First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alum, E.A.; Urom, S.; Ben, C.M.A. Microbiological contamination of food: The mechanisms, impacts and prevention. Int. J. Sci. Technol. Res 2016, 5, 65–78. [Google Scholar]
- Rather, I.A.; Koh, W.Y.; Paek, W.K.; Lim, J. The sources of chemical contaminants in food and their health implications. Front. Pharmacol. 2017, 8, 830. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). WHO’s First Ever Global Estimates of Foodborne Diseases Find Children under 5 Account for Almost One Third of Deaths; World Health Organization: Geneva, Switzerland, 2015; Available online: https://www.who.int/en/news-room/detail/03-12-2015-who-s-first-ever-global-estimates-of-foodborne-diseases-find-children-under-5-account-for-almost-one-third-of-deaths (accessed on 17 January 2020).
- World Health Organization (WHO). WHO Estimates of the Global Burden of Foodborne diseases: Foodborne Disease Burden Epidemiology Reference Group 2007–2015; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- World Health Organization (WHO). Food Safety; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/en/news-room/fact-sheets/detail/food-safety (accessed on 17 January 2020).
- Jaffee, S.; Henson, S.; Unnevehr, L.; Grace, D.; Cassou, E. The Safe Food Imperative: Accelerating Progress in Low-and Middle-Income Countries; The World Bank: Wahington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Grace, D. Food Safety in Low and Middle Income Countries. Int. J. Environ. Res. Public Health 2015, 12, 10490–10507. [Google Scholar] [CrossRef] [PubMed]
- Cortas, A. A Training Program in Food Safety in Lebanon. Int. J. Clin. Nutr. Diet. 2018, 4, 130. [Google Scholar] [CrossRef] [PubMed]
- El Jardali, F.; Hammoud, R.; Kamleh, R.; Jurdi, M. K2P Briefing Note: Protecting Consumers in Lebanon: The Need for Effective Food Safety System; American University of Beirut: Beirut, Lebanon, 2014; Available online: https://eventscal.lau.edu.lb/conferences/nfrd2014/abstracts/food/food-abstract13.pdf (accessed on 18 September 2020).
- Kassem, I.I.; Nasser, N.A.; Salibi, J. Prevalence and Loads of Fecal Pollution Indicators and the Antibiotic Resistance Phenotypes of Escherichia coli in Raw Minced Beef in Lebanon. Foods 2020, 9, 1543. [Google Scholar] [CrossRef]
- Hassan, J.; Eddine, R.Z.; Mann, D.; Li, S.; Deng, X.; Saoud, I.P.; Kassem, I.I. The Mobile Colistin Resistance Gene, mcr-1.1, Is Carried on IncX4 Plasmids in Multidrug Resistant E. coli Isolated from Rainbow Trout Aquaculture. Microorganisms 2020, 8, 1636. [Google Scholar] [CrossRef]
- Hassan, J.; El-Gemayel, L.; Bashour, I.; Kassem, I.I. On the edge of a precipice: The global emergence and dissemination of plasmid-borne mcr genes that confer resistance to colistin, a last-resort antibiotic. In Antibiotics and Antimicrobial Resistance Genes in the Environment; Elsevier BV: Amsterdam, The Netherlands, 2020; Volume 1, pp. 155–182. [Google Scholar]
- Malaeb, M.; Bizri, A.; Ghosn, N.; Berry, A.; Musharrafieh, U. Salmonella burden in Lebanon. Epidemiol. Infect. 2016, 144, 1761–1769. [Google Scholar] [CrossRef]
- Harb, C.; Mouannes, E.; Bou Zeidan, M.; Abdel Nour, A.M.; Hanna-Wakim, L. Foodborne pathogens dilemma in the Mediterranean diet: Case of Lebanon. J. Food Process. Technol. 2020, 11. [Google Scholar] [CrossRef]
- Unicomb, L.; Simmons, G.; Merritt, T.; Gregory, J.; Nicol, C.; Jelfs, P.; Kirk, M.; Tan, A.; Thomson, R.; Adamopoulos, J. Sesame seed products contaminated with Salmonella: Three outbreaks associated with tahini. Epidemiol. Infect. 2005, 133, 1065–1072. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Multistate outbreak of Salmonella serotype Bovismorbificans infections associated with hummus and tahini--United States, 2011. Morb. Mortal. Wkly. Rep. 2012, 61, 944–947. Available online: https://pubmed.ncbi.nlm.nih.gov/23169315/ (accessed on 20 September 2020).
- Canadian Food Inspection Agency (CFIA). Food Recall Warning—Alkanater Brand Tahina Recalled due to Salmonella; Canadian Food Inspection Agency: Ottawa, ON, USA, 2020; Available online: https://www.inspection.gc.ca/food-recall-warnings-and-allergy-alerts/2020-01-14/eng/1579039733281/1579039739334 (accessed on 20 September 2020).
- Alwan, N.; Saleh, I.; Beydoun, E.; Barbour, E.; Ghosn, N.; Harakeh, S. Resistance of Brucella abortus isolated from Lebanese dairy-based food products against commonly used antimicrobials. Dairy Sci. Technol. 2010, 90, 579–588. [Google Scholar] [CrossRef]
- Dabboussi, F.; Alam, S.; Mallat, H.; Hlais, S.; Hamze, M. Preliminary study on the prevalence of Campylobacter in childhood diarrhoea in North Lebanon. East. Mediterr. Health J. 2012, 18, 1225–1228. [Google Scholar] [PubMed]
- Elaridi, J.; Dimassi, H.; Hassan, H. Aflatoxin M1 and ochratoxin A in baby formulae marketed in Lebanon: Occurrence and safety evaluation. Food Control 2019, 106, 106680. [Google Scholar] [CrossRef]
- Fadlallah, S.M.; Shehab, M.; Cheaito, K.; Haidar-Ahmad, N.; El Hafi, B.; Saleh, M.; Nasser, Z.; El Hajj, R.; Ghosn, N.; Ammar, W. PulseNet Lebanon: An overview of its activities, outbreak investigations, and challenges. Foodborne Pathog. Dis. 2019, 16, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Fadlallah, S.M.; Shehab, M.; Cheaito, K.; Saleh, M.; Ghosn, N.; Ammar, W.; El Hajj, R.; Matar, G.M. Molecular epidemiology and antimicrobial resistance of Salmonella species from clinical specimens and food Items in Lebanon. J. Infect. Dev. Ctries. 2017, 11, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Haidar-Ahmad, N.; Kissoyan, K.A.B.; Fadlallah, S.M.; El Hajj, R.; Saleh, M.; Ghosn, N.; Matar, G.M. Genotypic and virulence characteristics of Listeria monocytogenes recovered from food items in Lebanon. J. Infect. Dev. Ctries. 2016, 10, 712–717. [Google Scholar] [CrossRef]
- Halablab, M.; Sheet, I.; Holail, H. Microbiological quality of raw vegetables grown in Bekaa Valley, Lebanon. Am. J. Food Technol. 2011, 6, 129–139. [Google Scholar] [CrossRef]
- Harakeh, S.; Saleh, I.; Barbour, E.; Shaib, H. Highly resistant Yersinia enterocolitica isolated from dairy based foods in Lebanon. Int. Arab. J. Antimicrob. Agents 2012, 2. Available online: http://www.imed.pub/ojs/index.php/IAJAA/article/view/328 (accessed on 20 September 2020).
- Harakeh, S.; Saleh, I.; Zouhairi, O.; Baydoun, E.; Barbour, E.; Alwan, N. Antimicrobial resistance of Listeria monocytogenes isolated from dairy-based food products. Sci. Total Environ. 2009, 407, 4022–4027. [Google Scholar] [CrossRef]
- Hmede, Z.; Kassem, I.I. First report of the plasmid-borne colistin resistance gene (mcr-1) in Proteus mirabilis isolated from a toddler in non-clinical settings. IDCases 2019, 18, e00651. [Google Scholar] [CrossRef]
- Ibrahim, J.N.; Eghnatios, E.; El Roz, A.; Fardoun, T.; Ghssein, G. Prevalence, antimicrobial resistance and risk factors for campylobacteriosis in Lebanon. J. Infect. Dev. Ctries. 2019, 13, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Kassem, I.I.; Hijazi, M.A.; Saab, R. On a collision course: The availability and use of colistin-containing drugs in human therapeutics and food-animal farming in Lebanon. J. Glob. Antimicrob. Resist. 2019, 16, 162–164. [Google Scholar] [CrossRef] [PubMed]
- Loukieh, M.; Mouannes, E.; Abou Jaoudeh, C.; Hanna Wakim, L.; Fancello, F.; Bou Zeidan, M. Street foods in Beirut city: An assessment of the food safety practices and of the microbiological quality. J. Food Saf. 2018, 38, e12455. [Google Scholar] [CrossRef]
- Rafei, R.; Al Kassaa, I.; Osman, M.; Dabboussi, F.; Hamze, M. Molecular epidemiology of Campylobacter isolates from broiler slaughterhouses in Tripoli, North of Lebanon. Br. Poult. Sci. 2019, 60, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Talhouk, R.S.; El Dana, R.; Araj, G.; Barbour, E.; Hashwa, F. Prevalence, antimicrobial susceptibility and molecular characterization of Campylobacter isolates recovered from humans and poultry in Lebanon. Lebanese Med. J. 1998, 46, 310–316. [Google Scholar]
- Kamleh, R.; Jurdi, M.; Annous, B.A. Management of microbial food safety in Arab countries. J. Food Prot. 2012, 75, 2082–2090. [Google Scholar] [CrossRef]
- The Lebanease Ministry of Public Health (MoPH). Quality and Safety. Food safety. Lists of Compliance and Non-Compliance Samples Taken from Food Institutions; Ministry of Public Health Beirut: Beirut, Lebanon, 2020. Available online: https://www.moph.gov.lb/en/Pages/4/126/food-safety (accessed on 17 January 2020).
- Bintsis, T. Foodborne pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Chen, Y. Pathogenic bacteria: Gram-positive bacteria: Listeria monocytogenes. In Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; Lampel, K.A., Al-Khaldi, S., Cahill, S.M., Eds.; US Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Hait, J. Pathogenic bacteria: Gram-positive bacteria: Staphylococcus aureus. In Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; Lampel, K.A., Al-Khaldi, S., Cahill, S.M., Eds.; US Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Hammack, T. Pathogenic bacteria: Gram-negative bacteria: Salmonella species. In Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; Lampel, K.A., Al-Khaldi, S., Cahill, S.M., Eds.; US Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Sharma, S. Pathogenic bacteria: Gram-positive bacteria: Clostridium botulinum. In Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd ed.; Lampel, K.A., Al-Khaldi, S., Cahill, S.M., Eds.; US Food and Drug Administration: Washington, DC, USA, 2012. [Google Scholar]
- Kushkevych, I.; Leščanová, O.; Dordević, D.; Jančíková, S.; Hošek, J.; Vítězová, M.; Buňková, L.; Drago, L. The Sulfate-Reducing Microbial Communities and Meta-Analysis of Their Occurrence during Diseases of Small-Large Intestine Axis. J Clin Med. 2019, 8, 1656. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Norovirus Worldwide: Global Trends; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2018. Available online: https://www.cdc.gov/norovirus/trends-outbreaks/worldwide.html (accessed on 20 September 2020).
- Bizri, A.R.; Fares, J.; Musharrafieh, U. Infectious diseases in the era of refugees: Hepatitis A outbreak in Lebanon. Avicenna J. Med. 2018, 8, 147–152. [Google Scholar] [CrossRef]
- Bouhamdan, S.F.; Bitar, L.K.; Saghir, H.J.; Bayan, A.; Araj, G.F. Seroprevalence of Toxoplasma antibodies among individuals tested at hospitals and private laboratories in Beirut. Lebanese Med. J. 2010, 58, 8–11. [Google Scholar]
- Osman, M.; Benamrouz, S.; Guyot, K.; El Safadi, D.; Mallat, H.; Dabboussi, F.; Hamze, M.; Viscogliosi, E.; Certad, G. Molecular epidemiology of Cryptosporidium spp. in North Lebanon. J. Infect. Dev. Ctries. 2018, 12, 34S. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Osman, M.; El Safadi, D.; Benamrouz, S.; Guyot, K.; Dei-Cas, E.; Creusy, C.; Mallat, H.; Hamze, M.; Dabboussi, F.; Viscogliosi, E. Initial data on the molecular epidemiology of cryptosporidiosis in Lebanon. PLoS ONE 2015, 10, e0125129. [Google Scholar] [CrossRef] [PubMed][Green Version]
- United Nations Development Programme (UNDP). Poverty, Growth and Income Distribution in Lebanon; United Nations Development Programme: New York, NY, USA, 2008; Available online: http://www.undp.org/content/dam/lebanon/docs/Poverty/Publications/Poverty,%20Growth%20and%20Income%20Distribution%20in%20Lebanon.pdf (accessed on 20 September 2020).
- Central Administration for Statistics (CAS); World Bank Group. Snapshot of Poverty and Labor Market Outcomes in Lebanon Based on Household Budget Survey 2011/2012; World Bank: Washington, DC, USA, 2016. Available online: https://documents.worldbank.org/curated/en/279901468191356701/pdf/102819-REVISED-PUBLIC-Snapshot-of-Poverty-and-Labor-Market-in-Lebanon-10.pdf (accessed on 20 September 2020).
- Food and Drug Administration (FDA). Bad Bug Book: Handbook of Foodborne Pathogenic Microorganisms and Natural Toxins; US Food and Drug Administration: Washington, DC, USA, 2012.
- Hmede, Z.; Kassem, I.I. The colistin resistance gene, mcr-1, is prevalent in commensal E. coli isolated from Lebanese pre-harvest poultry. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the United States; U.S. Department of Health and Human Services, Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: www.cdc.gov/DrugResistance/Biggest-Threats.html (accessed on 20 September 2020).
- Saadeh, L.; Mikhael, M. Lebanese Dairy Sector; Blom Bank: Beirut, Lebanon, 2016; Available online: https://blog.blominvestbank.com/wp-content/uploads/2016/05/Lebanese-Dairy-Sector2.pdf (accessed on 20 September 2020).
- United States Department of Agriculture: Foreign Agricultural Service (USDA FAS). Global Agricultural Information Network (GAIN): Lebanese Market Overview; United States Department of Agriculture, Foreign Agricultural Service: Washington, DC, USA, 2016; p. 10. Available online: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Lebanese%20Market%20Overview_Cairo_Lebanon_6-26-2016.pdf (accessed on 10 December 2018).
- World Data Atlas (WDA). Lebanon: Live Stock Production-Production Quantity; Knoema Enterprise Data Solutions; Knoema: New York, NY, USA, 2018; Available online: https://knoema.com/atlas/Lebanon/topics/Agriculture/Live-Stock-Production-Production-Quantity (accessed on 29 May 2020).
- Odeyemi, O.A. Public health implications of microbial food safety and foodborne diseases in developing countries. Food Nutr. Res. 2016, 60, 29819. [Google Scholar] [CrossRef] [PubMed]
Food Categories | Unacceptable | Acceptable | Total | p-Value b |
---|---|---|---|---|
N (% a) | N (%) | N (%) | ||
Red Meat | 1132 (34.4) | 2154 (65.5) | 3286 (100) | < 0.001 |
Poultry Meat | 760 (30.9) | 1698 (69.1) | 2458 (100) | |
Dairy | 530 (28.3) | 1343 (71.7) | 1873 (100) | |
Bakery | 52 (11.2) | 413 (88.8) | 465 (100) | |
Fish | 51 (20.8) | 194 (79.2) | 245 (100) | |
Nuts | 40 (10.8) | 330 (89.2) | 370 (100) | |
Desserts | 167 (22.9) | 561 (77.1) | 728 (100) | |
Spices | 387 (49.3) | 398 (50.7) | 785 (100) | |
Water | 94 (55.0) | 77 (45.0) | 171 (100) | |
Other | 121 (9.7) | 1123 (90.3) | 1244 (100) | |
Total | 3334 (28.7) | 8291 (71.3) | 11,625 (100) |
Governorate | Unacceptable | Acceptable | Significance of Differences between Governorates | Odds Ratio (95% CI); p-Value c |
---|---|---|---|---|
N (% a) | N (%) | |||
North | 1121 (31.7) | 2413 (68.3) | χ2 = 39.73, p-value b < 0.001 | 1.48 (1.13, 1.95); p = 0.005 |
Mount Lebanon | 901 (27.3) | 2403 (72.7) | 1.20 (0.91, 1.58) | |
South | 767 (29.9) | 1799 (70.1) | 1.36 (1.03, 1.80); p < 0.029 | |
Bekaa | 473 (24.72) | 1446 (75.3) | 1.05 (0.79, 1.39) | |
Beirut | 72 (23.8) | 230 (76.2) | 1.0 | |
Total no. of samples (%) | 3334 (28.7) | 8291 (71.3) |
Governorate | Red Meat N = 1132 (%) | Poultry Meat N = 760 (%) | Dairy N = 530 (%) | Bakery N = 52 (%) | Fish N = 51 (%) | Nuts N = 40 (%) | Desserts N = 167 (%) | Spices N = 387 (%) | Water N = 94 (%) | Other N = 121 (%) | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
North N (%) | 439 (39.2) | 290 (25.9) | 184 (16.4) | 4 (0.4) | 8 (0.7) | 14 (1.2) | 44 (3.9) | 88 (7.9) | 12 (1.1) | 38 (3.4) | 1121 |
Mount Lebanon N (%) | 324 (36.0) | 231 (25.6) | 80 (8.9) | 8 (0.9) | 20 (2.2) | 12 (1.3) | 63 (7.0) | 98 (10.9) | 30 (3.3) | 35 (3.9) | 901 |
South N (%) | 230 (30.0) | 144 (18.8) | 156 (20.3) | 31 (4.0) | 12 (1.6) | 8 (1.0) | 31 (4.0) | 108 (14.1) | 36 (4.7) | 11 (1.4) | 767 |
Bekaa N (%) | 117 (24.7) | 88 (18.6) | 106 (22.4) | 8 (1.7) | 4 (0.8) | 6 (1.3) | 25 (5.3) | 85 (18.0) | 14 (3.0) | 20 (4.2) | 473 |
Beirut N (%) | 22 (30.6) | 7 (9.7) | 4 (5.6) | 1 (1.4) | 7 (9.7) | 0 (0.0) | 4 (5.6) | 8 (11.1) | 2 (2.8) | 17 (23.6) | 72 |
Food Categories | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Microbial Contaminant | Red Meat N = 1132 (% a) | Poultry Meat N = 760 (%) | Dairy N = 530 (%) | Bakery N = 52 (%) | Fish N = 51 (%) | Nuts N = 40 (%) | Desserts N = 167 (%) | Spices N = 387 (%) | Water N = 94 (%) | Other N = 121 (%) | Total N (% b) for Each Contaminant | p-Value c |
Sulfate-reducing bacteria (SRB) | 534 (46.2) | 391 (33.8) | 8 (0.7) | 5 (0.4) | 11 (0.95) | 11 (0.95) | 3 (0.3) | 159 (13.8) | 27 (2.3) | 7 (0.6) | 1156 (34.7) | < 0.001 |
E. coli | 592 (55.3) | 200 (18.7) | 211 (19.7) | 7 (0.7) | 8 (0.7) | 4 (0.4) | 17 (1.6) | 8 (0.7) | 10 (0.9) | 14 (1.3) | 1071 (32.1) | < 0.001 |
Aerobic bacteria | 190 (26.3) | 168 (23.2) | 57 (7.9) | 26 (3.6) | 31 (4.3) | - | 58 (8.0) | 82 (11.3) | 69 (9.5) | 42 (5.8) | 723 (21.7) | < 0.001 |
Coliforms | 26 (4.0) | 9 (1.4) | 253 (38.7) | 16 (2.4) | 1 (0.2) | 6 (0.9) | 115 (17.6) | 99 (15.1) | 71(10.9) | 58 (8.87) | 654 (19.6) | < 0.001 |
S. aureus | 279 (65.2) | 43 (10.0) | 67 (15.7) | 3 (0.7) | 8 (1.9) | - | 18 (4.2) | 3 (0.7) | 1 (0.2) | 6 (1.4) | 428 (12.8) | < 0.001 |
Salmonella spp. | 126 (32.6) | 240 (62.0) | 6 (1.6) | - | 1 (0.3) | - | 5 (1.3) | 2 (0.5) | - | 7 (1.8) | 387 (11.6) | < 0.001 |
Streptococcus spp. | 7 (8.9) | 3 (3.8) | 5 (6.3) | - | 2 (2.5) | - | 4 (5.1) | 14 (17.7) | 39 (49.4) | 5 (6.3) | 79 (2.4) | < 0.001 |
Listeria monocytogenes | 31 (52.5) | 13 (22.0) | 14 (23.7) | 1 (1.7) | - | - | - | - | - | - | 59 (1.8) | < 0.001 |
Pseudomonas aeruginosa | - | - | - | - | - | - | - | - | 48 (100.0) | - | 48 (1.4) | < 0.001 |
Clostridium botulinum | 4 (18.2) | 2 (9.1) | 1(4.5) | - | 1 (4.5) | - | 1(4.5) | 2(9.1) | 1(4.5) | 10 (45.5) | 22 (0.7) | < 0.001 |
Yeast/fungi | 11 (2.6) | 8 (1.9) | 160 (37.1) | 24 (5.6) | 3 (0.7) | 17 (3.9) | 20 (4.6) | 151 (35.0) | - | 37 (8.6) | 431 (12.9) | < 0.001 |
Aflatoxin | 1 (3.7) | - | - | - | - | 5 (18.5) | - | 20 (74.1) | - | 1 (3.7) | 27 (0.8) | < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharroubi, S.; Nasser, N.A.; El-Harakeh, M.D.; Sulaiman, A.A.; Kassem, I.I. First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon. Foods 2020, 9, 1717. https://doi.org/10.3390/foods9111717
Kharroubi S, Nasser NA, El-Harakeh MD, Sulaiman AA, Kassem II. First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon. Foods. 2020; 9(11):1717. https://doi.org/10.3390/foods9111717
Chicago/Turabian StyleKharroubi, Samer, Nivin A. Nasser, Marwa Diab El-Harakeh, Abdallah Alhaj Sulaiman, and Issmat I. Kassem. 2020. "First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon" Foods 9, no. 11: 1717. https://doi.org/10.3390/foods9111717
APA StyleKharroubi, S., Nasser, N. A., El-Harakeh, M. D., Sulaiman, A. A., & Kassem, I. I. (2020). First Nation-Wide Analysis of Food Safety and Acceptability Data in Lebanon. Foods, 9(11), 1717. https://doi.org/10.3390/foods9111717