Structure–Activity Relationship and Stability Mechanism of Pickering Emulsions Stabilized by Gorgon Euryale Starch–Quinoa Protein Complex Under pH Regulation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction and Preparation of GES
2.3. Preparation of GES-QP Complex Pickering Emulsions Under Different pH Conditions
2.4. Reverse Compression Test
2.5. Determination of Static Rheological Properties
2.6. Determination of Dynamic Rheological Properties
2.7. Determination of Emulsion Stability Index (ESI)
2.8. Determination of Thermal Stability of Emulsions
2.9. Observation of Micro-Morphology
2.10. Low-Field Nuclear Magnetic Resonance (LF-NMR) Measurement
2.11. Atomic Force Microscopy (AFM) Observation
2.12. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Reverse Compression Test
3.2. Analysis of Static Rheological Properties
3.3. Analysis of Dynamic Rheological Properties
3.4. Analysis of ESI
3.5. Analysis of Emulsion Thermal Stability
3.6. Analysis of Microscopic Morphological Characteristics
3.7. LF-NMR Imaging and Moisture Distribution Analysis
3.8. AFM Morphology Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guida, C.; Aguiar, A.C.; Magalhães, A.E.R.; Soares, M.G.; Cunha, R.L. Impact of ultrasound process on cassava starch nanoparticles and Pickering emulsions stability. Food Res. Int. 2024, 192, 114810. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, J.; Li, Y.; Zhao, Y. Review on the preparation, properties, application, and future trends of starch ester-based Pickering emulsions. Food Hydrocoll. 2026, 171, 111851. [Google Scholar] [CrossRef]
- Yu, D.; Liu, J.; Ju, B.; Chen, Y.; Sun, H. Fabrication and characterization of algal oil-loaded Pickering emulsion gels stabilized by whey protein isolate/starch complex as an emergency food. Int. J. Biol. Macromol. 2025, 309, 142782. [Google Scholar] [CrossRef] [PubMed]
- Remanan, M.K.; Zhu, F. Encapsulation of rutin in Pickering emulsions stabilized using octenyl succinic anhydride (OSA) modified quinoa, maize, and potato starch nanoparticles. Food Chem. 2023, 405, 134790. [Google Scholar] [CrossRef]
- Zou, R.; Xu, J.; Guo, Z.; Wang, Z.; Huang, Z.; Wang, L.; Jiang, L. Exploring sustainable sources and modification techniques of plant-based alternative proteins for high internal phase emulsion systems: From Camellia oleifera seed meal, copra meal, and soybean meal. Food Hydrocoll. 2025, 166, 111256. [Google Scholar] [CrossRef]
- Yang, J.; Reddy, C.K.; Fan, Z.; Xu, B. Physicochemical and structural properties of starches from non-traditional sources in China. Food Sci. Hum. Wellness 2023, 12, 416–423. [Google Scholar] [CrossRef]
- Islam, Z.; Bashir, K.; Singh, S.; Siddiqui, S. Effect of germination on physicochemical, functional and antinutritional characteristics of makhana seed (Euryale ferox) flour. Food Hum. 2025, 5, 100717. [Google Scholar] [CrossRef]
- Qu, G.; Yang, F.; He, X.; Gao, Y.; Sun, S. Quinoa protein-based emulsifiers: Mechanisms, influencing factors, modification techniques and applications. Food Chem. 2025, 491, 145204. [Google Scholar] [CrossRef]
- Cai, X.; Du, X.; Zhu, G.; Wang, C.; Wang, Y. The interfacial behaviors of ball-milled gorgon euryale starch—Quinoa protein complex and its stabilizing effect on Pickering emulsions. LWT 2024, 212, 116987. [Google Scholar] [CrossRef]
- Wang, J.; Yang, C.; Jiang, J. Pickering emulsions with controllable rheological properties stabilized by oat globulin at different pH levels. Colloids Surf. A 2025, 716, 136694. [Google Scholar] [CrossRef]
- Zakki, A.; Aryanti, N. Cowpea protein isolate: pH-adjustments emulsion stabilization-based polymer into its modification for food applications. Food Chem. Adv. 2025, 7, 100975. [Google Scholar] [CrossRef]
- Almeida, F.S.; da Silva, A.M.M.; Mendes, G.A.C.; Sato, A.C.K.; Cunha, R.L. Almond protein as Pickering emulsion stabilizer: Impact of microgel fabrication method and pH on emulsion stability. Int. J. Biol. Macromol. 2024, 280, 135812. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Meng, Y.; Dai, X.; Chen, K.; Zhu, Y. 3D Printing Complex Egg White Protein Objects: Properties and Optimization. Food Bioprocess Technol. 2019, 12, 267–279. [Google Scholar] [CrossRef]
- Wang, N.; Wang, D.; Xing, K.; Han, X.; Gao, S.; Wang, T.; Yu, D.; Elfalleh, W. Ultrasonic treatment of rice bran protein-tannic acid stabilized oil-in-water emulsions: Focus on microstructure, rheological properties and emulsion stability. Ultrason. Sonochem. 2023, 99, 106577. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Wang, K.; Bao, Y.; Regenstein, J.M.; Zhou, P. Fabrication of Gel-Like Emulsions with Whey Protein Isolate Using Microfluidization: Rheological Properties and 3D Printing Performance. Food Bioprocess Technol. 2019, 12, 1967–1979. [Google Scholar] [CrossRef]
- Cao, J.; Tong, X.; Cao, X.; Peng, Z.; Zheng, L.; Dai, J.; Zhang, X.; Cheng, J.; Wang, H.; Jiang, L. Effect of pH on the soybean whey protein–gum arabic emulsion delivery systems for curcumin: Emulsifying, stability, and digestive properties. Food Chem. 2024, 456, 139938. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Pan, Y.; Sun, Q.; Wei, S.; Xia, Q.; Wang, Z.; Han, Z.; Liu, Y. Effect of water redistribution on the rheological behavior of MP-PSs and 3D printability of surimi: An investigation using LF-NMR. Food Res. Int. 2025, 208, 116190. [Google Scholar] [CrossRef]
- Cui, Q.; Mahfouzi, M.; Zhang, H.; Gao, R.; Guo, Z. Characteristics of sweet potato starch particles modified by various methods for use in food-grade Pickering emulsion. LWT 2024, 210, 116831. [Google Scholar] [CrossRef]
- Wang, B.; Lu, H.; Lou, H.; Acharya, D.R.; Shi, Y.; Chen, Q. Synthesis and characterization of Neurospora intermedia-based composite mycoprotein gel meat: Insight into the effect of pH and soluble starch on water-holding capacity and texture properties. Food Hydrocoll. 2024, 155, 110190. [Google Scholar] [CrossRef]
- Sun, N.; Chen, C.; Zhu, F. Encapsulation of ferulic acid in quinoa protein and zein nanoparticles prepared through antisolvent precipitation: Structure, stability and gastrointestinal digestion. Food Biosci. 2025, 68, 106760. [Google Scholar] [CrossRef]
- Solanilla-Duque, J.F.; Roa-Acosta, D.F.; Bravo-Gómez, J.E. Effect of pH and concentration on physicochemical, adsorption kinetics and rheology properties of quinoa protein: Functional correlations. JCIS Open 2025, 18, 100131. [Google Scholar] [CrossRef]
- Wang, J.; Huang, W.; Wang, X.; Zhao, Y.; Zhang, L. Modulating the gelatinization and retrogradation characteristics of corn starch by controlling pine kernel protein/egg white protein thermal co-aggregation. Carbohydr. Polym. 2025, 367, 124005. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, S.; Zhang, B.; Drago, S.R.; Zhang, J. Relationships between the gelatinization of starches and the textural properties of extruded texturized soybean protein-starch systems. J. Food Eng. 2016, 174, 29–36. [Google Scholar] [CrossRef]
- Ding, Y.; Shen, Z.; Ding, Y.; Xu, Y. Effects of octenyl succinic anhydride (OSA) starches with different amylose content on freeze-thaw stability of myofibrillar protein emulsion gel: Double enhancement of interfacial film and network structure. Food Hydrocoll. 2025, 163, 111110. [Google Scholar] [CrossRef]
- Lei, J.; Chen, K.; Qiu, H. Preparation of pH-responsive starch/sodium alginate hybrid hydrogels for smart monitoring applications. Sustain. Mater. Technol. 2025, 45, e01551. [Google Scholar] [CrossRef]
- Liu, Y.; Hong, S.; Huang, T.; Zhang, T.; Zhu, F.; Li, K.; Yang, F. Effect of high pressure treatment on the structural and physicochemical properties of Cardiocrinum cathayanum starch. Int. J. Biol. Macromol. 2025, 318, 145135. [Google Scholar] [CrossRef]
- Delfanian, M.; Yesiltas, B.; Moltke Sørensen, A.-D.; Ali Sahari, M.; Barzegar, M.; Ahmadi Gavlighi, H.; Jacobsen, C. Interfacial effects of gallate alkyl esters on physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with sodium caseinate and OSA-modified starch. Food Chem. 2023, 417, 135923. [Google Scholar] [CrossRef]
- You, K.-M.; Murray, B.S.; Sarkar, A. Tribology and rheology of water-in-water emulsions stabilized by whey protein microgels. Food Hydrocoll. 2023, 134, 108009. [Google Scholar] [CrossRef]
- Zhan, S.; He, M.; Wu, Y.; Ouyang, J. Improved light and ultraviolet stability of curcumin encapsulated in emulsion gels prepared with corn starch, OSA-starch and whey protein isolate. Food Chem. 2024, 446, 138803. [Google Scholar] [CrossRef]
- Liu, X.-Y.; He, T.-S.; Wang, C.-C.; Xu, B.-C.; Feng, R.; Zhang, B.; Tao, H. Modulation of pea protein isolate nanoparticles by interaction with OSA-corn starch: Enhancing the stability of the constructed Pickering emulsions. Food Chem. 2024, 437, 137766. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Xu, L.; Qiu, C.; Jiao, A.; Jin, Z. Rheology and stability mechanism of pH-responsive high internal phase emulsion constructed gel by pea protein and hydroxypropyl starch. Food Chem. 2024, 440, 138233. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Xue, C. The presence of propylene glycol alginate increased the stability and intestine-targeted delivery potential of carboxymethyl starch-stabilized emulsions. Food Res. Int. 2022, 157, 111387. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, J.; Qin, Y.; Xu, X.; Jin, Z. Characterization and Mechanisms of Novel Emulsions and Nanoemulsion Gels Stabilized by Edible Cyclodextrin-Based Metal-Organic Frameworks and Glycyrrhizic Acid. J. Agric. Food Chem. 2019, 67, 391–398. [Google Scholar] [CrossRef]
- Zhong, Y.; Cai, Q.; Huang, Q.; Lu, X. Application of LF-NMR to characterize the roles of different emulsifiers in 3D printed emulsions. Food Hydrocoll. 2022, 133, 107993. [Google Scholar] [CrossRef]
- Zheng, X.-Q.; Wang, D.-D.; Xue, S.; Cui, Z.-Y.; Yu, H.-Y.; Wei, J.-T.; Chen, H.-H.; Mu, H.-Y.; Chen, R. Composite formation of whey protein isolate and OSA starch for fabricating high internal phase emulsion: A comparative study at different pH and their application in biscuits. Int. J. Biol. Macromol. 2024, 259, 129094. [Google Scholar] [CrossRef]









| Samples | Parameters of Power–Law Model | ||
|---|---|---|---|
| K (mPa·sn) | n | R2 | |
| GES-QP (pH 3) | 158.13 ± 1.26 e | 0.68 ± 0.02 a | 0.999 ± 0.001 a |
| GES-QP (pH 5) | 99.62 ± 0.38 c | 0.73 ± 0.01 b | 0.995 ± 0.002 a |
| GES-QP (pH 7) | 88.66 ± 0.70 b | 0.74 ± 0.04 b | 0.999 ± 0.001 a |
| GES-QP (pH 9) | 136.09 ± 0.83 d | 0.68 ± 0.03 a | 0.997 ± 0.002 a |
| GES-QP (pH 11) | 13.37 ± 0.14 a | 0.96 ± 0.02 c | 0.999 ± 0.001 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Cai, X.; Zhu, G.; Du, X. Structure–Activity Relationship and Stability Mechanism of Pickering Emulsions Stabilized by Gorgon Euryale Starch–Quinoa Protein Complex Under pH Regulation. Foods 2026, 15, 211. https://doi.org/10.3390/foods15020211
Cai X, Zhu G, Du X. Structure–Activity Relationship and Stability Mechanism of Pickering Emulsions Stabilized by Gorgon Euryale Starch–Quinoa Protein Complex Under pH Regulation. Foods. 2026; 15(2):211. https://doi.org/10.3390/foods15020211
Chicago/Turabian StyleCai, Xuran, Guilan Zhu, and Xianfeng Du. 2026. "Structure–Activity Relationship and Stability Mechanism of Pickering Emulsions Stabilized by Gorgon Euryale Starch–Quinoa Protein Complex Under pH Regulation" Foods 15, no. 2: 211. https://doi.org/10.3390/foods15020211
APA StyleCai, X., Zhu, G., & Du, X. (2026). Structure–Activity Relationship and Stability Mechanism of Pickering Emulsions Stabilized by Gorgon Euryale Starch–Quinoa Protein Complex Under pH Regulation. Foods, 15(2), 211. https://doi.org/10.3390/foods15020211

