Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melorose, J.; Perroy, R.; Careas, S. México, líder mundial en exportación de chile: SAGARPA. Statew. Agric. L. Use Baseline 2015, 1, 2015. [Google Scholar]
- SAGARPA Un panorama del cultivo del chile. Serv. Inf. Agroaliment. Pesq. 2010, 1, 20.
- SAGARPA Agrícola Nacional. Planeación Agrícola Nac. 2017-2030 2017, 1, 1–14.
- Restrepo Gallego, M.; Llanos Ríos, N.; Fonseca Echeverri, C.E. Composición de las oleorresinas de dos variedades de ají picante (habanero y tabasco) obtenidas mediante lixiviación con solventes orgánicos* Composition of oleoresins from two kinds of chili pepper (habanero and tabasco) obtained by lixiviation with orga. Rev. Lasallista Investig. 2007, 4, 14–19. [Google Scholar]
- Fernandes, F.A.N.; Rodrigues, S.; Law, C.L.; Mujumdar, A.S. Drying of Exotic Tropical Fruits: A Comprehensive Review. Food Bioprocess Technol. 2011, 4, 163–185. [Google Scholar] [CrossRef]
- Sagar, V.R.; Suresh Kumar, P. Recent advances in drying and dehydration of fruits and vegetables: A review. J. Food Sci. Technol. 2010, 47, 15–26. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Ramanathan, S.; Basak, T. Microwave food processing—A review. FRIN 2013, 52, 243–261. [Google Scholar] [CrossRef]
- Belessiotis, V.; Delyannis, E. Solar drying. Sol. Energy 2011, 85, 1665–1691. [Google Scholar] [CrossRef]
- De la Fuente-Blanco, S.; De Sarabia, E.R.F.; Acosta-Aparicio, V.M.; Blanco-Blanco, A.; Gallego-Juárez, J.A. Food drying process by power ultrasound. Ultrasonics 2006, 44, 523–527. [Google Scholar] [CrossRef]
- Nikolaou, A.; Sgouros, G.; Mitropoulou, G.; Santarmaki, V. Freeze-Dried Immobilized Kefir Culture in Low. Foods 2020, 9, 115. [Google Scholar] [CrossRef]
- Piskov, S.; Timchenko, L.; Grimm, W.; Rzhepakovsky, I. Effects of Various Drying Methods on Some Physico-Chemical Properties and the Antioxidant Profile and ACE Inhibition Activity of Oyster Mushrooms (Pleurotus Ostreatus ). Foods 2020, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Munzenmayer, P.; Ulloa, J.; Pinto, M.; Ramirez, C.; Valencia, P.; Simpson, R.; Almonacid, S. Freeze-Drying of Blueberries: Effects of Carbon Dioxide (CO2) Laser Perforation as Skin Pretreatment to Improve Mass Transfer, Primary Drying Time, and Quality. Foods 2020, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- OHAUS, “Combining Speed and Precision in One Moisture Analyzer” 2020. Available online: https://us.ohaus.com/en-US/Products/Balances-Scales/Moisture-Analyzers (accessed on 3 April 2020).
- Doymaz, İ.; Pala, M. The effects of dipping pretreatments on air-drying rates of the seedless grapes. J. Food Eng. 2002, 52, 413–417. [Google Scholar] [CrossRef]
- Arancibia, C.; Riquelme, N.; Zúñiga, R.; Matiacevich, S. Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innov. Food Sci. Emerg. Technol. 2017, 44, 159–166. [Google Scholar] [CrossRef]
- Berasategi, I.; Barriuso, B.; Ansorena, D.; Astiasarán, I. Stability of avocado oil during heating: Comparative study to olive oil. Food Chem. 2012, 132, 439–446. [Google Scholar] [CrossRef]
- Beaulieu, J.C.; Park, H.S.; Mims, A.G.B.; Kuk, M.S. Extension of green bell pepper shelf life using oilseed-derived lipid films from soapstock. Ind. Crops Prod. 2009, 30, 271–275. [Google Scholar] [CrossRef]
- Faustino, J.M.F.; Barroca, M.J.; Guiné, R.P.F. Study of the drying kinetics of green bell pepper and chemical characterization. Food Bioprod. Process. 2007, 85, 163–170. [Google Scholar] [CrossRef]
- Serafin-Higuera, N.; Hernandez-Sanchez, J.; Ocadiz-Delgado, R.; Vazquez-Hernandez, J.; Albino-Sanchez, M.E.; Hernandez-Pando, R.; Gariglio, P. Retinoic acid receptor β deficiency reduces splenic dendritic cell population in a conditional mouse line. Immunol. Lett. 2012, 146, 15–24. [Google Scholar] [CrossRef]
- Trentham, W.R.; Sams, C.E.; Conway, W.S. Histological effects of calcium chloride in stored apples. J. Am. Soc. Hortic. Sci. 2008, 133, 487–491. [Google Scholar] [CrossRef]
- De Torres, C.; Schumacher, R.; Alañón, M.E.; Pérez-Coello, M.S.; Díaz-Maroto, M.C. Freeze-dried grape skins by-products to enhance the quality of white wines from neutral grape varieties. Food Res. Int. 2015. [Google Scholar] [CrossRef]
- Di Matteo, P.; Donsì, G.; Ferrari, G. The role of heat and mass transfer phenomena in atmospheric freeze-drying of foods in a fluidised bed. J. Food Eng. 2003, 59, 267–275. [Google Scholar] [CrossRef]
- Ghio, S.; Barresi, A.A.; Rovero, G. A Comparison of Evaporative and Conventional Freezing Prior to Freeze-Drying of Fruits and Vegetables. Food Bioprod. Process. 2000, 78, 187–192. [Google Scholar] [CrossRef]
- González-Zamora, A.; Sierra-Campos, E.; Pérez-Morales, R.; Vázquez-Vázquez, C.; Gallegos-Robles, M.A.; López-Martínez, J.D.; García-Hernández, J.L. Measurement of capsaicinoids in chiltepin hot pepper: A comparison study between spectrophotometric method and high performance liquid chromatography analysis. J. Chem. 2015, 2015. [Google Scholar] [CrossRef]
- Igual, M.; García-Martínez, E.; Camacho, M.M.; Martínez-Navarrete, N. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chem. 2010, 118, 291–299. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Lech, K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Park, J.N.; Sung, N.Y.; Byun, E.H.; Byun, E.B.; Song, B.S.; Kim, J.H.; Lee, K.A.; Son, E.J.; Lyu, E.S. Microbial analysis and survey test of gamma-irradiated freeze-dried fruits for patient’s food. Radiat. Phys. Chem. 2015, 111, 57–61. [Google Scholar] [CrossRef]
Habanero Pepper Samples | Freezing Process (Minutes) | Drying Process (Hours) | Final Moisture(%) | Energy Saving (%) | Effectiveness of Emulsions (Adimensional) |
---|---|---|---|---|---|
Samples without pretreatment | 180 | 20 | 4.6 | 0 | |
Olive oil | 10 | 14 | 6.55 | 39 | 0.083 |
Coconut oil | 10 | 13 | 4.08 | 43 | 0.470 |
Avocado oil | 10 | 14 | 6.04 | 39 | 0.154 |
Grape oil | 10 | 14 | 5.10 | 39 | 0.286 |
Sesame oil | 10 | 14 | 4.97 | 39 | 0.304 |
Safflower oil | 10 | 14.5 | 3.01 | 36 | 0.564 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Toxqui, C.; González-Ángeles, Á.; López-Avitia, R.; González-Balvaneda, D. Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process. Foods 2020, 9, 437. https://doi.org/10.3390/foods9040437
González-Toxqui C, González-Ángeles Á, López-Avitia R, González-Balvaneda D. Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process. Foods. 2020; 9(4):437. https://doi.org/10.3390/foods9040437
Chicago/Turabian StyleGonzález-Toxqui, Cicerón, Álvaro González-Ángeles, Roberto López-Avitia, and David González-Balvaneda. 2020. "Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process" Foods 9, no. 4: 437. https://doi.org/10.3390/foods9040437
APA StyleGonzález-Toxqui, C., González-Ángeles, Á., López-Avitia, R., & González-Balvaneda, D. (2020). Drying Habanero Pepper (Capsicum chinense) by Modified Freeze Drying Process. Foods, 9(4), 437. https://doi.org/10.3390/foods9040437