Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan
Abstract
:1. Introduction
2. Experimental Section
2.1. Plant Material
Plants | IPMB Accession Number | Yield of Essential oil, (in %; w/w) | |
---|---|---|---|
Species | Family | ||
Anethum graveolens L. | Apiaceae | P8577 | 0.7–0.8 |
Ferula clematidifolia K.-Pol. | Apiaceae | P8580 | 0.2–0.5 |
Ferula foetida (Regel.) | Apiaceae | - | 0.1–0.6 |
Galagania fragrantissima Lipsky | Apiaceae | P8578 | 0.1–0.2 |
Achillea filipendulina Lam. | Asteraceae | P8582 | 0.5–0.6 |
Artemisia absinthium L. | Asteraceae | P8583 | 0.2–0.5 |
Artemisia rutifolia Stephan ex Spreng. | Asteraceae | P8584 | 0.3–0.5 |
Artemisia scoparia Waldst. & Kit. | Asteraceae | P8585 | 0.2–0.5 |
Tanacetum vulgare L. | Asteraceae | P8586 | 0.3 |
Tanacetum parthenium (L.) Schultz-Bip. | Asteraceae | P8587 | 0.3 |
Hypericum perforatum L. | Clusiaceae | P8592 | 0.4 |
Hypericum scabrum L. | Clusiaceae | P8593 | 0.1 |
Hyssopus seravschanicus Pazij | Lamiaceae | - | 0.9–1.0 |
Mentha longifolia (L.) Huds. | Lamiaceae | P8595 | 0.6–0.8 |
Origanum tyttanthum Gontsch. | Lamiaceae | P8596 | 0.7–0.9 |
Ocimum basilicum Linn. | Lamiaceae | P8597 | 0.5 |
Salvia sclarea L. | Lamiaceae | P8598 | 0.3–0.4 |
Ziziphora clinopodioides Lam. | Lamiaceae | P8599 | 0.7–0.8 |
2.2. Antimicrobial Activity
2.3. Antioxidant Activity
2.4. Anti-Inflammatory Activity
3. Results
Species | E. coli ATCC 25922 | MRSA NCTC 10442 | ||
---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
Achillea filipendulina | 5 | 10 | 5 | 5 |
Artemisia absinthium | >20 | >20 | >20 | >20 |
Artemisia rutifolia | 10 | 20 | 5 | 20 |
Artemisia scoparia | 2.5 | 5 | 1.250 | 2.500 |
Ferula clematidifolia | >20 | >20 | >20 | >20 |
Ferula foetida | >20 | >20 | >20 | >20 |
Galagania fragrantissima | >20 | >20 | 0.039 | 0.078 |
Hypericum perforatum | 5 | 5 | 1.250 | 2.500 |
Hypericum scabrum | >20 | >20 | >20 | >20 |
Hyssopus seravschanicus | 10 | 10 | 5 | 10 |
Mentha longifolia | 5 | 10 | 10 | 20 |
Ocimum basilicum | >20 | >20 | >20 | >20 |
Origanum tyttanthum | 0.313 | 0.313 | 0.625 | 1.250 |
Salvia sclarea | >20 | >20 | >20 | >20 |
Tanacetum vulgare | >20 | >20 | 20 | 20 |
Ziziphora clinopodioides | 5 | 5 | 10 | 10 |
Positive control: Ampicillin | 0.004 | 0.008 | 0.008 | 0.016 |
Species | DPPH, IC50, mg/mL | ABTS, IC50, mg/mL | FRAP, µM Fe (II)/mg Sample | 5-LOX Inhibition, IC50, µg/mL |
---|---|---|---|---|
Achillea filipendulina | 4.83 | 2.01 | 214.2 | 221.3 |
Anethum graveolens | 4.98 | 4.12 | 47.9 | 33.47 |
Artemisia absinthium | 1.35 | 0.87 | 338.9 | 56.6 |
Artemisia rutifolia | 7.91 | 0.25 | 74.2 | 75.6 |
Artemisia scoparia | 2.55 | 0.28 | 43.1 | 184.3 |
Ferula clematidifolia | 15.7 | 0.45 | 124.5 | - |
Ferula foetida | 17.82 | 7.98 | 345.9 | - |
Galagania fragrantissima | 8.13 | 4.74 | 67.2 | 7.34 |
Hypericum perforatum | 3.71 | 0.48 | 98.25 | - |
Hypericum scabrum | 6.69 | 5.67 | 22.5 | - |
Hyssopus seravschanicus | 4.90 | 1.39 | 53.8 | 100.7 |
Mentha longifolia | 2.31 | 0.67 | 76.9 | 28.14 |
Ocimum basilicum | 5.94 | 7.98 | 51.6 | - |
Origanum tyttanthum | 0.28 | 0.12 | 699.2 | 14.78 |
Salvia sclarea | 12.50 | 5.03 | 54.0 | not active |
Tanacetum parthenium | 4.82 | 0.96 | - | - |
Tanacetum vulgare | 7.69 | 2.56 | 70.5 | - |
Ziziphora clinopodioides | 5.12 | 0.79 | 66.9 | 33.12 |
Ascorbic acid | 0.007 | 0.0055 | 1899.5 | - |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Djilani, A.; Dicko, A. The therapeutic benefits of essential oils. In Nutrition, Well-Being and Health; Bouayed, J., Ed.; In Tech: Shanghai, China, 2012; pp. 155–160. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E. Production of essential oils. In Handbook of Essential Oils: Science, Technology, and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2010; pp. 83–90. [Google Scholar]
- Van Wyk, B.E.; Wink, M. Medicinal Plants of the World; Timber Press: Portland, OR, USA; London, UK, 2004; pp. 5–50. [Google Scholar]
- Adorjan, B.; Buchbauer, G. Biological properties of essential oils: An updated review. Flavour Fragr. J. 2010, 25, 407–426. [Google Scholar] [CrossRef]
- Reichling, J. Plant-microbe interactions and secondary metabolites with antibacterial, antifungal and antiviral properties. In Annual Plant Reviews: Functions and Biotechnology of Plant Secondary Metabolites, 2nd ed.; Wink, M., Ed.; Blackwell Publishing: Oxford, UK, 2010; Volume 39, pp. 214–317. [Google Scholar]
- Tkach, N.V.; Hoffmann, M.H.; Roeser, M.; Korobkov, A.A.; von Hagen, K.B. Parallel evolutionary patterns in multiple lineages of arctic Artemisia L. (Asteraceae). Evolution 2007, 62, 184–198. [Google Scholar] [CrossRef] [PubMed]
- Sharopov, F.S.; Zhang, H.; Wink, M.; Setzer, W.N. Tajik aromatic medicinal plants. Medicines 2015, 2, 28–46. [Google Scholar] [CrossRef]
- Bobokov, Y.G.; Babayan, E.A.; Mashkovskiy, M.D.; Oboymakova, A.N.; Bulaev, V.M.; Guskova, L.S.; Lepachin, V.K.; Lyubimov, B.I.; Natradzade, A.G.; Sokolov, S.D.; Tentcova, A.I. Gosudarstvenaya Pharmacopea SSSR; Medicina: Moscow, Russia, 1988; Volume 11, p. 399. [Google Scholar]
- Mamadalieva, N.Z.; Sharopov, F.; Girault, J.-P.; Wink, M.; Lafont, R. Phytochemical analysis and bioactivity of the aerial parts of Abutilon theophrasti (Malvaceae), a medicinal weed. Nat. Prod. Res. 2014, 28, 1777–1779. [Google Scholar] [CrossRef] [PubMed]
- Sharopov, F.S.; Wink, M.; Setzer, W.N. Antioxidant activities of essential oil components—An experimental and computational investigation. Nat. Prod. Commun. 2015, 10, 153–156. [Google Scholar] [PubMed]
- Sharopov, F.S.; Kukaniev, M.A.; Setzer, W.N. Composition of the essential oil of Origanum tyttanthum from Tajikistan. Nat. Prod. Commun. 2011, 6, 1719–1722. [Google Scholar] [PubMed]
- Sokovic, M.; Glamoclija, J.; Marin, P.D.; Brkic, D.; van Griensven, L.J. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [PubMed]
- Sharopov, F.S.; Wink, M.; Khalifaev, D.R.; Zhang, H.; Dosoky, N.S.; Setzer, W.N. Chemical composition and antiproliferative activity of the essential oil of Galagania fragrantissima Lipsky (Apiaceae). Am. J. Essent. Oils Nat. Prod. 2013, 1, 11–13. [Google Scholar]
- Cespedes, C.L. Antioxidant and biocidal activities from natural sources: an overview. In Natural Antioxidants and Biocides from Wild Medicinal Plants; Cespedes, C.L., Sampietro, D.A., Seigler, D.S., Rai, M.K., Eds.; Cabi Publishing: Wallingford, UK, 2013; pp. 1–10. [Google Scholar]
- Cabrera, A.C.; Prieto, J.M. Application of artificial neural networks to the prediction of the antioxidant activity of essential oils in two experimental in vitro models. Food Chem. 2010, 118, 141–146. [Google Scholar] [CrossRef]
- Baricevic, D.; Bartol, T. The biological/pharmacological activity of the oregano genus. In Medicinal and Aromatic Plants—Industrial Profiles; Kintzios, S., Ed.; Taylor & Francis: London, UK, 2002; pp. 177–214. [Google Scholar]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Baylac, S.; Racine, P. Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. Aromatherapy 2003, 13, 136–142. [Google Scholar] [CrossRef]
- Frum, Y.; Viljoen, A.M. In vitro 5-lipoxygenase and anti-oxidant activities of South African medicinal plants commonly used topically for skin diseases. Skin Pharmacol. Physiol. 2006, 19, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Modes of action of herbal medicines and plant secondary metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Marsik, P.L.; Kokoska, L.; Landa, P.; Nepovim, A.; Soudek, P.; Vanek, T. In vitro inhibitory effects of thymol and quinones of Nigella sativa seed on cyclooxygenase-1- and 2-catalyzed prostaglandin E2 biosyntheses. Planta Medica 2005, 71, 739–742. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharopov, F.; Braun, M.S.; Gulmurodov, I.; Khalifaev, D.; Isupov, S.; Wink, M. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan. Foods 2015, 4, 645-653. https://doi.org/10.3390/foods4040645
Sharopov F, Braun MS, Gulmurodov I, Khalifaev D, Isupov S, Wink M. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan. Foods. 2015; 4(4):645-653. https://doi.org/10.3390/foods4040645
Chicago/Turabian StyleSharopov, Farukh, Markus Santhosh Braun, Isomiddin Gulmurodov, Davlat Khalifaev, Salomiddin Isupov, and Michael Wink. 2015. "Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan" Foods 4, no. 4: 645-653. https://doi.org/10.3390/foods4040645