Preparation of Chitosan/Corn Starch/Cinnamaldehyde Films for Strawberry Preservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Preparation Process and Performance Evaluation of CS/Corn Starch Films
2.3. Orthogonal Experimental Design
2.4. Film Color Difference
2.5. Mechanical Properties
2.6. Water-Vapor Transmission Rate (WVP)
2.7. The Antibacterial Effect of CS/Corn Starch/Cinnamaldehyde Films on Strawberry
2.8. Strawberry Preservation Experiments
2.9. Data Analysis
3. Results
3.1. Orthogonal Experimental Results of CS/Corn Starch/Glycerin Films
3.2. Film Color Difference of the Cs/Corn Starch/Cinnamaldehyde Films
3.3. Mechanical Properties of the CS/Corn Starch/Cinnamaldehyde Film
3.4. Water-Vapor Transmission Rate of the CS/Corn Starch/Cinnamaldehyde Films
3.5. A Study on the Bacteriostatic Effects of the CS/Corn Starch/Cinnamaldehyde Films
3.6. Study on the Fresh-Keeping Effects of CS/Corn Starch/Cinnamaldehyde Films on Strawberries
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fang, M.; Chen, J.H.; Xu, X.L.; Yang, P.H.; Hildebrand, H.F. Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents 2006, 27, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Parisi, S. Analytical approaches and safety evaluation strategies for antibiotics and antimicrobial agents in food products: Chemical and biological solutions. J. AOAC Int. 2018, 101, 914–915. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.; Barry-Ryan, C.; Bourke, P. The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. Int. J. Food Microbiol. 2008, 124, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benbettaïeb, N.; Gay, J.P.; Karbowiak, T.; Debeaufort, F. Tuning the functional properties of polysaccharide-protein bio-based edible films by chemical, enzymatic, and physical cross-linking. Compr. Rev. Food. Sci. Food Saf. 2016, 15, 739–752. [Google Scholar] [CrossRef]
- Calva-Estrada, S.J.; Jimenez-Fernandez, M.; Lugo-Cervantes, E. Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 2019, 11, 78–92. [Google Scholar] [CrossRef]
- Du, W.X.; Olsen, C.W. Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrol-containing edible tomato films. J. Food Sci. 2008, 73, M378–M383. [Google Scholar] [CrossRef]
- Munhuweyi, K.; Caleb, O.J.; Lennox, C.L.; Reenen, A.J.; LinusOpara, U. In vitro and in vivo antifungal activity of chitosan-essential oils against pomegranate fruit pathogens. Postharvest Biol. Technol. 2017, 129, 9–22. [Google Scholar] [CrossRef]
- Omaiye, E.E.; Mcwhirter, K.J.; Luo, W.; Tierney, P.A.; Pankow, J.F.; Talbot, P. High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Sci. Rep. 2019, 9, 2468. [Google Scholar] [CrossRef] [PubMed]
- Otoni, C.G.; Moura, M.R.D.; Aouada, F.A.; Camilloto, G.P.; Cruz, R.S.; Lorevice, M.V.; Soares, N.D.F.F.; Mattoso, L.H.C. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocoll. 2014, 41, 188–194. [Google Scholar] [CrossRef]
- Ke, J.; Xiao, L.; Yu, G.; Wu, H.; Shen, G.; Zhang, Z. The study of diffusion kinetics of cinnamaldehyde from corn starch-based film into food simulant and physical properties of antibacterial polymer film. Int. J. Biol. Macromol. 2018, 125, 642–650. [Google Scholar] [CrossRef]
- Cheng, S.S.; Liu, J.Y.; Chang, E.H.; Chang, S.T. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresour. Technol. 2008, 99, 5145–5149. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Q.; Donoghue, A.M.; Moyle, J.R.; Reyesherr, I.; Blore, P.J.; Bramwell, R.K.; Yoho, D.E.; Venkitanar, K.; Donoghue, D.J. Effects of trans-cinnamaldehyde on campylobacter and sperm viability in chicken semen after in vitro storage. Int. J. Poult. Sci. 2012, 11, 536–540. [Google Scholar] [CrossRef]
- Hu, L.B.; Zhou, W.; Yang, J.D.; Chen, J.; Yin, Y.F.; Shi, Z.Q. Cinnamaldehyde induces PCD-like death of microcystis aeruginosa via reactive oxygen species. Water Air Soil Pollut. 2011, 217, 105–113. [Google Scholar] [CrossRef]
- Hassani, A.; Fathi, Z.; Ghosta, Y.; Abdollahi, A.; Meshkatalsadat, M.H.; Marandi, R.J. Evaluation of plant essential oils for control of postharvest brown and gray mold rots on apricot. J. Food Saf. 2012, 1, 94–101. [Google Scholar] [CrossRef]
- Ouattara, B.; Simard, R.E.; Piette, G.; Bégin, A.; Holley, R.A. Inhibition of surface spoilage bacteria in processed meats by application of antimicrobial films prepared with chitosan. Int. J. Food Microbiol. 2000, 62, 139–148. [Google Scholar] [CrossRef]
- De Souza, A.C.; Dias, A.M.; Sousa, H.C.; Tadini, C.C. Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging. Carbohydr. Polym. 2014, 102, 830–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaguer, M.P.; Lopez-Carballo, G.; Catala, R.; Gavara, R.; Hernandez-Munoz, P. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. Int. J. Food Microbiol. 2013, 166, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Higueras, L.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Reversible covalent immobilization of cinnamaldehyde on chitosan films via schiff base formation and their application in active food packaging. Food Bioprocess Technol. 2015, 8, 526–538. [Google Scholar] [CrossRef]
- Bonilla, J.; Atares, L.; Vargas, M.; Chiralt, A. Properties of wheat starch film-forming dispersions and films as affected by chitosan addition. J. Food Eng. 2013, 114, 303–312. [Google Scholar] [CrossRef]
- Campos-Requena, V.H.; Rivas, B.L.; Pérez, M.A.; Figueroa, C.R.; Figueroab, N.E.; Sanfuentes, E.A. Thermoplastic starch/clay nanocomposites loaded with essential oil constituents as packaging for strawberries-In vivo antimicrobial synergy over Botrytis cinerea. Postharvest Biol. Technol. 2017, 129, 29–36. [Google Scholar] [CrossRef]
- Cantwell, M.I.; Thangaiah, A. Acceptable cooling delays for selected warm season vegetables and melons. Acta Hortic. 2012, 924, 77–84. [Google Scholar] [CrossRef]
- Fabra, M.J.; Lopez-Rubio, A.; Lagaron, J.M. Use of the electrohydrodynamic process to develop active/bioactive bilayer films for food packaging applications. Food Hydrocoll. 2016, 55, 11–18. [Google Scholar] [CrossRef]
- Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Ojagh, S.M.; Hosseini, S.M.; Khaksar, R. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. Int. J. Biol. Macromol. 2016, 52, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Sangsuwan, J.; Pongsapakworawat, T.; Bangmo, P.; Sutthasupa, S. Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT Food Sci. Technol. 2016, 74, 14–20. [Google Scholar] [CrossRef]
- Bourtoom, T.; Chinnan, M.S. Preparation and properties of rice starch -chitosan blend biodegradable film. LWT Food Sci. Technol. 2008, 41, 1633–1641. [Google Scholar] [CrossRef]
- Peretto, G.; Du, W.X.; Avena-Bustillos, R.J.; Sarreal, S.B.L.; Hua, S.S.T.; Sambo, P. Increasing strawberry shelf-life with carvacrol and methyl cinnamate antimicrobial vapors released from edible films. Postharvest Biol. Technol. 2014, 89, 11–18. [Google Scholar] [CrossRef]
- Yun, Y.-H.; Yoon, S.-D. Effect of amylose contents of starches on physical properties and biodegradability of starch/PVA-blended films. Polym. Bull. 2010, 64, 553–568. [Google Scholar] [CrossRef]
- Kenawy, E.; Omer, A.M.; Tamer, T.M.; Elmeligy, M.A.; Mohy Eldin, M.S. Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. Int. J. Biol. Macromol. 2019, 139, 440–448. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W. Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int. J. Biol. Macromol. 2017, 107, 848–854. [Google Scholar] [CrossRef]
- Han, W.; Ren, J.; Xuan, H.; Ge, L. Controllable degradation rates, antibacterial, freestanding and highly transparent films based on polylactic acid and chitosan. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 128–136. [Google Scholar] [CrossRef]
- Wang, L.; Liu, F.; Jiang, Y.; Chai, Z.; Li, P.; Cheng, Y.; Leng, X. Synergistic Antimicrobial Activities of Natural Essential Oils with Chitosan Films. J. Agric. Food Chem. 2011, 59, 12411–12419. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Kong, D.X.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy. Ind. Crop. Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Shao, P.; Niu, B.; Chen, H.; Sun, P. Fabrication and characterization of tea polyphenols loaded pullulan-cmc electrospun nanofiber for fruit preservation. Int. J. Biol. Macromol. 2018, 107, 1908–1914. [Google Scholar] [CrossRef]
- Bonilla, J.; Fortunati, E.; Vargas, M.; Chiralt, A.; Kenny, J.M. Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. J. Food Eng. 2013, 119, 236–243. [Google Scholar] [CrossRef]
- López-Mata, M.A.; Ruiz-Cruz, S.; de Jesús Ornelas-Paz, J.; Del Toro-Sánchez, C.L.; Márquez-Ríos, E.; Silva-Beltrán, N.P.; Cira-Chávez, L.A.; Burruel-Ibarra, S.E. Mechanical, Barrier and Antioxidant Properties of Chitosan Films Incorporating Cinnamaldehyde. J. Polym. Environ. 2018, 26, 452–461. [Google Scholar] [CrossRef]
- Pei, R.S.; Zhou, F.; Ji, B.P.; Xu, J. Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J. Food Sci. 2010, 74, M379–M383. [Google Scholar] [CrossRef]
- Duan, J.; Wu, R.; Strik, B.C.; Zhao, Y. Effect of edible coatings on the quality of fresh blueberries (Duke and Elliott) under commercial storage conditions. Postharvest Biol. Technol. 2011, 59, 71–79. [Google Scholar] [CrossRef]
- Maqbool, M.; Ali, A.; Alderson, P.G.; Zahid, N.; Siddiqui, Y. Effect of a novel edible composite coating based on gum arabic and chitosan on biochemical and physiological responses of banana fruits during cold storage. J. Agric. Food Chem. 2011, 59, 5474–5482. [Google Scholar] [CrossRef] [PubMed]
- Kerch, G. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 2015, 46, 159–166. [Google Scholar] [CrossRef]
- Reddy, M.M.; Vivekanandhan, S.; Misra, M.; Bhatia, S.K.; Mohanty, A.K. Biobased plastics and bionanocomposites: Current status and future opportunities. Prog. Polym. Sci. 2013, 38, 1653–1689. [Google Scholar] [CrossRef]
- Qin, Y.Y.; Yang, J.Y.; Lu, H.B.; Wang, S.S.; Yang, J.; Yang, X.C.; Chai, M.; Li, L.; Cao, J.X. Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties. Int. J. Biol. Macromol. 2013, 61, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Gallagher, M.J.; Mahajan, P.V. Integrative mathematical modelling for MAP design of fresh-produce: Theoretical analysis and experimental validation. Food Control. 2013, 29, 444–450. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Chung, O.H.; Park, J.S. Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr. Polym. 2011, 86, 1799–1806. [Google Scholar] [CrossRef]
- Gayosso-García Sancho, L.E.; Yahia, E.M.; Martínez-Téllez, M.A.; González-Aguilar, G.A. Effect of maturity stage of papaya maradol on physiological and biochemical parameters. Am. J. Agric. Biol. Sci. 2010, 5, 194–203. [Google Scholar] [CrossRef]
- Basanta, M.F.; Ponce, N.M.A.; Salum, M.L.; Raffo, M.D.; Vicente, A.R.; Erra-Balsells, R. Compositional changes in cell wall polysaccharides from five sweet cherry (Prunus avium L.) cultivars during on-tree ripening. J. Agric. Food Chem. 2014, 62, 12418–12427. [Google Scholar] [CrossRef]
- Hernández-Muñoz, P.; Almenar, E.; Ocio, M.J.; Gavara, R. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (fragaria × ananassa). Postharvest Biol. Technol. 2006, 39, 247–253. [Google Scholar] [CrossRef]
- Arah, I.K.; Amaglo, H.; Kumah, E.K.; Ofori, H. Preharvest and Postharvest Factors Affecting the Quality and Shelf Life of Harvested Tomatoes: A Mini Review. Int. J. Agron. 2015, 2015, 478041. [Google Scholar] [CrossRef]
Level | A: CS (W%) | B: Corn Starch (W%) | C: Glycerin (W%) |
---|---|---|---|
1 | 2% | 5% | 0.5% |
2 | 2.5% | 6% | 1% |
3 | 3% | 7% | 1.5% |
Experiment Number | A: CS (W%) | B: Corn Starch (W%) | C: Glycerin (W%) | Experimental Result Score |
---|---|---|---|---|
1 | 1 | 1 | 1 | 61 |
2 | 1 | 2 | 2 | 54 |
3 | 1 | 3 | 3 | 47 |
4 | 2 | 1 | 2 | 65 |
5 | 2 | 2 | 3 | 50 |
6 | 2 | 3 | 1 | 79 |
7 | 3 | 1 | 3 | 51 |
8 | 3 | 2 | 1 | 66 |
9 | 3 | 3 | 2 | 67 |
K1 | 54 | 59 | 68.67 | |
K2 | 64.67 | 56.67 | 62 | |
K3 | 61.33 | 64.33 | 49.33 | |
Extreme difference | 10.67 | 7.66 | 19.34 | |
Major factor | C > A > B | |||
Optimal condition | A2B3C1 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value |
---|---|---|---|---|---|
Correction model | 850.00 | 6 | 141.67 | 35.42 | <0.05 |
Intercept | 32,400.00 | 1 | 32,400.00 | 8100.00 | <0.01 |
A | 178.67 | 2 | 89.33 | 22.33 | <0.05 |
B | 92.67 | 2 | 46.33 | 11.58 | >0.05 |
C | 578.67 | 2 | 289.33 | 72.33 | <0.05 |
Error | 8.00 | 2 | 4.00 | ||
Total | 33,258.00 | 9 | |||
Total corrected | 858.00 | 8 |
Cinnamaldehyde Ratios | L* | a* | b* | ΔE |
---|---|---|---|---|
Standard | 72.98 ± 1.15 a | −1.47 ± 0.48 a | 14.03 ± 0.64 a | |
Experimental group 231 | 83.91 ± 1.25 b | −0.97±0.56 b | 12.68 ± 0.34 b | 0.39 ± 0.061 a |
0.4% | 78.39 ± 0.89 c | −1.78 ± 0.61 c | 14.57 ± 0.55 c | 1.173 ± 0.086 b |
0.8% | 78.41 ± 0.46 c | −1.85 ± 0.72 c | 14.72 ± 0.56 c | 1.294 ± 0.094 b |
1.6% | 78.49 ± 0.74 c | −1.95 ± 0.52 c | 15.24 ± 0.39 c | 1.677 ± 0.081 b |
2.0% | 77.97 ± 0.76 c | −2.19 ± 0.45 c | 16.64 ± 0.51 d | 2.925 ± 0.111 c |
2.5% | 76.96 ± 0.81 c | −2.65 ± 0.53 d | 17.22 ± 0.50 d | 4.175 ± 0.084 d |
3.2% | 77.13 ± 0.69 c | −2.79 ± 0.45 d | 17.55 ± 0.64 d | 4.479 ± 0.081 e |
6.4% | 76.88 ± 0.96 c | −2.86 ± 0.81 d | 18.12 ± 0.47 e | 5.113 ± 0.092 f |
Cinnamaldehyde Ratios | Thickness (mm) | WVTR (×10−3 g/m2∙s) |
---|---|---|
Experimental group 231 | 0.112 ± 0.004 b | 4.30 ± 0.36 c |
0.4% | 0.114 ± 0.002 a | 4.02 ± 0.16 a |
0.8% | 0.122 ± 0.001 a | 3.14 ± 0.43 d |
1.6% | 0.125 ± 0.006 b | 2.51 ± 0.22 b |
2.0% | 0.128 ± 0.009 c | 2.47 ± 0.12 a |
2.5% | 0.133 ± 0.002 a | 2.35 ± 0.15 a |
3.2% | 0.134 ± 0.001 a | 2.09 ± 0.23 b |
6.4% | 0.149 ± 0.006 b | 1.99 ± 0.15 a |
Processing Method/Number of Days | Day 1 | Day 3 | Day 5 | Day 7 | Day 9 | Day 11 | Day 13 |
---|---|---|---|---|---|---|---|
CK | Ⅰ | Ⅱ | Ⅱ | Ⅲ | Ⅳ | Ⅳ | Ⅴ |
PP | Ⅰ | Ⅱ | Ⅱ | Ⅲ | Ⅲ | Ⅳ | Ⅴ |
Cinnamaldehyde | Ⅰ | Ⅰ | Ⅰ | Ⅰ | Ⅱ | Ⅱ | Ⅲ |
Experimental group 231 | Ⅰ | Ⅰ | Ⅰ | Ⅱ | Ⅲ | Ⅲ | Ⅳ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, R.; Lu, R.; Xu, J.; Hu, K.; Liu, Y. Preparation of Chitosan/Corn Starch/Cinnamaldehyde Films for Strawberry Preservation. Foods 2019, 8, 423. https://doi.org/10.3390/foods8090423
Wang Y, Li R, Lu R, Xu J, Hu K, Liu Y. Preparation of Chitosan/Corn Starch/Cinnamaldehyde Films for Strawberry Preservation. Foods. 2019; 8(9):423. https://doi.org/10.3390/foods8090423
Chicago/Turabian StyleWang, Yue, Rui Li, Rui Lu, Jie Xu, Ke Hu, and Yaowen Liu. 2019. "Preparation of Chitosan/Corn Starch/Cinnamaldehyde Films for Strawberry Preservation" Foods 8, no. 9: 423. https://doi.org/10.3390/foods8090423
APA StyleWang, Y., Li, R., Lu, R., Xu, J., Hu, K., & Liu, Y. (2019). Preparation of Chitosan/Corn Starch/Cinnamaldehyde Films for Strawberry Preservation. Foods, 8(9), 423. https://doi.org/10.3390/foods8090423