Microarray-Based Serotyping and Molecular Characterization of Virulence and Antimicrobial Resistance of Salmonella enterica from Swine Meat Samples in Abattoirs and Wet Markets of Metro Manila, Philippines
Abstract
1. Introduction
2. Materials and Methods
2.1. Revival and Recovery of S. enterica Isolates
2.2. DNA Extraction
2.3. PCR Confirmation of Salmonella enterica
2.4. Microarray-Based Salmonella enterica Serotyping
2.5. Detection of Virulence and Antimicrobial Resistance Genes
2.6. PCR Product Visualization
2.7. Antimicrobial Susceptibility Testing
2.8. Data Analysis
3. Results
3.1. Distribution of Salmonella enterica Serovars
3.2. Frequency of AMR and Virulence Genes
3.3. Variations in Gene Prevalence Among Salmonella enterica Serovars
3.4. Phenotypic AMR and Associations Among Salmonella enterica Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worley, M.J. Salmonella bloodstream infections. Trop. Med. Infect. Dis. 2023, 8, 487. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, R.G.; Rosario, D.K.A.; Cunha-Neto, A.; Mano, S.B.; Figueiredo, E.E.S.; Conte-Junior, C.A. Worldwide epidemiology of Salmonella serovars in animal-based foods: A meta-analysis. Appl. Environ. Microbiol. 2019, 85, e00591-19. [Google Scholar] [CrossRef] [PubMed]
- Pees, M.; Brockmann, M.; Steiner, N.; Marschang, R.E. Salmonella in reptiles: A review of occurrence, interactions, shedding and risk factors for human infections. Front. Cell Dev. Biol. 2023, 11, 1251036. [Google Scholar] [CrossRef] [PubMed]
- WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance. Available online: https://www.who.int/publications/i/item/9789240093461#:~:text=The%202024%20WHO%20Bacterial%20Priority%20Pathogens%20List,gonorrhoeae%20*%20Pseudomonas%20aeruginosa%20*%20Staphylococcus%20aureus (accessed on 3 November 2025).
- Kombade, S.; Kaur, N. Pathogenicity Island in Salmonella. In Salmonella spp.—A Global Challenge; Lamas, A., Regal, P., Abuin, C.M.F., Eds.; IntechOpen Limited: London, UK, 2021. [Google Scholar] [CrossRef]
- Giannella, R.A. Salmonella. In Medical Microbiology, 4th ed.; Baron, S., Ed.; IntechOpen Limited: Houston, TX, USA, 1996. [Google Scholar]
- Wain, J.; House, D.; Zafar, A.; Baker, S.; Nair, S.; Kidgell, C.; Bhutta, Z.; Dougan, G.; Hasan, R. Vi antigen expression in Salmonella enterica serovar Typhi clinical isolates from Pakistan. J. Clin. Microbiol. 2005, 43, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- McQuiston, J.R.; Waters, R.J.; Dinsmore, B.A.; Mikoleit, M.L.; Fields, P.I. Molecular determination of H antigens of Salmonella by use of a microsphere-based liquid array. J. Clin. Microbiol. 2011, 49, 565–573. [Google Scholar] [CrossRef]
- Sundaresan, S.; Rathinavelan, T. SSP: An in silico tool for Salmonella species serotyping using the sequences of O-antigen biosynthesis proteins and H-Antigen filament proteins. J. Mol. Biol. 2023, 435, 168046. [Google Scholar] [CrossRef]
- Farzan, A.; Friendship, R.M.; Dewey, C.E. Evaluation of enzyme-linked immunosorbent assay (ELISA) tests and culture for determining Salmonella status of a pig herd. Epidemiol. Infect. 2006, 135, 238–244. [Google Scholar] [CrossRef]
- Pulido-Landínez, M.; Sánchez-Ingunza, R.; Guard, J.; Nascimento, V.P.D. Assignment of serotype to Salmonella enterica isolates obtained from poultry and their environment in southern Brazil. Lett. Appl. Microbiol. 2013, 57, 288–294. [Google Scholar] [CrossRef]
- Herrera-León, S.; Ramiro, R.; Arroyo, M.; Díez, R.; Usera, M.A.; Echeita, M.A. Blind comparison of traditional serotyping with three multiplex PCRs for the identification of Salmonella serotypes. Res. Microbiol. 2007, 158, 122–127. [Google Scholar] [CrossRef]
- Santos, P.D.M.; Widmer, K.W.; Rivera, W.L. PCR-based detection and serovar identification of Salmonella in retail meat collected from wet markets in Metro Manila, Philippines. PLoS ONE 2020, 15, e0239457. [Google Scholar] [CrossRef]
- Ibrahim, G.M.; Morin, P.M. Salmonella serotyping using whole genome sequencing. Front. Microbiol. 2018, 9, 2993. [Google Scholar] [CrossRef]
- Al-Khaldi, S.F.; Mossoba, M.M.; Allard, M.M.; Lienau, E.K.; Brown, E.D. Bacterial identification and subtyping using DNA microarray and DNA sequencing. Methods Mol. Biol. 2012, 881, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Diep, B.; Barretto, C.; Portmann, A.C.; Fournier, C.; Karczmarek, A.; Voets, G.; Li, S.; Deng, X.; Klijn, A. Salmonella serotyping: Comparison of the traditional method to a microarray-based method and an in silico platform using whole genome sequencing data. Front. Microbiol. 2019, 10, 2554. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.P.L.; Elca, C.D. An assessment of swine industry in the Philippines. AgEcon Search 2021, 7, 21–48. [Google Scholar] [CrossRef]
- Soguilon-del Rosario, S.; Rivera, W.L. Incidence and molecular detection of Salmonella enterica serogroups and spvC virulence gene in raw and processed meats from selected wet markets in Metro Manila, Philippines. Int. J. Philipp. Sci. Technol. 2015, 8, 52–55. [Google Scholar] [CrossRef]
- Ng, K.C.S.; Rivera, W.L. Multiplex PCR-based serogrouping and serotyping of Salmonella enterica from tonsil and jejunum with jejunal lymph nodes of slaughtered swine in Metro Manila, Philippines. J. Food Prot. 2015, 78, 873–880. [Google Scholar] [CrossRef]
- Calayag, A.M.B.; Paclibare, P.A.P.; Santos, P.D.; Bautista, C.A.C.; Rivera, W.L. Molecular characterization and antimicrobial resistance of Salmonella enterica from swine slaughtered in two different types of Philippine abattoir. Food Microbiol. 2017, 65, 51–56. [Google Scholar] [CrossRef]
- Calayag, A.M.B.; Widmer, K.W.; Rivera, W.L. Antimicrobial susceptibility and frequency of bla and qnr Genes in Salmonella enterica isolated from slaughtered pigs. Antibiotics 2021, 10, 1442. [Google Scholar] [CrossRef]
- Chiu, C.H.; Ou, J.T. Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J. Clin. Microbiol. 1996, 34, 2619–2622. [Google Scholar] [CrossRef]
- Pavon, R.D.N.; Mendoza, P.D.G.; Flores, C.A.R.; Calayag, A.M.B.; Rivera, W.L. Genotypic virulence profiles and associations in Salmonella isolated from meat samples in wet markets and abattoirs of Metro Manila, Philippines. BMC Microbiol. 2022, 22, 292. [Google Scholar] [CrossRef]
- Borges, K.A.; Furian, T.Q.; Borsoi, A.; Moraes, H.L.S.; Salle, C.T.P.; Nascimento, V.P. Detection of virulence-associated genes in Salmonella Enteritidis isolates from chicken in South of Brazil. Pesq. Vet. Bras. 2013, 33, 1416–1422. [Google Scholar] [CrossRef]
- Fazl, A.A.; Salehi, T..Z.; Jamshidian, M.; Amini, K.; Jangjou, A.H. Molecular detection of invA, ssaP, sseC and pipB genes in Salmonella Typhimurium isolated from human and poultry in Iran. Afr. J. Microbiol. Res. 2013, 7, 1104–1108. [Google Scholar] [CrossRef]
- Sánchez-Jiménez, M.M.; Cardona-Castro, N.M.; Canu, N.; Uzzau, S.; Rubino, S. Distribution of pathogenicity islands among Colombian isolates of Salmonella. J. Infect. Dev. Ctries. 2010, 4, 555–559. [Google Scholar] [CrossRef] [PubMed]
- Soto, S.M.; Rodríguez, I.; Rodicio, M.R.; Vila, J.; Mendoza, M.C. Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macrorestriction profiles. J. Med. Microbiol. 2006, 55, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Knodler, L.A.; Celli, J.; Hardt, W.-D.; Vallance, B.A.; Yip, C.; Finlay, B.B. Salmonella effectors within a single pathogenicity island are differentially expressed and translocated by separate type III secretion systems. Mol. Microbiol. 2002, 43, 1089–1103. [Google Scholar] [CrossRef] [PubMed]
- Derakhshandeh, A.; Firouzi, R.; Khoshbakht, R. Association of three plasmid-encoded spv genes among different Salmonella serotypes isolated from different origins. Indian J. Microbiol. 2012, 53, 106–110. [Google Scholar] [CrossRef]
- Monstein, H.J.; Ostholm-Balkhed, A.; Nilsson, M.V.; Nilsson, M.; Dornbusch, K.; Nilsson, L.E. Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 2007, 115, 1400–1408. [Google Scholar] [CrossRef]
- Pavon, R.D.N.; Rivera, W.L. Virulence and antimicrobial resistance gene profiling of Salmonella isolated from swine meat samples in abattoirs and wet markets of Metro Manila, Philippines. Microbiol. Biotechnol. Lett. 2023, 51, 390–402. [Google Scholar] [CrossRef]
- Ferrato, C.; Chui, L.; King, R.; Louie, M. Utilization of a molecular serotyping method for Salmonella enterica in a routine laboratory in Alberta Canada. J. Microbiol. Methods 2017, 135, 14–19. [Google Scholar] [CrossRef]
- Chui, L.; Ferrato, C.; Li, V.; Christianson, S. Comparison of molecular and in silico Salmonella serotyping for Salmonella surveillance. Microorganisms 2021, 9, 955. [Google Scholar] [CrossRef]
- Yoshida, C.; Gurnik, S.; Ahmad, A.; Blimkie, T.; Murphy, S.A.; Kropinski, A.M.; Nash, J.H.E. Evaluation of molecular methods for identification of Salmonella serovars. J. Clin. Microbiol. 2016, 54, 1992–1998. [Google Scholar] [CrossRef] [PubMed]
- Paclibare, P.A.P.; Calayag, A.M.B.; Santos, P.D.M.; Rivera, W.L. Molecular characterization of Salmonella enterica isolated from raw and processed meats from selected wet markets in Metro Manila, Philippines. Philipp. Agric. Sci. 2017, 100, 55–62. [Google Scholar]
- Sia, S.; Lagrada, M.; Olorosa, A.; Limas, M.; Jamoralin, M.; Macaranas, P.K.; Espiritu, H.G.; Gayeta, J.; Masum, M.M.; Ablola, F.B.; et al. A fifteen-tear report of serotype distribution and antimicrobial resistance of Salmonella in the Philippines. Philipp. J. Pathol. 2020, 5, 19–29. [Google Scholar] [CrossRef]
- Lagrada, M.L.; Argimón, S.; Borlasa, J.B.; Abad, J.P.; Gayeta, J.M.; Masim, M.L.; Olorosa, A.M.; Cohen, V.; Jeffrey, B.; Abudahab, K.; et al. Genomic surveillance of Salmonella spp. in the Philippines during 2013–2014. Trans. R. Soc. Trop. Med. Hyg. 2022, 116, 1202–1213. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Xu, H.; Chu, C.; Wang, J.; Jiao, X.; Li, Q. Whole-genome sequencing analysis reveals pig as the main reservoir for persistent evolution of Salmonella enterica serovar Rissen causing human salmonellosis. Food Res. Int. 2022, 154, 111007. [Google Scholar] [CrossRef]
- Galanis, E.; Lo Fo Wong, D.M.; Patrick, M.E.; Binsztein, N.; Cieslik, A.; Chalermchaikit, T.; Aidara-Kane, A.; Ellis, A.; Angulo, F.J.; Wegener, H.C. Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg. Infect. Dis. 2006, 12, 381–388. [Google Scholar] [CrossRef]
- Keelara, S.; Scott, H.M.; Morrow, W.M.; Gebreyes, W.A.; Correa, M.; Nayak, R.; Stefanova, R.; Thakur, S. Longitudinal study of distributions of similar antimicrobial-resistant Salmonella serovars in pigs and their environment in two distinct swine production systems. Appl. Environ. Microbiol. 2013, 79, 5167–5178. [Google Scholar] [CrossRef]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2020, 18, 6007. [Google Scholar] [CrossRef]
- Tadee, P.; Boonkhot, P.; Pornruangwong, S.; Patchanee, P. Comparative phenotypic and genotypic characterization of Salmonella spp. in pig farms and slaughterhouses in two provinces in Northern Thailand. PLoS ONE 2015, 10, e0116581. [Google Scholar] [CrossRef]
- Elbediwi, M.; Shi, D.; Biswas, S.; Xu, X.; Yue, M. Changing patterns of Salmonella enterica serovar Rissen from humans, food animals, and animal-derived foods in China, 1995–2019. Front. Microbiol. 2021, 12, 702909. [Google Scholar] [CrossRef]
- Mannion, C.; Lynch, P.; Egan, J.; Leonard, F. Seasonal effects on the survival characteristics of Salmonella Typhimurium and Salmonella Derby in pig slurry during storage. J. Appl. Microbiol. 2007, 103, 1386–1392. [Google Scholar] [CrossRef]
- Naberhaus, S.A.; Krull, A.C.; Arruda, B.L.; Arruda, P.; Sahin, O.; Schwartz, K.J.; Burrough, E.R.; Magstadt, D.R.; Ferreyra, F.M.; Gatto, I.R.H.; et al. Pathogenicity and competitive fitness of Salmonella enterica serovar 4,[5],12:i:- compared to Salmonella Typhimurium and Salmonella Derby in swine. Front. Vet. Sci. 2020, 6, 502. [Google Scholar] [CrossRef]
- Denis, M.; Houard, E.; Fablet, A.; Rouxel, S.; Salvat, G. Distribution of serotypes and genotypes of Salmonella enterica species in French pig production. Vet. Rec. 2013, 173, 370. [Google Scholar] [CrossRef]
- Cevallos-Almeida, M.; Martin, L.; Houdayer, C.; Rose, V.; Guionnet, J.; Paboeuf, F.; Denis, M.; Kerouanton, A. Experimental infection of pigs by Salmonella Derby, S. Typhimurium and monophasic variant of S. Typhimurium: Comparison of colonization and serology. Vet. Microbiol. 2019, 231, 147–153. [Google Scholar] [CrossRef]
- Bonardi, S. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol. Infect. 2017, 145, 1513–1526. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2015. EFSA J. 2017, 15, e04694. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Gu, D.; Wang, F.; Liu, B.; Li, J.; Kang, X.; Meng, C.; Jiao, X.; Pan, Z. Prevalence and characteristics of Salmonella spp. from a pig farm in Shanghai, China. Foodborne Pathog. Dis. 2021, 18, 477–488. [Google Scholar] [CrossRef] [PubMed]
- Godínez-Oviedo, A.; Tamplin, M.L.; Bowman, J.P.; Hernández-Iturriaga, M. Salmonella enterica in Mexico 2000–2017: Epidemiology, antimicrobial resistance, and prevalence in food. Foodborne Pathog. Dis. 2019, 17, 98–118. [Google Scholar] [CrossRef]
- Bonifait, L.; Thépault, A.; Baugé, L.; Rouxel, S.; Gall, F.L.; Chemaly, M. Occurrence of Salmonella in the cattle production in France. Microorganisms 2021, 9, 872. [Google Scholar] [CrossRef]
- Thai, T.H.; Hirai, T.; Lan, N.T.; Yamaguchi, R. Antibiotic resistance profiles of Salmonella serovars isolated from retail pork and chicken meat in North Vietnam. Int. J. Food Microbiol. 2012, 156, 147–151. [Google Scholar] [CrossRef]
- Reynoso, E.C.; Delgado-Suárez, E.J.; Hernández-Pérez, C.F.; Chavarin-Pineda, Y.; Godoy-Lozano, E.E.; Fierros-Zárate, G.; Aguilar-Vera, O.A.; Castillo-Ramírez, S.; Del Carmen Sierra Gómez-Pedroso, L.; Sánchez-Zamorano, L.M. Geography, antimicrobial resistance, and genomics of Salmonella enterica (serotypes Newport and Anatum) from meat in Mexico (2021–2023). Microorganisms 2024, 12, 2485. [Google Scholar] [CrossRef] [PubMed]
- Madoroba, E.; Kapeta, D.; Gelaw, A.K. Salmonella contamination, serovars and antimicrobial resistance profiles of cattle slaughtered in South Africa. Onderstepoort J. Vet. Res. 2016, 83, a1109. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lai, J.; Wang, Y.; Liu, S.; Li, Y.; Liu, K.; Shen, J.; Wu, C. Prevalence and characterization of Salmonella species isolated from pigs, ducks and chickens in Sichuan Province, China. Int. J. Food Microbiol. 2013, 163, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Lei, C.; Kong, L.; Jiang, W.; Liu, B.; Men, S.; Yang, Y.; Cheng, G.; Chen, Y.; Wang, H. Prevalence, antimicrobial resistance, and relatedness of Salmonella isolated from chickens and pigs on farms, abattoirs, and markets in Sichuan Province, China. Foodborne Pathog. Dis. 2017, 14, 667–677. [Google Scholar] [CrossRef]
- Kauffmann, F.; Bövre, K. Two new Salmonella types: Salmonella Loenga= 1, 42: z10: z6 and Salmonella Soerenga= 30: i: 1, w. Acta Pathol. Microbial. Scand. 1957, 41, 159–160. [Google Scholar] [CrossRef]
- Joaquim, P.; Herrera, M.; Moroni, M.; Chacana, P. Primer aislamiento de Salmonella enterica serovar Soerenga a partir de cerdas gestantes en Argentina. Rev. Vet. 2024, 35, 8–11. [Google Scholar] [CrossRef]
- Molina, A.; Granados-Chinchilla, F.; Jiménez, M.; Acuña-Calvo, M.T.; Alfaro, M.; Chavarría, G. Vigilance for Salmonella in feedstuffs available in Costa Rica: Prevalence, serotyping and tetracycline resistance of isolates obtained from 2009 to 2014. Foodborne Pathog. Dis. 2015, 13, 119–127. [Google Scholar] [CrossRef]
- Pulido-Landínez, M. Food safety—Salmonella update in broilers. Anim. Feed Sci. Technol. 2019, 250, 53–58. [Google Scholar] [CrossRef]
- Somda, N.S.; Bonkoungou, I.J.O.; Sambe-Ba, B.; Drabo, M.S.; Wane, A.A.; Sawadogo-Lingani, H.; Savadogo, A. Diversity and antimicrobial drug resistance of non-typhoid Salmonella serotypes isolated in lettuce, irrigation water and clinical samples in Burkina Faso. J. Agric. Food Res. 2021, 5, 100167. [Google Scholar] [CrossRef]
- Raufu, I.A.; Lawal, O.U.; Parreira, V.R.; Soni, M.; Kaur, H.; Ahmed, A.O.; Aremu, A.; Al-Mustapha, A.I.; Goodridge, L. Draft genome sequences of multiple Salmonella enterica serotypes isolated from eight different animals in Nigeria. Microbiol. Resour. Announc. 2025, 14, e0020425. [Google Scholar] [CrossRef]
- Partridge, S.R. Resistance mechanisms in Enterobacteriaceae. Pathology 2015, 47, 276–284. [Google Scholar] [CrossRef]
- Abrar, S.; Ain, N.U.; Liaqat, H.; Hussain, S.; Rasheed, F.; Riaz, S. Distribution of blaCTX − M, blaTEM, blaSHV and blaOXA genes in extended-spectrum-β-lactamase-producing clinical isolates: A three-year multi-center study from Lahore, Pakistan. Antimicrob. Resist. Infect. Control. 2019, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Randall, L.P. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J. Antimicrob. Chemother. 2004, 53, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Okamura, N.; Kishino, K.; Wada, S.; Zou, B.; Nanba, T.; Ito, T. Prevalence and antimicrobial resistance of Salmonella serotypes isolated from poultry meat in Japan. Food Saf. 2018, 6, 126–129. [Google Scholar] [CrossRef]
- Madayag, M.; Pavon, R.D.; Mora, J.F.; Balaga, K.; Rivera, W. Surveillance of β-lactamase genes of Salmonella from chicken in wet markets of Metro Manila, Philippines. Biotropia 2024, 31, 339–348. [Google Scholar] [CrossRef]
- Kim, M.B.; Jung, H.; Lee, Y.J. Emergence of Salmonella Infantis carrying the pESI megaplasmid in commercial farms of five major integrated broiler operations in Korea. Poult. Sci. 2024, 103, 103516. [Google Scholar] [CrossRef]
- Jiang, X.; Siddique, A.; Zhu, L.; Teng, L.; Umar, S.; Li, Y.; Yue, M. Ecological prevalence and genomic characterization of Salmonella isolated from selected poultry farms in Jiangxi province, China. Poult. Sci. 2025, 104, 105197. [Google Scholar] [CrossRef]
- Lee, W.W.Y.; Mattock, J.; Greig, D.R.; Langridge, G.C.; Baker, D.; Bloomfield, S.; Mather, A.E.; Wain, J.R.; Edwards, A.M.; Hartman, H.; et al. Characterization of a pESI-like plasmid and analysis of multidrug-resistant Salmonella enterica Infantis isolates in England and Wales. Microb. Genom. 2021, 7, 000658. [Google Scholar] [CrossRef]
- Nagpala, M.J.M.; Mora, J.F.B.; Pavon, R.D.N.; Rivera, W.L. Genomic characterization of antimicrobial-resistant Salmonella enterica in chicken meat from wet markets in Metro Manila, Philippines. Front. Microbiol. 2025, 16, 1496685. [Google Scholar] [CrossRef]
- Nagpala, M.J.M.; Montecillo, A.D.; Mora, J.F.B.; Pavon, R.D.N.; Pantua, H.D.; Rivera, W.L. Complete genome sequence of a pESI-Carrying Salmonella Infantis from raw chicken meat in a Metro Manila wet market, Philippines. Microbiol. Resour. Announc. 2025, 14, e0052725. [Google Scholar] [CrossRef]
- Robertson, J.; Schonfeld, J.; Bessonov, K.; Bastedo, P.; Nash, J.H.E. A global survey of Salmonella plasmids and their associations with antimicrobial resistance. Microb. Genom. 2023, 9, 001002. [Google Scholar] [CrossRef]
- Chen, W.; Fang, T.; Zhou, X.; Zhang, D.; Shi, X.; Shi, C. IncHI2 plasmids are predominant in antibiotic-resistant Salmonella isolates. Front. Microbiol. 2016, 7, 1566. [Google Scholar] [CrossRef] [PubMed]
- García, P.; Hopkins, K.L.; García, V.; Beutlich, J.; Mendoza, M.C.; Threlfall, J.; Mevius, D.; Helmuth, R.; Rodicio, M.R.; Guerra, B. Diversity of plasmids encoding virulence and resistance functions in Salmonella enterica subsp. enterica serovar Typhimurium monophasic variant 4,[5],12:i:- strains circulating in Europe. PLoS ONE 2014, 9, e89635. [Google Scholar] [CrossRef] [PubMed]
- Folster, J.; Pecic, G.; Singh, A.; Duval, B.; Rickert, R.; Ayers, S.; Abbott, J.; McGlinchey, B.; Bauer-Turpin, J.; Haro, J.; et al. Characterization of extended-spectrum cephalosporin–resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009. Foodborne Pathog. Dis. 2012, 9, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Lynne, A.M.; David, D.E.; Tang, H.; Xu, J.; Nayak, R.; Kaldhone, P.; Logue, C.M.; Foley, S.L. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates. PLoS ONE 2012, 7, e51160. [Google Scholar] [CrossRef]
- Cloeckaert, A.; Praud, K.; Doublet, B.; Bertini, A.; Carattoli, A.; Butaye, P.; Imberechts, H.; Bertrand, S.; Collard, J.; Arlet, G.; et al. Dissemination of an extended-spectrum-β-lactamase blaTEM-52 gene-carrying IncI1 plasmid in various Salmonella enterica serovars isolated from poultry and humans in Belgium and France between 2001 and 2005. Antimicrob. Agents Chemother. 2007, 51, 1872–1875. [Google Scholar] [CrossRef]
- Pouget, J.G.; Coutinho, F.J.; Reid-Smith, R.J.; Boerlin, P. Characterization of blaSHV genes on plasmids from Escherichia coli and Salmonella enterica isolates from Canadian food animals (2006–2007). Appl. Environ. Microbiol. 2013, 79, 3864–3866. [Google Scholar] [CrossRef]
- Ren, X.; Li, M.; Xu, C.; Cui, K.; Feng, Z.; Fu, Y.; Zhang, J.; Liao, M. Prevalence and molecular characterization of Salmonella enterica isolates throughout an integrated broiler supply chain in China. Epidemiol. Infect. 2016, 144, 2989–2999. [Google Scholar] [CrossRef]
- Barrera, S.; Vázquez-Flores, S.; Needle, D.; Rodríguez-Medina, N.; Iglesias, D.; Sevigny, J.L.; Gordon, L.M.; Simpson, S.; Thomas, W.K.; Rodulfo, H.; et al. Serovars, virulence and antimicrobial resistance genes of non-typhoidal Salmonella strains from dairy systems in Mexico. Antibiotics 2023, 12, 1662. [Google Scholar] [CrossRef]
- Vakili, S.; Haeili, M.; Feizi, A.; Moghaddasi, K.; Omrani, M.; Ghodousi, A.; Cirillo, D.M. Whole-genome sequencing-based characterization of Salmonella enterica serovar Enteritidis and Kentucky isolated from laying hens in northwest of Iran, 2022–2023. Gut Pathog. 2025, 17, 2. [Google Scholar] [CrossRef]
- Thung, T.Y.; Radu, S.; Mahyudin, N.A.; Rukayadi, Y.; Zakaria, Z.; Mazlan, N.; Tan, B.H.; Lee, E.; Yeoh, S.L.; Chin, Y.Z.; et al. Prevalence, virulence genes and antimicrobial resistance profiles of Salmonella serovars from retail beef in Selangor, Malaysia. Front. Microbiol. 2018, 8, 2697. [Google Scholar] [CrossRef]
- Joaquim, P.; Herrera, M.; Dupuis, A.; Chacana, P. Virulence genes and antimicrobial susceptibility in Salmonella enterica serotypes isolated from swine production in Argentina. Rev. Argent. Microbiol. 2021, 53, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Shu, G.; Qiu, J.; Zheng, Y.; Chang, L.; Li, H.; Xu, F.; Zhang, W.; Yin, L.; Fu, H.; Yan, Q.; et al. Association between phenotypes of antimicrobial resistance, ESBL resistance genes, and virulence genes of Salmonella isolated from chickens in Sichuan, China. Animals 2023, 13, 2770. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Kelley, W.G.; Glover, C.; Erol, E.; Helmy, Y.A. Phenotypic and genotypic characterization of antimicrobial resistance and virulence profiles of Salmonella enterica serotypes isolated from necropsied horses in Kentucky. Microbiol. Spectr. 2025, 13, e0250124. [Google Scholar] [CrossRef] [PubMed]
- Liao, A.P.; Petrof, E.O.; Kuppireddi, S.; Zhao, Y.; Xia, Y.; Claud, E.C.; Sun, J. Salmonella Type III effector AvrA stabilizes cell tight junctions to inhibit inflammation in intestinal epithelial cells. PLoS ONE 2008, 3, e2369. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, Y.; Lin, Z.; Lu, R.; Xia, Y.; Meng, C.; Pan, Z.; Xu, X.; Jiao, X.; Sun, J. Salmonella Enteritidis effector AvrA suppresses autophagy by reducing beclin-1 protein. Front. Immunol. 2020, 11, 686. [Google Scholar] [CrossRef]
- Worley, M.J. Salmonella Type III secretion system effectors. Int. J. Mol. Sci. 2025, 26, 2611. [Google Scholar] [CrossRef]
- Eichelberg, K.; Galán, J.E. Differential regulation of Salmonella Typhimurium Type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators invA and hilA. Infect. Immun. 1999, 67, 4099–4105. [Google Scholar] [CrossRef]
- Moncrief, M.B.C.; Maguire, M.E. Magnesium and the role of mgtC in growth of Salmonella Typhimurium. Infect. Immun. 1998, 66, 3802–3809. [Google Scholar] [CrossRef]
- Lawley, T.D.; Chan, K.; Thompson, L.J.; Kim, C.C.; Govoni, G.R.; Monack, D.M. Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog. 2006, 2, e11. [Google Scholar] [CrossRef]
- Fàbrega, A.; Vila, J. Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [PubMed]
- Steele-Mortimer, O. The Salmonella-containing vacuole—Moving with the times. Curr. Opin. Microbiol. 2008, 11, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Xie, H.; Li, Y.; Liu, M.; Hou, R.; Predeus, A.V.; Sepulveda, B.M.P.; Hinton, J.C.D.; Holden, D.W.; Thurston, T.L.M. Modulation of Salmonella virulence by a novel SPI-2 injectisome effector that interacts with the dystrophin-associated protein complex. mBio 2024, 15, e0112824. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.F.B.; Meclat, V.Y.B.; Calayag, A.M.B.; Campino, S.; Hafalla, J.C.R.; Hibberd, M.L.; Phelan, J.E.; Clark, T.G.; Rivera, W.L. Genomic analysis of Salmonella enterica from Metropolitan Manila abattoirs and markets reveals insights into circulating virulence and antimicrobial resistance genotypes. Front. Microbiol. 2024, 14, 1304283. [Google Scholar] [CrossRef]
- Zou, W.; Al-Khaldi, S.F.; Branham, W.S.; Han, T.; Fuscoe, J.C.; Han, J.; Foley, S.L.; Xu, J.; Fang, H.; Cerniglia, C.E.; et al. Microarray analysis of virulence gene profiles in Salmonella serovars from food/food animal environment. J. Infect. Dev. Ctries. 2010, 5, 94–105. [Google Scholar] [CrossRef]
- Amavisit, P.; Lightfoot, D.; Browning, G.F.; Markham, P.F. Variation between pathogenic serovars within Salmonella pathogenicity islands. J. Bacteriol. 2003, 185, 3624–3635. [Google Scholar] [CrossRef]
- Hayward, M.R.; Jansen, V.A.; Woodward, M.J. Comparative genomics of Salmonella enterica serovars Derby and Mbandaka, two prevalent serovars associated with different livestock species in the UK. BMC Genom. 2013, 14, 365. [Google Scholar] [CrossRef]
- Silva, C.; Puente, J.L.; Calva, E. Salmonella virulence plasmid: Pathogenesis and ecology. Pathog. Dis. 2017, 75, ftx070. [Google Scholar] [CrossRef]
- Proroga, Y.T.R.; Mancusi, A.; Peruzy, M.F.; Carullo, M.R.; Montone, A.M.I.; Fulgione, A.; Capuano, F. Characterization of Salmonella Typhimurium and its monophasic variant 1,4, [5],12:i:- isolated from different sources. Folia Microbiol. 2019, 64, 711–718. [Google Scholar] [CrossRef]




| Genes | Primers | Sequences (5′-3′ Direction) | Amplicon Size (bp) | References |
|---|---|---|---|---|
| Virulence | ||||
| invA (SPI1) | invA F | ACAGTGCTCGTTTACGACCTGAAT | 244 | [22] |
| invA R | AGACGACTGGTACTGATCTAT | |||
| avrA (SPI1) | avrA F | GTTATGGGACGGAACGACATCGG | 385 | [24] |
| avrA R | ATTCTGCTTCCCGCCGCC | |||
| hilA (SPI1) | hilA F | CTGCCGCAGTGTTAAGGATA | 497 | |
| hilA R | CTGTCGCCTTAATCGCATCGT | |||
| sseC (SPI2) | sseC F | TATGGTAGGTGCAGGGGAAG | 121 | [25] |
| sseC R | CTCATTCGCCATAGCCATTT | |||
| mgtC (SPI3) | mgtC F | TGACTATCCAATGCTCCAGTGAAT | 655 | [26] |
| mgtC R | ATTTACTGGCCGCTATGCTGTTG | |||
| spi4R (SPI4) | spi4R F | GATATTTATCAGTCTATAACAGC | 1269 | [27] |
| spi4R R | ATTCTCATCCAGATTTGATGTTG | |||
| pipB (SPI5) | pipB F | TAATGTGCCACATACAGGTAACGC | 789 | [28] |
| pipB R | TTCTGGAGGATGTCAACGGGTG | |||
| spvC (Plasmid) | spvC F | ACTCCTTGCACAACCAAATGCGGA | 571 | [22] |
| spvC R | TGTCTTCTGCATTTCGCCACATCA | |||
| spvR (Plasmid) | spvR F | ATGGATTTCATTAATAAAAAATTA | 894 | [29] |
| spvR R | TCAGAAGGTGGACTGTTTCAGTTT | |||
| β-Lactam Antibiotic Resistance | ||||
| blaTEM | blaTEM F | TCGCCGCATACACTATTCTCAGAATGA | 445 | [30] |
| blaTEM R | ACGCTCACCGGCTCCAGATTTAT | |||
| blaCTX-M | blaCTX-M F | ATGTGCAGYACCAGTAARGTKATGGC | 593 | |
| blaCTX-M R | TGGGTRAARTARGTSACCAGAAYCAGCGG | |||
| blaSHV | blaSHV F | ATGCGTTATATTCGCCTGTG | 747 | |
| blaSHV R | TGCTTTGTTATTCGGGCCAA | |||
| Gene | ID | D | A | E | C | FE |
|---|---|---|---|---|---|---|
| Virulence | ||||||
| invA | 95 °C 2 min | 95 °C 30 s | 60 °C 30 s | 72 °C 30 s | 30x | 72 °C 5 min |
| avrA, sseC, mgtC, and pipB | 94 °C 4 min | 94 °C 1 min | 58 °C 2 min | 72 °C 2 min | 35x | 72 °C 5 min |
| hilA and spvR | 95 °C 3 min | 95 °C 30 s | 50 °C 30 s | 72 °C 30 s | 35x | 72 °C 5 min |
| spvC | ||||||
| spi4R | 94 °C 4 min | 94 °C 1 min | 58 °C 1 min | 72 °C 2 min | 35x | 72 °C 5 min |
| β-Lactam Antibiotic Resistance | ||||||
| blaTEM, blaCTX-M, and blaSHV | 95 °C 3 min | 95 °C 30 s | 60 °C 30 s | 72 °C 1 min | 30x | 72 °C 10 min |
| Virulence Genes Pairs | Two-Sided p-Values |
|---|---|
| avrA + hilA | 0.208 |
| avrA + mgtC | <0.001 |
| avrA + pipB | <0.001 |
| avrA + spi4R | 0.286 |
| avrA + sseC | <0.001 |
| mgtC + hilA | <0.001 |
| mgtC + pipB | <0.001 |
| mgtC + spi4R | 0.204 |
| pipB + hilA | 0.009 |
| pipB + spi4R | 0.026 |
| spi4R + hilA | 0.182 |
| sseC + hilA | 0.824 |
| sseC + mgtC | 0.018 |
| sseC + pipB | <0.001 |
| sseC + spi4R | 0.336 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pavon, R.D.N.; Mora, J.F.B.; Nagpala, M.J.M.; Codia, A.; Pantua, H.D.; Rivera, W.L. Microarray-Based Serotyping and Molecular Characterization of Virulence and Antimicrobial Resistance of Salmonella enterica from Swine Meat Samples in Abattoirs and Wet Markets of Metro Manila, Philippines. Foods 2026, 15, 187. https://doi.org/10.3390/foods15020187
Pavon RDN, Mora JFB, Nagpala MJM, Codia A, Pantua HD, Rivera WL. Microarray-Based Serotyping and Molecular Characterization of Virulence and Antimicrobial Resistance of Salmonella enterica from Swine Meat Samples in Abattoirs and Wet Markets of Metro Manila, Philippines. Foods. 2026; 15(2):187. https://doi.org/10.3390/foods15020187
Chicago/Turabian StylePavon, Rance Derrick N., Jonah Feliza B. Mora, Michael Joseph M. Nagpala, Abbie Codia, Homer D. Pantua, and Windell L. Rivera. 2026. "Microarray-Based Serotyping and Molecular Characterization of Virulence and Antimicrobial Resistance of Salmonella enterica from Swine Meat Samples in Abattoirs and Wet Markets of Metro Manila, Philippines" Foods 15, no. 2: 187. https://doi.org/10.3390/foods15020187
APA StylePavon, R. D. N., Mora, J. F. B., Nagpala, M. J. M., Codia, A., Pantua, H. D., & Rivera, W. L. (2026). Microarray-Based Serotyping and Molecular Characterization of Virulence and Antimicrobial Resistance of Salmonella enterica from Swine Meat Samples in Abattoirs and Wet Markets of Metro Manila, Philippines. Foods, 15(2), 187. https://doi.org/10.3390/foods15020187

