. Zool. 2014, 42, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Anwarul, G.M.M.; Hossain, M.; Farha, J.; Mohajira, B. Nutritional analysis of three different cultured fishes of Bangladesh. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 1–4. [Google Scholar]
- Roos, N.; Islam, M.; Thilsted, S.H. Small fish is an important dietary source of vitamin A and calcium in rural Bangladesh. Int. J. Food Sci. Nutr. 2003, 54, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Rahman, A.F.M.; Mustafa, M.; Hossain, M.B.; Nahar, N. Nutrient Composition of Indigenous and Exotic Fishes of Rainfed Waterlogged Paddy Fields in Lakshmipur, Bangladesh. WJZ 2012, 7, 135–140. [Google Scholar]
- Alam, S.M.D.; Karim, M.H.; Chakrabortty, A.; Amin, R.; Hasan, S. Nutritional Characterization of the Long-whiskered Catfish Sperata aor: A Commercially Important Freshwater Fish of Bangladesh. Int. J. Food Sci. Nutr. 2016, 6, 1–8. [Google Scholar]
- Kamal, D.; Khan, A.N.; Rahman, M.A.; Ahamed, F. Biochemical Composition of Some Small Indigenous Fresh Water Fishes from the River Mouri, Khulna, Bangladesh. PJBS 2007, 10, 1559–1561. [Google Scholar]
- Mazumder, M.S.A.; Rahmani, M.M.; Ahmed, A.T.A.; Begum, M.; Hossain, M.A. Proximate composition of some small indigenous fish species in Bangladesh. Int. J. Sustain. Crop Prod. 2008, 3, 18–23. [Google Scholar]
- Malaysian Food Composition Database. Food Details Nutrient Compositions—Megalaspis Cordyla. Available online: http://myfcd.moh.gov.my/index.php/1997-food-compositon-database/480-scad,-hairtail-(cincaru)-;-megalaspis-cordyla (accessed on 2 April 2019).
- National Technical Working Group of Malaysian Food Composition Database. Protocol for Sampling and Methods of Analysis for Malaysian Food Composition Database. Available online: https://www.imr.gov.my/images/uploads/Protocol_Sampling_MY_FCD.pdf (accessed on 4 May 2019).
- La Frano, M.R.; Cai, Y.; Burri, B.J.; Thilsted, S.H. Discovery and biological relevance of 3,4-didehydroretinol (vitamin A2) in small indigenous fish species and its potential as a dietary source for addressing vitamin A deficiency. Int. J. Food Sci. Nutr. 2018, 69, 253–261. [Google Scholar] [CrossRef]
- Larsen, T.; Thilsted, S.H.; Kongsbak, K.; Hansen, M. Whole small fish as a rich calcium source. Br. J. Nutr. 2000, 83, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Valverde, I.; Jesús Periago, M.; Santaella, M.; Ros, G. The content and nutritional significance of minerals on fish flesh in the presence and absence of bone. Food Chem. 2000, 71, 503–509. [Google Scholar] [CrossRef]
- Malde, M.K.; Bügel, S.; Kristensen, M.; Malde, K.; Graff, I.E.; Pedersen, J.I. Calcium from salmon and cod bone is well absorbed in young healthy men: A double-blinded randomised crossover design. Nutr. Metab. 2010, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Palani Kumar, M.; Ruba Annathai, A.; Jeya Shakila, R.; Shanmugam, S. Proximate and Major Mineral Composition of 23 Medium Sized Marine Fin Fishes Landed in the Thoothukudi Coast of India. J. Nutr. Food Sci. 2014, 4, 1–8. [Google Scholar]
- Hansen, M.; Thilsted, S.H.; Sandstrom, B.; Kongsbak, K.; Larsen, T.; Jensen, M.; Sørensen, S.S. Calcium absorption from small soft-boned fish. J. Trace Elem. Med. Biol. 1998, 12, 148–154. [Google Scholar] [CrossRef]
- St. John, M.A.; Borja, A.; Chust, G.; Heath, M.; Grigorov, I.; Mariani, P.; Martin, A.P.; Santos, R.S. A Dark Hole in Our Understanding of Marine Ecosystems and Their Services: Perspectives from the Mesopelagic Community. Front. Mar. Sci. 2016, 3, 31. [Google Scholar]
- El-Mowafi, A.; Nanton, D.; Berntssen, M. Evaluation of lantern fish (Benthosema Pterotum) as marine source in fish feeds: Nutrient composition and contaminants assessment. FAR 2010, 29, 12–23. [Google Scholar]
- Lea, M.-A.; Nichols, P.D.; Wilson, G. Fatty acid composition of lipid-rich myctophids and mackerel icefish (Champsocephalus gunnari)—Southern Ocean food-web implications. Polar Biol. 2002, 25, 843–854. [Google Scholar] [CrossRef] [Green Version]
- Koizumi, K.; Hiratsuka, S.; Saito, H. Lipid and fatty acids of three edible myctophids, Diaphus watasei, Diaphus suborbitalis, and Benthosema pterotum: High levels of icosapentaenoic and docosahexaenoic acids. J. Oleo Sci. 2014, 63, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Alvheim, A.R.; Kjellevold, M.; Strand, E.; Sanden, M.; Wiech, M. Mesopelagic Species and Their Potential Contribution to Food and Feed Security—A Case Study from Norway. Foods 2020, 9, 344. [Google Scholar] [CrossRef] [Green Version]
- Reksten, A.M.; Somasanduram, T.; Kjellevold, M.; Nordhagen, A.; Bøkevoll, A.; Pincus, L.M.; Rizwan, A.A.M.; Mamun, A.; Thilsted, S.H.; Htut, T.; et al. Nutrient composition of 19 fish species from Sri Lanka and potential contribution to food and nutrition security. J. Food Compos. Anal. 2020, 91, 103508. [Google Scholar] [CrossRef]
- Roos, N.; Wahab, M.A.; Chamnan, C.; Thilsted, S.H. The role of fish in food-based strategies to combat vitamin A and mineral deficiencies in developing countries. J. Nutr. 2007, 137, 1106–1109. [Google Scholar] [CrossRef] [Green Version]
- Roos, N.; Leth, T.; Jakobsen, J.; Thilsted, S.H. High vitamin A content in some small indigenous fish species in Bangladesh: Perspectives for food-based strategies to reduce vitamin A deficiency. Int. J. Food Sci. Nutr. Eng. 2002, 53, 425–437. [Google Scholar] [CrossRef]
- Fernandes, J.; Kay, S.; Hossain, M.; Ahmed, M.; Cheung, W.; Lazar, A.; Barange, M. Projecting marine fish production and catch potential in Bangladesh in the 21st century under long-term environmental change and management scenarios. ICES J. Mar. Sci. 2015, 73, 1357–1369. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, B.P.; Mahanty, A.; Ganguly, S.; Mitra, T.; Karunakaran, D.; Anandan, R. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chem. 2019, 30, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.; Burt, J.R. The Composition of Fish. Available online: http://www.fao.org/3/x5957e00.htm#Contents (accessed on 7 May 2019).
- Huss, H.H. Quality and Quality Changes in Fresh Fish: FAO Fisheries Technical Paper—348; FAO: Rome, Italy, 1995; Available online: http://www.fao.org/docrep/V7180E/V7180E00.HTM#Contents (accessed on 29 October 2019).
- EFSA. Opinion of the Scientific Panel on contaminants in the food chain [CONTAM] related to the safety assessment of wild and farmed fish. EFSA J. 2005, 3. [Google Scholar] [CrossRef]
- Siddique, M.A.M.; Mojumder, P.; Zamal, H. Proximate Composition of Three Commercially Available Marine Dry Fishes (Harpodon nehereus, Johnius dussumieri and Lepturacanthus savala). Am. J. Food Technol. 2012, 7, 429–436. [Google Scholar] [CrossRef]
- Speedy, A.W. Global production and consumption of animal source foods. J. Nutr. 2003, 133, 4048–4053. [Google Scholar] [CrossRef]
- Beveridge, M.C.M.; Thilsted, S.H.; Phillips, M.J.; Metian, M.; Troell, M.; Hall, S.J. Meeting the food and nutrition needs of the poor: The role of fish and the opportunities and challenges emerging from the rise of aquaculture. J. Fish Biol. 2013, 83, 1067–1084. [Google Scholar] [CrossRef] [Green Version]
- Kawarazuka, N.; Bene, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: Building evidence. Public Health Nutr. 2011, 14, 1927–1938. [Google Scholar] [CrossRef] [Green Version]
- Kabahenda, M.K.; Amega, R.; Okalany, E.; Husken, S.M.C.; Heck, S. Protein and Micronutrient Composition of Low-Value Fish Products Commonly Marketed in the Lake Victoria Region. World J. Agric. Sci. 2011, 7, 521–526. [Google Scholar]
- Navas-Carretero, S.; Perez-Granados, A.M.; Sarria, B.; Carbajal, A.; Pedrosa, M.M.; Roe, M.A.; Fairweather-Tait, S.J.; Vaquero, M.P. Oily fish increases iron bioavailability of a phytate rich meal in young iron deficient women. J. Am. Coll. Nutr. 2008, 27, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Caudill, S.P. Use of pooled samples from the National Health and Nutrition Examination Survey. Stat. Med. 2012, 31, 3269–3277. [Google Scholar] [CrossRef] [Green Version]
Common Name | Scientific Name | Local Name | Habitat | Fish Tissue Sampled | Number of Pooled Samples | Number of Fish in Each Pooled Sample |
---|---|---|---|---|---|---|
Fringescale sardinella 1 | Sardinella fimbriata | Chapila | Pelagic | Fillet with skin and bones | 3 | 23 a |
Fringescale sardinella 2 | Sardinella fimbriata | Chapila | Pelagic | Fillet with skin and bones | 3 | 25 |
Fringescale sardinella 3 | Sardinella fimbriata | Chapila | Pelagic | Fillet with skin and bones | 3 | 25 |
Slender rainbow sardine 1 | Dussumieria elopsoides | Maricha | Pelagic | Fillet with skin and bones | 3 | 25 |
Slender rainbow sardine 2 | Dussumieria elopsoides | Maricha | Pelagic | Fillet with skin and bones | 3 | 25 |
Slender rainbow sardine 3 | Dussumieria elopsoides | Maricha | Pelagic | Fillet with skin and bones | 3 | 23 a |
Torpedo scad | Megalaspis cordyla | Kauwa | Pelagic | Fillet with skin and bones | 3 | 5 |
Spinycheek lanternfish | Benthosema fibulatum | Puiya | Mesopelagic | Whole fish | 3 | 250 |
Unicorn cod | Bregmaceros mcclellandi | -b | Mesopelagic | Whole fish | 3 | 280 |
Bombay duck 1 | Harpadon nehereus | Loittya | Demersal | Fillet with skin and bones | 3 | 25 |
Bombay duck 2 | Harpadon nehereus | Loittya | Demersal | Fillet with skin and bones | 3 | 20 |
Longfin mojarra | Pentaprion longimanus | Dom Mach | Demersal | Fillet with skin and bones | 3 | 25 |
Common name | Weight (g) a | Length (cm) a |
---|---|---|
Pelagic | ||
Fringescale sardinella 1 | 35.2 | 16.1 |
Fringescale sardinella 2 | 40.3 | 16.4 |
Fringescale sardinella 3 | 43.5 | 16.4 |
Slender rainbow sardine 1 | 49.7 | 17.0 |
Slender rainbow sardine 2 | 72.6 | 20.3 |
Slender rainbow sardine 3 | 67.8 | 19.3 |
Torpedo scad | 114.6 | 25.2 |
Mesopelagic | ||
Spinycheek lanternfish | 0.6 | <5 |
Unicorn cod | 0.5 | <6 |
Demersal | ||
Bombay duck 1 | 110.3 | 25.5 |
Bombay duck 2 | 117.7 | 24.2 |
Longfin mojarra | 20.8 | 11.4 |
Sampled Species | Dry Matter | Protein | Fat | |
---|---|---|---|---|
Pelagic | n b | % | g/100 g | g/100 g |
Fringescale sardinella1 | 3 | 23.6 ± 0.5 | 21 ± 0.0 | 1.6 ± 0.2 |
Fringescale sardinella2 | 3 | 25.0 ± 0.3 | 21 ± 0.6 | 1.8 ± 0.1 |
Fringescale sardinella3 | 3 | 25.3 ± 0.4 | 21 ± 0.6 | 2.4 ± 0.4 |
Mean of all Fringescale sardinella 1,2,3 | 9 | 24.6 ± 0.9 | 21 ± 0.5 | 1.9 ± 0.4 |
Slender rainbow sardine 1 | 3 | 23.4 ± 2.2 | 21 ± 2.1 | 1.13 ± 0.1 |
Slender rainbow sardine 2 | 3 | 23.0 ± 0.3 | 21 ± 0.6 | 1.3 ± 0.3 |
Slender rainbow sardine 3 | 3 | 24.1 ± 0.4 | 21 ± 0.6 | 1.9 ± 0.1 |
Mean of all Slender rainbow sardine 1,2,3 | 9 | 23.5 ± 1.3 | 21 ± 1.1 | 1.4 ± 0.4 |
Torpedo scad | 3 | 24.6 ± 1.8 | 21 ± 1.5 | 1.3 ± 0.2 |
Mesopelagic | ||||
Spinycheek lanternfish | 3 | 24.2 ± 0.5 | 17 ± 0.1 | 3.3 ± 0.1 |
Unicorn cod | 3 | 20.9 ± 1.1 | 15 ± 1.1 | 1.6 ± 0.2 |
Demersal | ||||
Bombay duck 1 | 3 | 8.12 ± 0.2 | 10 ± 1.8 | 0.64 ± 0.0 |
Bombay duck 2 | 3 | 9.45 ± 0.9 | 11 ± 2.4 | 0.85 ± 0.1 |
Mean of all Bombay duck 1,2 | 6 | 8.79 ± 0.9 | 10 ± 2.0 | 0.74 ± 0.1 |
Longfin mojarra | 3 | 23.3 ± 1.0 | 19 ± 1.2 | 2.5 ± 0.1 |
Sampled Species | Ca | Na | K | Mg | P | I | Se | Zn | Fe | |
---|---|---|---|---|---|---|---|---|---|---|
n b | mg/100 g | mg/100 g | mg/100 g | mg/100 g | mg/100 g | µg/100 g | µg/100 g | mg/100 g | mg/100 g | |
Pelagic | ||||||||||
Fringescale sardinella 1 | 3 | 597 ± 6 | 80 ± 2 | 470 ± 10 | 43 ± 1 | 583 ± 15 | 23.7 ± 0.6 | 113.3 ± 5.8 | 1.9 ± 0.2 | 2.2 ± 0.1 |
Fringescale sardinella 2 | 3 | 473 ± 117 | 84 ± 1 | 500 ± 10 | 44 ± 2 | 543 ± 51 | 66.7 ± 15.3 | 116.7 ± 5.8 | 2.0 ± 0.1 | 2.4 ± 0.2 |
Fringescale sardinella 3 | 3 | 527 ± 244 | 73 ± 2 | 487 ± 12 | 43 ± 3 | 557 ± 117 | 25.3 ± 0.6 | 99 ± 9.3 | 1.9 ± 0.2 | 1.9 ± 0.2 |
Mean of all Fringescale sardinella 1,2.3 | 9 | 532 ± 146 | 79 ± 5 | 486 ± 16 | 43 ± 2 | 561 ± 67 | 38.6 ± 22.4 | 110 ± 10 | 1.9 ± 0.2 | 2.2 ± 0.3 |
Slender rainbow sardine 1 | 3 | 353 ± 90 | 76 ± 7 | 503 ± 49 | 46 ± 4 | 473 ± 67 | 16.3 ± 0.6 | 84 ± 11 | 1.5 ± 0.2 | 1.1 ± 0.2 |
Slender rainbow sardine 2 | 3 | 280 ± 56 | 62 ± 3 | 500 ± 20 | 43 ± 2 | 430 ± 26 | 11.0 ± 0.0 | 70 ± 3.8 | 1.4 ± 0.1 | 1.0 ± 0.1 |
Slender rainbow sardine 3 | 3 | 277 ± 31 | 83 ± 6 | 513 ± 15 | 46 ± 1 | 443 ± 15 | 16.7 ± 0.6 | 75 ± 2.0 | 1.5 ± 0.1 | 0.9 ± 0.0 |
Mean of all Slender rainbow sardine 1,2,3 | 9 | 303 ± 67 | 74 ± 10 | 506 ± 28 | 45 ± 3 | 449 ± 41 | 14.7 ± 2.8 | 76 ± 8.4 | 1.5 ± 0.1 | 1.0 ± 0.1 |
Torpedo scad | 3 | 670 ± 549 | 70 ± 17 | 417 ± 21 | 37 ± 8 | 580 ± 282 | 41.7 ± 16.3 | 63 ± 0.0 | 0.1 ± 0.3 | 2.4 ± 0.1 |
Mesopelagic | ||||||||||
Spinycheek lanternfish | 3 | 940 ± 69 | 230 ± 0 | 303 ± 6 | 60 ± 1 | 577 ± 12 | 160.0 ± 26.5 | 120.0 ± 0.0 | 1.5 ± 0.1 | 2.5 ± 0.1 |
Unicorn cod | 3 | 1033 ± 58 | 260 ± 10 | 327 ± 15 | 57 ± 2 | 613 ± 12 | 160.0 ± 20.0 | 67 ± 3.5 | 1.1 ± 0.0 | 4.9 ± 5.3 |
Demersal | ||||||||||
Bombay duck 1 | 3 | 126 ± 139 | 150 ± 10 | 177 ± 21 | 18 ± 2 | 143 ± 59 | 9.1 ± 0.6 | 15 ± 1.5 | 0.3 ± 0.1 | 0.2 ± 0.1 |
Bombay duck 2 | 3 | 46 ± 45 | 297 ± 50 | 210 ± 26 | 20 ± 1 | 126 ± 31 | 6.7 ± 0.7 | 18 ± 4.0 | 0.3 ± 0.0 | 0.2 ± 0.0 |
Mean of all Bombay duck 1,2 | 6 | 86 ± 102 | 173 ± 41 | 193 ± 28 | 19 ± 2 | 135 ± 43 | 7.9 ± 1.4 | 17 ± 3.0 | 0.3 ± 0.1 | 0.2 ± 0.1 |
Longfin mojarra | 3 | 407 ± 93 | 78 ± 6 | 410 ± 30 | 38 ± 1 | 437 ± 32 | 19.0 ± 4.4 | 44 ± 2.0 | 0.9 ± 0.1 | 0.6 ± 0.0 |
Species a | Vitamin A1 | Vitamin A2 | Vitamin B12 | Vitamin D | |
---|---|---|---|---|---|
n b | µg/100 g | µg/100 g | µg/100 g | µg/100 g | |
Pelagic | |||||
Fringescale sardinella 1 | 3 | 10.3 ± 0.6 | 5.6 ± 2.1 | 4.1 ± 0.3 | 4.7 ± 0.6 |
Fringescale sardinella 2 | 3 | 12.7 ± 4.7 | 8.7 ± 1.5 | 11 ± 3.3 | 4.0 ± 1.0 |
Fringescale sardinella 3 | 3 | 14.3 ± 1.5 | 11.0 ± 2.0 | 14 ± 2.1 | 2.7 ± 0.6 |
Mean of all Fringescale sardinella 1,2,3 | 9 | 12.4 ± 3.0 | 8.4 ± 2.9 | 9.9 ± 4.9 | 3.8 ± 1.1 |
Slender rainbow sardine 1 | 3 | 7.3 ± 1.5 | 1.8 ± 0.2 | 8.3 ± 0.4 | 3.3 ± 0.6 |
Slender rainbow sardine 2 | 3 | 4.1 ± 2.4 | 1.3 ± 0.5 | 7.1 ± 1.4 | 2.7 ± 1.2 |
Slender rainbow sardine 3 | 3 | 16.3 ± 1.5 | 1.4 ± 0.3 | 8.8 ± 0.5 | 4.7 ± 2.1 |
Mean of all Slender rainbow sardine 1,2,3 | 9 | 9.3 ± 5.7 | 1.5 ± 0.4 | 8.1 ± 1.1 | 3.6 ± 1.5 |
Torpedo scad | 3 | 11.7 ± 4.0 | 0.7 ± 0.2 | 15 ± 2.1 | 2.3 ± 0.6 |
Mesopelagic | |||||
Spinycheek lanternfish | 3 | 133 ± 49.3 | 6.2 ± 2.4 | 13 ± 1.5 | <1.0 d |
Unicorn cod | 3 | 280 ± 26.5 | 8.7 ± 1.2 | 7.9 ± 0.7 | 2.3 ± 0.6 |
Demersal | |||||
Bombay duck 1 | 3 | 5.2 ± 0.8 | <0.5 d | 1.2 ± 0.1 | <1.0 d |
Bombay duck 2 | 3 | 9.3 ± 2.9 | <0.5 d | 1.7 ± 0.6 | <1.0 d |
Mean of all Bombay duck 1,2 | 6 | 7.3 ± 3.0 | <0.5 d | 1.5 ± 0.5 | <1.0 d |
Longfin mojarra | 3 | 7.3 ± 2.6 | <0.5 d | 1.1 ± 0.2 | <1.0 d |
Sampled Species | Sum SFA | Sum MUFA | Sum PUFA | Sum n-3 | Sum n-6 | EPA | DHA | |
---|---|---|---|---|---|---|---|---|
n b | g/100 g (% c) | g/100 g (% c) | g/100 g (% c) | g/100 g (% c) | g/100 g (% c) | g/100 g (% c) | g/100 g (% c) | |
Pelagic | ||||||||
Fringescale sardinella 1 | 3 | 0.44 ± 0.06 (39) | 0.16 ± 0.06 (14) | 0.47 ± 0.05 (42) | 0.37 ± 0.03 (34) | 0.09 ± 0.02 (7.3) | 0.07 ± 0.01 (5.8) | 0.27 ± 0.01 (24.2) |
Fringescale sardinella 2 | 3 | 0.49 ± 0.03 (42) | 0.18 ± 0.03 (15) | 0.46 ± 0.02 (39) | 0.36 ± 0.01 (31) | 0.08 ± 0.01 (7.3) | 0.08 ± 0.01 (6.7) | 0.25 ± 0.03 (21) |
Fringescale sardinella 3 | 3 | 0.88 ± 0.14 (40) | 0.39 ± 0.10 (18) | 0.80 ± 0.10 (37) | 0.64 ± 0.08 (29) | 0.14 ± 0.01 (6.3) | 0.20 ± 0.05 (8.9) | 0.34 ± 0.02 (16) |
Mean of all Fringescale sardinella 1,2,3 | 9 | 0.60 ± 0.23 (40) | 0.24 ± 0.13 (16) | 0.57 ± 0.18 (39) | 0.46 ± 0.14 (32) | 0.10 ± 0.03 (7.1) | 0.11 ± 0.07 (7.1) | 0.29 ± 0.05 (20) |
Slender rainbow sardine 1 | 3 | 0.37 ± 0.02 (40) | 0.11 ± 0.00 (12) | 0.44 ± 0.03 (46) | 0.37 ± 0.02 (39) | 0.07 ± 0.00 (7.4) | 0.06 ± 0.00 (6.5) | 0.28 ± 0.02 (30) |
Slender rainbow sardine 2 | 3 | 0.36 ± 0.03 (40) | 0.11 ± 0.01 (12) | 0.40 ± 0.04 (46) | 0.34 ± 0.03 (39) | 0.06 ± 0.01 (7.0) | 0.06 ± 0.01 (6.7) | 0.26 ± 0.02 (29) |
Slender rainbow sardine 3 | 3 | 0.57 ± 0.03 (40) | 0.17 ± 0.01 (12) | 0.62 ± 0.06 (44) | 0.52 ± 0.05 (37) | 0.10 ± 0.01 (7.0) | 0.10 ± 0.01 (7.2) | 0.38 ± 0.04 (27) |
Mean of all Slender rainbow sardine 1,2,3 | 9 | 0.43 ± 0.10 (40) | 0.13 ± 0.03 (12) | 0.49 ± 0.11 (45) | 0.41 ± 0.09 (38) | 0.08 ± 0.02 (7.1) | 0.07 ± 0.02 (6.8) | 0.31 ± 0.06 (29) |
Torpedo scad | 3 | 0.35 ± 0.05 (34) | 0.14 ± 0.02 (14) | 0.48 ± 0.03 (47) | 0.38 ± 0.02 (37) | 0.10 ±0.01 (10) | 0.05 ± 0.00 (5.1) | 0.28 ± 0.01 (27) |
Mesopelagic | ||||||||
Spinycheek lanternfish | 3 | 0.88 ± 0.00 (40) | 0.41 ± 0.00 (19) | 0.85 ± 0.01 (39) | 0.68 ± 0.01 (31) | 0.17 ± 0.00 (7.8) | 0.16 ± 0.00 (7.2) | 0.43 ± 0.01 (19) |
Unicorn cod | 3 | 0.31 ± 0.02 (31) | 0.16 ± 0.01 (16) | 0.45 ± 0.02 (45) | 0.37 ± 0.02 (37) | 0.08 ± 0.00 (7.8) | 0.06 ± 0.00 (6.1) | 0.28 ± 0.01 (28) |
Demersal | ||||||||
Bombay duck 1 | 3 | 0.11 ± 0.02 (39) | 0.06 ± 0.01 (19) | 0.10 ± 0.01 (36) | 0.074 ± 0.01 (26) | 0.03 ± 0.00 (9.3) | 0.02 ± 0.00 (5.8) | 0.05 ± 0.00 (17) |
Bombay duck 2 | 3 | 0.21 ± 0.07 (43) | 0.11 ± 0.04 (22) | 0.13 ± 0.01 (29) | 0.10 ± 0.01 (22) | 0.03 ± 0.00 (7.1) | 0.03 ± 0.01 (5.6) | 0.06 ± 0.01 (14) |
Mean of all Bombay duck 1,2 | 6 | 0.16 ± 0.07 (41) | 0.08 ± 0.04 (21) | 0.12 ± 0.02 (32) | 0.09 ± 0.02 (24) | 0.03 ± 0.01 (8.2) | 0.02 ± 0.01 (5.7) | 0.06 ± 0.01 (16) |
Longfin mojarra | 3 | 0.74 ± 0.05 (38) | 0.45 ± 0.4 (23) | 0.67 ± 0.03 (34) | 0.52 ± 0.02 (27) | 0.15 ± 0.00 (7.6) | 0.08 ± 0.00 (4.2) | 0.38 ± 0.02 (20) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nordhagen, A.; Rizwan, A.A.M.; Aakre, I.; Moxness Reksten, A.; Pincus, L.M.; Bøkevoll, A.; Mamun, A.; Haraksingh Thilsted, S.; Htut, T.; Somasundaram, T.; et al. Nutrient Composition of Demersal, Pelagic, and Mesopelagic Fish Species Sampled Off the Coast of Bangladesh and Their Potential Contribution to Food and Nutrition Security—The EAF-Nansen Programme. Foods 2020, 9, 730. https://doi.org/10.3390/foods9060730
Nordhagen A, Rizwan AAM, Aakre I, Moxness Reksten A, Pincus LM, Bøkevoll A, Mamun A, Haraksingh Thilsted S, Htut T, Somasundaram T, et al. Nutrient Composition of Demersal, Pelagic, and Mesopelagic Fish Species Sampled Off the Coast of Bangladesh and Their Potential Contribution to Food and Nutrition Security—The EAF-Nansen Programme. Foods. 2020; 9(6):730. https://doi.org/10.3390/foods9060730
Chicago/Turabian StyleNordhagen, Anna, Abu Ansar Md. Rizwan, Inger Aakre, Amalie Moxness Reksten, Lauren Michelle Pincus, Annbjørg Bøkevoll, Al Mamun, Shakuntala Haraksingh Thilsted, Thaung Htut, Thiruchenduran Somasundaram, and et al. 2020. "Nutrient Composition of Demersal, Pelagic, and Mesopelagic Fish Species Sampled Off the Coast of Bangladesh and Their Potential Contribution to Food and Nutrition Security—The EAF-Nansen Programme" Foods 9, no. 6: 730. https://doi.org/10.3390/foods9060730
APA StyleNordhagen, A., Rizwan, A. A. M., Aakre, I., Moxness Reksten, A., Pincus, L. M., Bøkevoll, A., Mamun, A., Haraksingh Thilsted, S., Htut, T., Somasundaram, T., & Kjellevold, M. (2020). Nutrient Composition of Demersal, Pelagic, and Mesopelagic Fish Species Sampled Off the Coast of Bangladesh and Their Potential Contribution to Food and Nutrition Security—The EAF-Nansen Programme. Foods, 9(6), 730. https://doi.org/10.3390/foods9060730