Volatile Profile of Raw Lamb Meat Stored at 4 ± 1 °C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Lamb Meat Samples, Packaging and Analysis Conditions
2.2. Determination of Lipid Oxidation
2.3. Determination of Volatile Compounds
2.4. GC/MS Instrumentation and Method Conditions
2.5. Mass Spectral Data Processing
2.6. Formatting of Mathematical Components
2.7. Statistical Analysis
3. Results
3.1. Alcohols
3.1.1. Aldehydes
3.1.2. Ketones
3.1.3. Hydrocarbons: Aliphatic and Benzene Derivatives
3.1.4. Sulfur Compounds
3.1.5. Ethers
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
Funding
References
- Soncin, S.; Chiesa, L.M.; Cantoni, C.; Biondi, P.A. Preliminary study of the volatile fraction in the raw meat of pork, duck and goose. J. Food Comp. Anal. 2007, 20, 436–439. [Google Scholar] [CrossRef]
- Gravador, R.S.; Serra, A.; Luciano, G.; Pennisi, P.; Vasta, V.; Mele, M.; Pauselli, M.; Priolo, A. Volatiles in raw and cooked meat from lambs fed olive cake and linseed. Animal 2015, 9, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Estevez, M.; Morcuende, D.; Ventanas, S.; Cava, R. Analysis of volatiles in meat from Iberian pigs and lean pigs after refrigeration and cooking by using SPME-GC-MS. J. Agric. Food Chem. 2003, 51, 3429–3435. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, C.A.; Creixell, W.; Pavez-Barra, C.; Sánchez, E.; Albornoz, F.; Young, M.E. Modeling volatile organic compounds released by bovine fresh meat using an integration of solid phase microextraction and databases. Food Bioprocess Technol. 2012, 5, 2557–2567. [Google Scholar] [CrossRef]
- Montel, M.C.; Masson, F.; Talon, R. Bacterial role in flavour development. Meat Sci. 1998, 49, S111–S123. [Google Scholar] [CrossRef]
- Brunton, N.P.; Cronin, D.A.; Monahan, F.J. The effects of temperature and pressure on the performance of Carboxen/PDMS fibres during solid phase microextraction (SPME) of headsapace volatiles from cooked and raw turkey breast. Flavour Fragr. J. 2001, 16, 294–302. [Google Scholar] [CrossRef]
- Moon, S.Y.; Cliff, M.A.; Li-Chan, E.C.Y. Odour-active components of simulated beef flavour analysed by solid phase microextraction and gas chromatography-mass spectrometry and-olfactometry. Food Res. Int. 2006, 39, 294–308. [Google Scholar] [CrossRef]
- Pérez, R.A.; Rojo, M.D.; González, G.; De Lorenzo, C. Solid-phase microextraction for the determination of volatile compounds in the spoilage of raw ground beef. J. AOAC Int. 2008, 91, 1409–1415. [Google Scholar] [PubMed]
- Verzera, A.; Dima, G.; Tripodi, G.; Ziino, M.; Lanza, C.M.; Mazzaglia, A. Fast quantitative determination of aroma volatile constituents in melon fruits by headspace-solid-phase microextraction and gas chromatography-mass spectrometry. Food Anal. Methods 2011, 4, 141–149. [Google Scholar] [CrossRef]
- Condurso, C.; Tripodi, G.; Cincotta, F.; Lanza, C.M.; Mazzaglia, A.; Verzera, A. Quality assessment of Mediterranean shrimps during frozen storage. Ital. J. Food Sci. 2016, 28, 497–509. [Google Scholar]
- Ahn, D.U.; Jo, C.; Olson, D.G. Volatile profiles of raw and cooked turkey thigh as affected by purge temperature and holding time before purge. J. Food Sci. 1999, 64, 230–233. [Google Scholar] [CrossRef]
- Nam, K.C.; Ahn, D.U. Combination of aerobic and vacuum packaging to control lipid oxidation and off-odor volatiles of irradiated raw turkey breast. Meat Sci. 2003, 63, 389–395. [Google Scholar] [CrossRef]
- Vasta, V.; Ratel, J.; Engel, E. Mass spectrometry analysis of volatile compounds in raw meat for the authentication of the feeding background of farm animals. J. Agric. Food Chem. 2007, 55, 4630–4639. [Google Scholar] [CrossRef] [PubMed]
- Insausti, K.; Beriain, M.J.; Gorraiz, C.; Purroy, A. Volatile compounds of raw beef from 5 local Spanish cattle breeds stored under modified atmosphere. J. Food Sci. 2002, 67, 1580–1589. [Google Scholar] [CrossRef]
- Vasta, V.; D’Alessandro, A.G.; Priolo, A.; Petrotos, K.; Martemucci, G. Volatile compound profile of ewe’s milk and meat of their suckling lambs in relation to pasture vs. indoor feeding system. Small Rumin. Res. 2012, 105, 16–21. [Google Scholar] [CrossRef]
- Gąsior, R.; Wojtycza, K. Sense of smell and volatile aroma compounds and their role in the evaluation of the quality of products of animal origin—A review. Ann. Anim. Sci. 2016, 16, 3–31. [Google Scholar] [CrossRef][Green Version]
- Saraiva, C.; Oliveira, I.; Silva, J.A.; Martins, C.; Ventanas, J.; García, C. Implementation of multivariate techniques for the selection of volatile compounds as indicators of sensory quality of raw beef. J. Food Sci. Technol. 2015, 52, 3887–3898. [Google Scholar] [CrossRef] [PubMed]
- Karabagias, I.; Badeka, A.; Kontominas, M.G. Shelf life extension of lamb meat using thyme or oregano essential oils and modified atmosphere packaging. Meat Sci. 2011, 88, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Elmore, J.S.; Cooper, S.L.; Enser, M.; Mottram, D.S.; Sinclair, L.A.; Wilkinson, R.G.; Wood, J.D. Dietary manipulation of fatty acid composition in lamb meat and its effect on the volatile aroma compounds of grilled lamb. Meat Sci. 2005, 69, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Calkins, C.R.; Hodgen, J.M. A fresh look at meat flavor. Meat Sci. 2007, 77, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Berdague, J.L.; Antequera, T.; López-Bote, C. Volatile components of dry-cured Iberian ham. Food Chem. 1991, 41, 23–32. [Google Scholar] [CrossRef]
- Barbieri, G.; Bolzoni, L.; Parolari, G.; Virgili, R.; Buttini, R.; Careri, M.; Mangia, A. Flavour compounds of dry-cured ham. J. Agric. Food Chem. 1992, 40, 2389–2394. [Google Scholar] [CrossRef]
- Leffingwell and Associates. 2017. Available online: http://www.leffingwell.com/ (accessed on 10 October 2017).
- Wilson, R.A.; Katz, I. Review of literature on chicken flavour and report of isolation of several new chicken flavour components from aqueous cooked chicken broth. J. Agric. Food Chem. 1972, 20, 741–747. [Google Scholar] [CrossRef]
- Larick, D.K.; Turner, B.E. Headspace volatiles and sensory characteristics of ground beef from forage- and grain-fed heifers. J. Food Sci. 1990, 54, 649–654. [Google Scholar] [CrossRef]
- Mottram, D.S. Flavour formation in meat and meat products: A review. Food Chem. 1998, 62, 415–424. [Google Scholar] [CrossRef]
- Raes, K.; Balcaen, A.; Dirinck, P.; De Winne, A.; Claeys, E.; Demeyer, D.; De Smet, S. Meat quality, fatty acid composition and flavour analysis in Belgian retail beef. Meat Sci. 2003, 65, 1237–1246. [Google Scholar] [CrossRef]
- Young, O.A.; Lane, G.A.; Priolo, A.; Fraser, K. Pastoral and species flavour in lambs raised on pasture, lucerne or maize. J. Sci. Food Agric. 2003, 83, 93–104. [Google Scholar] [CrossRef]
- Van Ruth, S.M.; Cheraghi, T.; Roozen, J.P. Lipid-derived off flavours in meat by-products: Effect of antioxidants and Maillard reactants. In Flavour of Meat, Meat Products and Seafood; Shahidi, F., Ed.; Blackie Academic & Professional: London, UK, 1998; p. 260. ISBN 978-0-7514-0484-5. [Google Scholar]
- Ajuyah, A.O.; Fenton, T.W.; Hardin, R.T.; Sim, J.S. Measuring lipid oxidation volatiles in meats. J. Food Sci. 1993, 58, 270–273. [Google Scholar] [CrossRef]
- Brewer, M.S.; Vega, J.D. Detectable odor thresholds of selected lipid oxidation compounds in a meat model system. J. Food Sci. 1995, 60, 592–595. [Google Scholar] [CrossRef]
- Acree, T.; Aru, H. Flavornet. 1997. Available online: http://www.nysaes.cornell.edu/flavornet/chem.html (accessed on 30 October 2001).
- Wasowicz, E.; Kaminski, E.; Kollmannsberger, H.; Nitz, S.; Berger, G.; Drawert, F. Volatile components of sound and musty wheat grains. Chem. Mikrobiol. Technol. Lebensm. 1988, 11, 161–168. [Google Scholar]
- Meynerier, A.; Novelli, E.; Chizzolini, R.; Zanardi, E.; Gandemer, G. Volatile compounds of commercial Milano salami. Meat Sci. 1999, 51, 175–183. [Google Scholar] [CrossRef]
- Gorraiz, C.; Beriain, M.J.; Insausti, K. Effect of aging time on volatile compounds, odor, and flavor of cooked beef from Pirenaica and Friesian Bulls and Heifers. J. Food Sci. 2002, 67, 916–922. [Google Scholar] [CrossRef]
- Cha, Y.J.; Back, H.H.; Hsieh, T.C.Y. Volatile components in flavor concentrates from crayfish processing waste. J. Sci. Food Agric. 1992, 59, 239–248. [Google Scholar] [CrossRef]
- King, M.F.; Hamilton, B.L.; Mattews, M.A.; Rule, D.C.; Field, R.A. Isolation and identification of volatiles and condensable material in raw beef with supercritical carbon dioxide extraction. J. Agric. Food Chem. 1993, 41, 1974–1981. [Google Scholar] [CrossRef]
- Molo, L.; Dekimpe, J.; Etlevant, P.; Addeo, F. Neutral volatile compounds in the raw milks from different species. J. Dairy Res. 1993, 60, 199–213. [Google Scholar]
- Min, D.B.S.; Ina, K.; Peterson, R.J.; Chang, S.S. Preliminary identification of volatile flavor compounds in the neutral fraction of roasted beef. J. Food Sci. 1979, 44, 639–642. [Google Scholar] [CrossRef]
- The National Institute for Occupational Safety and Health. 2007. Available online: http://www.cdc.gov/niosh (accessed on 15 September 2007).
- Kontou, S.; Tsipi, D.; Tzia, C. Stability of the dithiocarbamate pesticide maneb in tomato homogenates during cold storage and thermal processing. Food Addit. Contam. 2004, 21, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Holleman, A.F.; Wiberg, E.; Wiberg, N. Inorganic Chemistry; Academic Press: Cambridge, MA, USA, 2001; ISBN 100123526515. [Google Scholar]
- Le Bozec, L.; Moody, C.J. Naturally occurring nitrogen–sulfur compounds. The benzothiazole alkaloids. Aust. J. Chem. 2009, 62, 639–647. [Google Scholar] [CrossRef]
- Lewis, R.J. Hawley’s Condensed Chemical Dictionary, 12th ed.; Van Nostrand Reinhold, Co.: New York, NY, USA, 1993; p. 132. [Google Scholar]
- Lorenz, G.; Stern, D.J.; Flath, R.A.; Haddon, W.F.; Tillin, S.J.; Teranishi, R. Identification of sheep liver volatiles. J. Agric. Food Chem. 1983, 31, 1052–1057. [Google Scholar] [CrossRef]
- Hoffmann, T.; Schieberle, P.; Grosch, W. Model studies on the oxidative stability of odor-active thiols occurring in food flavors. J. Agric. Food Chem. 1996, 44, 251–255. [Google Scholar] [CrossRef]
- Wade, L.G. Ether; Encyclopædia Britannica, Inc.: Chicago, IL, USA, 2017. [Google Scholar]
- Shahidi, F.; Pegg, R.C. Hexanal as an indicator of meat flavor deterioration. J. Food Lipids 1994, 1, 177–186. [Google Scholar] [CrossRef]
- Robertson, G.L. Food Packaging and Shelf Life: A Practical Guide; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2009; p. 328. ISBN 9781420078442. [Google Scholar]
VOCs | RT | KI | Day 1 | Day 5 | Day 9 | MSLM (%) | MI | p |
---|---|---|---|---|---|---|---|---|
Content (ng/g) | Content (ng/g) | Content (ng/g) | ||||||
Alcohols | ||||||||
1-Pentanol | 11.77 | 1233 | 11.77 ± 0.01 | 24.73 ± 0.01 | 56.77 ± 7.83 | 83 | MS/KI | p = 0.144 |
1-Hexanol | 13.77 | 1342 | 27.70 ± 0.01 | 71.29 ± 47.72 | 236.92 ± 19.62 | 83 | MS/KI | p = 0.224 |
1-Octen-3-ol | 15.49 | 1459 | 96.45 ± 0.01 | 145.40 ± 156.77 | 397.11 ± 25.70 | 90 | MS/KI | p = 0.151 |
1-Heptanol | 15.59 | 1461 | 11.98 ± 0.01 | 37.40 ± 4.91 | 63.20 ± 8.69 | 86 | MS/KI | p = 0.121 |
1-Octanol | 17.29 | 1557 | 23.55 ± 0.02 | 30.90 ± 0.01 | 57.27 ± 16.65 | 91 | MS/KI | p = 0.057 |
Aldehydes | ||||||||
Hexanal | 7.75 | 1105 | 163.20 ± 0.01 | 231.02 ± 92.34 | 340.37 ± 165.89 | 96 | MS/KI | p = 0.040 |
Heptanal | 10.34 | 1185 | 36.64 ± 0.02 | 29.38 ± 0.76 | 60.94 ± 6.75 | 98 | MS/KI | p = 0.043 |
Octanal | 12.60 | 1299 | 21.02 ± 0.01 | 25.83 ± 26.67 | 56.59 ± 23.91 | 91 | MS/KI | p = 0.083 |
Nonanal | 14.61 | 1393 | 80.98 ± 0.04 | 94.84 ± 1.20 | 97.52 ± 56.52 | 91 | MS/KI | p = 0.001 |
Ketones | ||||||||
3-Octanone | 11.87 | 1266 | 23.44 ± 0.02 | 36.39 ± 46.46 | 66.98 ± 31.91 | 95 | MS/KI | p = 0.073 |
Heterocyclic | ||||||||
Benzothiazole | 23.27 | 1954 | 17.24 ± 0.02 | 24.53 ± 0.66 | 45.52 ± 0.30 | 91 | MS/KI | p = 0.062 |
Benzene derivatives | ||||||||
Toluene | 6.57 | 1027 | 381.95 ± 0.06 | 221.99 ± 51.56 | 735.19 ± 84.40 | 91 | MS/KI | p = 0.099 |
o-Xylene | 9.13 | 1164 | 25.02 ± 0.10 | 27.24 ± 30.36 | 72.86 ± 9.48 | 95 | MS/KI | p = 0.114 |
p-Cymene | 12.18 | 1280 | 29.35 ± 0.07 | 103.31 ± 15.33 | 181.68 ± 62.54 | 95 | MS/KI | p = 0.139 |
Hydrocarbons | ||||||||
2,2,4,6,6-pentamethyl-heptane | 3.86 | <800 | 171.27 ± 26.42 | 226.12 ± 360.83 | 435.97 ± 196.77 | 83 | MS | p = 0.074 |
Sulfur compounds | ||||||||
Carbon disulfide | 1.62 | <800 | 825.58 ± 359.41 | 125.31 ± 44.37 | 376.24 ± 44.34 | 90 | MS | p = 0.168 |
Ethers | ||||||||
15-Crown ether | 30.23 | 2432 | 5.11 ± 0.01 | 5.77 ± 2.82 | 20.41 ± 14.99 | 90 | MS/KI | p = 0.158 |
Aldehyde Ratio-MDA | Day 1 | Day 5 | Day 9 | Pearson’s (r) |
---|---|---|---|---|
Hexanal–Nonanal | 2.02 | 2.44 | 3.49 | 1.00 |
Heptanal–Nonanal | 0.45 | 0.31 | 0.62 | 0.87 |
Octanal–Nonanal | 0.26 | 0.27 | 0.58 | 0.83 |
Sum of (Hexanal, Heptanal, Octanal)–Nonanal | 2.73 | 3.02 | 4.70 | 0.89 |
MDA (mg/kg) | 1.4 | 2.8 | 3.8 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karabagias, I.K. Volatile Profile of Raw Lamb Meat Stored at 4 ± 1 °C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality. Foods 2018, 7, 40. https://doi.org/10.3390/foods7030040
Karabagias IK. Volatile Profile of Raw Lamb Meat Stored at 4 ± 1 °C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality. Foods. 2018; 7(3):40. https://doi.org/10.3390/foods7030040
Chicago/Turabian StyleKarabagias, Ioannis Konstantinos. 2018. "Volatile Profile of Raw Lamb Meat Stored at 4 ± 1 °C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality" Foods 7, no. 3: 40. https://doi.org/10.3390/foods7030040
APA StyleKarabagias, I. K. (2018). Volatile Profile of Raw Lamb Meat Stored at 4 ± 1 °C: The Potential of Specific Aldehyde Ratios as Indicators of Lamb Meat Quality. Foods, 7(3), 40. https://doi.org/10.3390/foods7030040