Valorization of Isabella Grape (Vitis labrusca L.) Pomace Through the Recovery of Nutraceuticals by Sequential Green Extraction Technologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Isabella Grape Pomace and Pretreatment
2.2. Sequential Green Extraction Process
2.2.1. Supercritical Fluid Extraction
2.2.2. Pressurized Liquid Extraction
2.3. Analysis of Nutraceuticals in SFE and PLE Extracts
2.3.1. Determination of Tocopherols
2.3.2. Determination of Fatty Acids Composition
2.3.3. Total Phenolic Content
2.3.4. Total Flavonoids Content
2.3.5. Total Anthocyanin Content
2.3.6. Total Condensed Tannins Content
2.4. Antioxidant Activity (DPPH Radical Scavenging)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Stage 1: Recovery of Non-Polar Fraction
3.2. Stage 2: Recovery of Medium-Polarity Fraction
3.3. Stage 3: Recovery of Phenolic-Rich Fraction
3.4. Overall Process Integration and Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IGP | Isabella grape pomace |
| PUFAs | Polyunsaturated fatty acids |
| GRAS | Generally Recognized as Safe |
| SFE | Supercritical fluid extraction |
| PLE | Pressurized liquid extraction |
| CO2 | Carbon dioxide |
| RCCD | Rotable central composite design |
| ANOVA | Analysis of variance |
| TFC | Total flavonoid content |
| TPC | Total phenolic content |
| TCTC | Total condensed tannins content |
| TAC | Total anthocyanin content |
| RSM | Response surface model |
References
- Instituto Colombiano Agropecuario (ICA). Manejo Fitosanitario Del Cultivo De La Vid (Vitis vinifera y V. labrusca) Medidas Para La Temporada Invernal, 1st ed.; Ministerio de Agricultura y Desarrollo Rural: Bogotá, Colombia, 2012; p. 5.
- Sakinoğlu Oruç, F.Ç.; Dursun, S. Berry fruits grown in Duzce and its neighborhood: Their medical applications. Indian J. Pharm. Educ. Res. 2017, 51, S338–S340. [Google Scholar] [CrossRef]
- Unidad de Planeación Rural Agropecuaria (UPRA). Cultivo de Uva Isabella No Necesita Tanto Nitrógeno, 1st ed.; Unidad de Planeación Rural Agropecuaria: Bogotá, Colombia, 2021; p. 1.
- Bhutani, M.; Gaur, S.; Shams, R.; Dash, K.; Shaikh, A. Valorization of grape by-products: Insights into sustainable industrial and nutraceutical applications. Future Foods 2025, 12, 100710. [Google Scholar] [CrossRef]
- Ligarda-Samanez, C.A.; Huamán-Carrión, M.L.; Calsina-Ponce, W.C.; De la Cruz, G.; Calderón Huamaní, D.F.; Cabel-Moscoso, D.J.; Garcia-Espinoza, A.J.; Sucari-León, R.; Aroquipa-Durán, Y.; Muñoz-Saenz, J.C.; et al. Technological Innovations and Circular Economy in the Valorization of Agri-Food By-Products: Advances, Challenges and Perspectives. Foods 2025, 14, 1950. [Google Scholar] [CrossRef]
- Stephen Brennan, C. Regenerative Food Innovation: The Role of Agro-Food Chain By-Products and Plant Origin Food to Obtain High-Value-Added Foods. Foods 2024, 13, 427. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, M.; García-Béjar, B.; Burgos-Ramos, E.; Silva, P. Valorization of Olive Oil and Wine Industry Byproducts: Challenges and Opportunities in Sustainable Food Applications. Foods 2025, 14, 2475. [Google Scholar] [CrossRef]
- Lopes, J.; Madureira, J.; Margaça, F.; Cabo Verde, S. Grape Pomace: A Review of Its Bioactive Phenolic Compounds, Health Benefits, and Applications. Molecules 2025, 30, 362. [Google Scholar] [CrossRef] [PubMed]
- Asensio-Regalado, C.; Alonso-Salces, R.; Gallo, B.; Berrueta, L.; Porcedda, C.; Pintus, F.; Vassallo, A.; Caddeo, C. A Liposomal Formulation to Exploit the Bioactive Potential of an Extract from Graciano Grape Pomace. Antioxidants 2022, 11, 1270. [Google Scholar] [CrossRef]
- Guardianelli, L.M.; Salinas, M.V.; Puppo, M.C.; Hidalgo, A.; Pasini, G. Nutritional and Antioxidant Valorization of Grape Pomace from Argentinian Vino De La Costa and Italian Cabernet Wines. Foods 2025, 14, 2386. [Google Scholar] [CrossRef]
- Draghici-Popa, A.-M.; Buliga, D.-I.; Popa, I.; Tomas, S.T.; Stan, R. Cosmetic Products with Potential Photoprotective Effects Based on Natural Compounds Extracted from Waste of the Winemaking Industry. Molecules 2024, 29, 2775. [Google Scholar] [CrossRef]
- Aili, Q.; Cui, D.; Li, Y.; Zhige, W.; Yongping, W.; Minfen, Y.; Dongbin, L.; Xiao, R.; Qiang, W. Composing functional food from agro-forest wastes: Selectively extracting bioactive compounds using supercritical fluid extraction. Food Chem. 2024, 455, 139848. [Google Scholar] [CrossRef]
- Fraguela-Meissimilly, H.; Bastías-Monte, J.; Vergara, C.; Ortiz-Viedma, J.; Lemus-Mondaca, R.; Flores, M.; Toledo-Merma, P.; Alcázar-Alay, S.; Gallón-Bedoya, M. New Trends in Supercritical Fluid Technology and Pressurized Liquids for the Extraction and Recovery of Bioactive Compounds from Agro-Industrial and Marine Food Waste. Molecules 2023, 28, 4421. [Google Scholar] [CrossRef] [PubMed]
- Soultana, T.; Ioulia, G.; Vasiliki, L.; Kostis, M. Recent Advances in Supercritical CO2 Extraction of Pigments, Lipids and Bioactive Compounds from Microalgae. Molecules 2023, 28, 1410. [Google Scholar] [CrossRef]
- López-Hortas, L.; Rodríguez, P.; Díaz-Reinoso, B.; Gaspar, M.; de Sousa, H.; Braga, M.; Domínguez, H. Supercritical fluid extraction as a suitable technology to recover bioactive compounds from flowers. J. Supercrit. Fluids 2022, 188, 105652. [Google Scholar] [CrossRef]
- Kamjam, M.; Ngamprasertsith, S.; Sawangkeaw, R.; Charoenchaitrakool, M.; Privat, R.; Jaubert, J.-N.; Molière, M. The Great Versatility of Supercritical Fluids in Industrial Processes: A Focus on Chemical, Agri-Food and Energy Applications. Processes 2024, 12, 2402. [Google Scholar] [CrossRef]
- Rodríguez-Blázquez, S.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E. Recent Insights into Eco-Friendly Extraction Techniques for Obtaining Bioactive Compounds from Fruit Seed Oils. Foods 2025, 14, 2271. [Google Scholar] [CrossRef]
- De Avila Souza, M.A.; Rudke, A.R.; Tavares Germano, A.; Vitali, L.; Salvador Ferreira, S.R. Sequential high-pressure extraction using green solvents to recover bioactive compounds from sesame cake. J. Supercrit. Fluids 2025, 215, 106421. [Google Scholar] [CrossRef]
- França de Melo, R.P.; Costa da Silva, N.; Chelala Moreira, R.; Florêncio Teixeira, R.H.; Rostagno, M.A.; Efraim, P.; Teixeira Godoy, H.; Joy Steel, C.; Lemos Bicas, J.; Martínez, J. Supercritical Fluid and Pressurized Liquid Extraction of Bioactive Compounds from Guarana (Paullinia cupana) Byproducts. Food Sci. Technol. 2025, 5, 3180–3190. [Google Scholar] [CrossRef]
- Abderrezag, N.; Sanchez Bragagnolo, F.; Louaer, O.; Meniai, A.-H.; Cifuentes, A.; Ibáñez, E.B.; Mendiola, J.A. Optimization of supercritical fluid extraction of bioactive compounds from Ammodaucus leucotrichus fruits by using multivariate response surface methodology. J. Supercrit. Fluids 2024, 207, 106211. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A.; Decorti, D. Extraction of proanthocyanidins from grape marc by supercritical fluid extraction using CO2 as solvent and ethanol–water mixture as co-solvent. J. Supercrit. Fluids 2014, 87, 59–64. [Google Scholar] [CrossRef]
- Pereira, D.T.V.; Tarone, A.G.; Cazarin, C.B.B.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from grape marc. J. Food Eng. 2019, 240, 105–113. [Google Scholar] [CrossRef]
- IUPAC; AOAC. AOAC Official Method 969.33 Fatty Acids in Oils and Fats: Preparation of Methyl Esters Boron Trifluoride Method; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- Castro-Vargas, H.I.; Baumann, W.; Salvador Ferreira, R.S.; Parada-Alfonso, F. Valorization of papaya (Carica papaya L.) agroindustrial waste through the recovery of phenolic antioxidants by supercritical fluid extraction. J. Food Sci. Technol. 2019, 56, 3055–3066. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food. Drug. Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Hanušovský, O.; Gálik, B.; Bíro, D.; Šimko, M.; Juráček, M.; Rolinec, M.; Zábranský, L.; Philipp, C.; Puntigam, R.; Slama, J.A.; et al. The Nutritional Potential of Grape by-Products from the Area of Slovakia and Austria. Emir.J. Food Agric. 2020, 32, 1–10. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Geçgel, Ü.; Gülcü, M.; Hamurcu, M.; Özcan, M. Bioactive Properties, Fatty Acid Composition and Mineral Contents of Grape Seed and Oils. S. Afr. J. Enol. Vitic. 2017, 38, 103–108. [Google Scholar] [CrossRef]
- Jokiḉ, S.; Bijuk, M.; Aladiḉ, K.; Biliḉ, M.; Molnar, M. Optimisation of supercritical CO2 extraction of grape seed oil using response surface methodology. IJFST 2016, 51, 403–410. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Otero-Pareja, M.; Casas, L.; Fernández-Ponce, M.; Mantell, C.; Ossa, E. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.; Genovese, M.I.; Fett, R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Rodrigues, E.; Gonzaga, L.V.; Caliari, V.; Genovese, M.I.; Gonalves, A.E.; Fett, R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011, 127, 174–179. [Google Scholar] [CrossRef]




| Run | Coded Variables a | Pressure (MPa) | Temperature (°C) | Extraction Yield (% w/w d.b.) | TPC b (mg GAE/g Extract) | |
|---|---|---|---|---|---|---|
| P | T | |||||
| 1 | −1 | −1 | 20 | 40 | 6.24 | 5.64 ± 0.26 c |
| 2 | +1 | −1 | 30 | 40 | 6.41 | 3.33 ± 0.08 e |
| 3 | −1 | +1 | 20 | 60 | 3.72 | 3.00 ± 0.14 f |
| 4 | +1 | +1 | 30 | 60 | 6.60 | 6.48 ± 0.07 b |
| 5 | 0 | −1.414 | 25 | 35.9 | 5.94 | 2.98 ± 0.15 |
| 6 | 0 | +1.414 | 25 | 64.1 | 6.22 | 2.82 ± 0.05 |
| 7 | −1.414 | 0 | 11.9 | 50 | 4.68 | 4.19 ± 0.02 d |
| 8 | +1.414 | 0 | 32.1 | 50 | 5.65 | 7.05 ± 0.46 a |
| 9 | 0 | 0 | 25 | 50 | 4.69 | 3.05 ± 0.25 ef |
| 10 | 0 | 0 | 25 | 50 | 4.72 | 3.05 ± 0.25 ef |
| 11 | 0 | 0 | 25 | 50 | 4.74 | 3.05 ± 0.25 ef |
| 12 | 0 | 0 | 25 | 50 | 4.72 | 3.05 ± 0.25 ef |
| Run | Independent Variables | Response Variables a | ||||||
|---|---|---|---|---|---|---|---|---|
| Ethanol | Temperature | Yield | TPC | TFC | TAC | TCTC | DPPH b | |
| %EtOH | (°C) | % w/w d.b. | mg GAE/g | mg QE/g | µg MAE/g | mg ECE/g | mmol TE/g | |
| 1 | 40 (−1) | 60 (−1) | 7.50 | 166.26 ± 1.90 f | 614.87 ± 3.27 f | 40.26 ± 0.18 i | 137.63 ± 3.33 d | 9.15 ± 0.62 e |
| 2 | 60 (+1) | 60 (−1) | 1.63 | 196.29 ± 3.04 c | 590.36 ± 10.35 g | 68.51 ± 0.56 h | 117.05 ± 5.51 f | 3.07 ± 0.14 h |
| 3 | 40 (−1) | 100 (+1) | 21.02 | 229.54 ± 1.90 a | 703.97 ± 1.64 c | 169.19 ± 0.35 e | 131.75 ± 1.66 e | 113.89 ± 0.87 b |
| 4 | 60 (+1) | 100 (+1) | 23.11 | 234.96 ± 2.04 a | 711.04 ± 3.31 b | 965.20 ± 0.64 b | 246.97 ± 7.73 a | 130.78 ± 1.93 a |
| 5 | 50 (0) | 57.1 (−1.414) | 4.50 | 181.88 ± 1.33 e | 651.76 ± 5.70 e | 190.64 ± 0.58 d | 190.06 ± 9.27 b | 6.19 ± 0.26 g |
| 6 | 50 (0) | 108.3 (+1.414) | 25.14 | 228.85 ± 4.79 a | 756.94 ± 14.81 a | 1504.89 ± 2.43 a | 249.56 ± 1.67 a | 130.40 ± 1.56 a |
| 7 | 35.9 (−1.414) | 80 (0) | 9.50 | 190.21 ± 0.96 d | 648.54 ± 16.51 e | 86.60 ± 0.31 f | 45.09 ± 5.04 g | 15.89 ± 0.40 d |
| 8 | 64.1 (+1.414) | 80 (0) | 8.03 | 203.97 ± 6.82 b | 680.30 ± 5.03 d | 351.75 ± 6.01 c | 161.37 ± 7.54 c | 18.66 ± 0.34 c |
| 9 | 50 (0) | 80 (0) | 6.18 | 165.87 ± 7.66 f | 618.46 ± 9.50 f | 74.67 ± 3.22 g | 111.81 ± 17.57 f | 7.23 ± 0.51 f |
| 10 | 50 (0) | 80 (0) | 6.66 | |||||
| 11 | 50 (0) | 80 (0) | 5.15 | |||||
| 12 | 50 (0) | 80 (0) | 6.20 | |||||
| Fatty Acids (%) a | |
|---|---|
| Linoleic acid | 65.5 |
| Oleic acid | 25.3 |
| Palmitic acid | 7 |
| Stearic | 1.2 |
| Others (linolenic, araquidonic) | >1 |
| Tocopherols (mg kg−1) b | |
| α-Tocopherol | 107.2 ± 0.14 |
| β-Tocopherol | 0.95 ± 0.01 |
| γ-Tocopherol | 14.2 ± 0.26 |
| δ-Tocopherol | 0.65 ± 0.01 |
| Co-Solvent Level (% w/w) | Extraction Yield (% w/w d.b.) | TPC (mg GAE/g Extract) | TFC (mg QE/g Extract) | DPPH scavenging (mmol TE/g Extract) |
|---|---|---|---|---|
| 5 | 4.03 ± 0.15 c | 70.11 ± 3.31 c | 47.36 ± 1.04 c | 0.08 ± 0.01 c |
| 10 | 5.75 ± 0.08 b | 82.78 ± 5.21 b | 62.80 ± 1.73 b | 0.12 ±0.02 b |
| 15 | 7.03 ± 0.27 a | 105.35 ± 5.25 a | 82.12 ± 3.78 a | 0.18 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sánchez, J.S.; Parada-Alfonso, F.; Castro-Vargas, H.I. Valorization of Isabella Grape (Vitis labrusca L.) Pomace Through the Recovery of Nutraceuticals by Sequential Green Extraction Technologies. Foods 2026, 15, 54. https://doi.org/10.3390/foods15010054
Sánchez JS, Parada-Alfonso F, Castro-Vargas HI. Valorization of Isabella Grape (Vitis labrusca L.) Pomace Through the Recovery of Nutraceuticals by Sequential Green Extraction Technologies. Foods. 2026; 15(1):54. https://doi.org/10.3390/foods15010054
Chicago/Turabian StyleSánchez, Jhonattan Sánchez, Fabián Parada-Alfonso, and Henry I. Castro-Vargas. 2026. "Valorization of Isabella Grape (Vitis labrusca L.) Pomace Through the Recovery of Nutraceuticals by Sequential Green Extraction Technologies" Foods 15, no. 1: 54. https://doi.org/10.3390/foods15010054
APA StyleSánchez, J. S., Parada-Alfonso, F., & Castro-Vargas, H. I. (2026). Valorization of Isabella Grape (Vitis labrusca L.) Pomace Through the Recovery of Nutraceuticals by Sequential Green Extraction Technologies. Foods, 15(1), 54. https://doi.org/10.3390/foods15010054

