Maize Tortillas Fortified with Ayocote and Quintonil Flours: Nutritional and Functional Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemicals
2.3. Tortilla Production
2.4. Chemical Composition Analysis
2.5. Capacity of Rollability
2.6. Textural Analysis of Masa
2.7. Textural Analysis of Tortilla
2.8. Color Measurement
2.9. Obtention of the Extracts
2.10. Determination of the Total Phenolic Content (TPC)
2.11. Antioxidant Capacity Assays
2.12. In Vitro Gastrointestinal Digestion and Phenolic Bioaccessibility Index
2.13. Shelf-Life
2.14. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Tortilla Color
3.3. Textural Properties of Masa and Tortilla
3.4. Total Phenolic Content and Antioxidant Activity Through Simulated Gastrointestinal Digestion
3.5. Evaluation of Shelf-Life of the Fortified Tortillas
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Bamji, M.S.; Murty, P.V.V.S.; Sudhir, P.D. Nutritionally sensitive agriculture—An approach to reducing hidden hunger. Eur. J. Clin. Nutr. 2021, 75, 1001–1009. [Google Scholar] [CrossRef]
- Siddiqui, F.; Salam, R.A.; Lassi, Z.S.; Das, J.K. The Intertwined Relationship Between Malnutrition and Poverty. Front. Public Health 2020, 8, 453. [Google Scholar] [CrossRef] [PubMed]
- Kobylińska, M.; Antosik, K.; Decyk, A.; Kurowska, K. Malnutrition in Obesity: Is It Possible? Obes. Facts 2022, 15, 19–25. [Google Scholar] [CrossRef]
- Aslam, H.; Raheem, M.; Ramzan, R.; Shakeel, A.; Shoaib, M.; Sakandar, H. Utilization of mango waste material (peel, kernel) to enhance dietary fiber content and antioxidant properties of biscuit. J. Glob. Innov. Agric. Soc. Sci. 2014, 2, 76–81. [Google Scholar] [CrossRef]
- Chacha, J.S.; Laswai, H.S. Micronutrients Potential of Underutilized Vegetables and Their Role in Fighting Hidden Hunger. Int. J. Food Sci. 2020, 2020, 9408315. [Google Scholar] [CrossRef]
- Donno, D.; Turrini, F. Plant Foods and Underutilized Fruits as Source of Functional Food Ingredients: Chemical Composition, Quality Traits, and Biological Properties. Foods 2020, 9, 1474. [Google Scholar] [CrossRef]
- Hosakatte, N.; Paek, K.Y. Health Benefits of Underutilized Vegetables and Legumes. In Bioactive Compounds in Underutilized Vegetables and Legumes; Springer: Cham, Switaerland, 2020; pp. 1–36. [Google Scholar]
- Alvarado-López, A.N.; Manuel, G.-O.L.; Basilio, H.J.; Ramiro, B.-J.; Sergio, G.-G.H.; Lopez-Martinez, L.X. Nutritional and bioactive characteristics of Ayocote bean (Phaseolus coccienus L.): An underutilized legume harvested in Mexico. CyTA—J. Food 2019, 17, 199–206. [Google Scholar] [CrossRef]
- Lopez-Martinez, L.; Dublán-García, O.; Baeza-Jiménez, R.; Garcia, V.; López-García, G. Extraction and characterization of the fatty acid profile of quintonil (Amaranthus hybridus). Rev. Mex. Ing. Quím. 2017, 16, 835–844. [Google Scholar]
- Lopez-Martinez, L. Bioactive Compounds of Runner Bean (Phaseolus coccineus L.). In Bioactive Compounds in Underutilized Vegetables and Legumes; Springer: Cham, Switzerland, 2020; pp. 565–581. [Google Scholar]
- Santiago-Saenz, Y.O.; López-Palestina, C.U.; Gutiérrez-Tlahque, J.; Monroy-Torres, R.; Pinedo-Espinoza, J.M.; Hernández-Fuentes, A.D. Nutritional and functional evaluation of three powder mixtures based on mexican quelites: Alternative ingredients to formulate food supplements. Food Sci. Technol. 2020, 40, 1029–1037. [Google Scholar] [CrossRef]
- Chuck Hernández, C.E.; Serna-Saldivar, S.O. Chapter 25—Soybean-Fortified Nixtamalized Corn Tortillas and Related Products. In Flour and Breads and Their Fortification in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: San Diego, CA, USA, 2019; pp. 319–332. [Google Scholar]
- Hernandez-Chavez, J.F.; Guemes-Vera, N.; Olguin-Pacheco, M.; Osorio-Diaz, P.; Bello-Perez, L.A.; Totosaus-Sanchez, A. Effect of lupin flour incorporation of mechanical properties of corn flour tortillas. Food Sci. Technol. 2019, 39, 704–710. [Google Scholar] [CrossRef]
- Pedrali, D.; Proserpio, C.; Borgonovi, S.M.; Zuccolo, M.; Leoni, V.; Borgonovo, G.; Bernardi, A.M.; Scarafoni, A.; Pagliarini, E.; Giorgi, A.; et al. Nutritional Characterization and Novel Use of “Copafam” Bean (Phaseolus coccineus L.) for the Sustainable Development of Mountains Areas. Sustainability 2022, 14, 13409. [Google Scholar] [CrossRef]
- Mariscal-Moreno, R.M.; Chuck-Hernández, C.; Figueroa-Cárdenas, J.d.D.; Serna-Saldivar, S.O. Physicochemical and Nutritional Evaluation of Bread Incorporated with Ayocote Bean (Phaseolus coccineus) and Black Bean (Phaseolus vulgaris). Processes 2021, 9, 1782. [Google Scholar] [CrossRef]
- Aremu, M. Biochemical Evaluation of Fermented White Maize (Zea mays L.) Blended with Scarlet Runner Bean (Phaseolus coccineus L.) Flour. Open Nutraceuticals J. 2011, 4, 163–171. [Google Scholar] [CrossRef]
- Sánchez-Villa, C.E.; Zepeda-Bautista, R.; Ramírez-Ortiz, M.E.; Corzo-Ríos, L.J. Nixtamalized tortillas supplemented with proteins isolated from Phaseolus coccineus and huauzontle (Chenopodium berlandieri subsp. Nuttalliae) flour: Rheological, textural, and sensorial properties. Int. J. Gastron. Food Sci. 2020, 22, 100274. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International, 21st ed.; AOAC: Washington, DC, USA, 2019. [Google Scholar]
- Arámbula-Villa, G.; Albores, A.; González-Hernández, J.; Gutiérrez-Árias, E. Evaluación de una metodología para determinar características de textura de tortilla de maíz (Zea mays L.). Arch. Latinoam. Nutr. 2004, 54, 216–222. [Google Scholar]
- Topete-Betancourt, A.; Santiago-Ramos, D.; Figueroa-Cárdenas, J.d.D. Relaxation tests and textural properties of nixtamalized corn masa and their relationships with tortilla texture. Food Biosci. 2020, 33, 100500. [Google Scholar] [CrossRef]
- Elhadef, K.; Akermi, S.; Ben Hlima, H.; Ennouri, K.; Fourati, M.; Ben Braïek, O.; Mellouli, L.; Smaoui, S. Tunisian Pistachio Hull Extracts: Phytochemical Content, Antioxidant Activity, and Foodborne Pathogen Inhibition. J. Food Qual. 2021, 2021, 9953545. [Google Scholar] [CrossRef]
- Páramo-Calderón, D.E.; Aparicio-Saguilán, A.; Aguirre-Cruz, A.; Carrillo-Ahumada, J.; Hernández-Uribe, J.P.; Acevedo-Tello, S.; Torruco-Uco, J.G. Tortilla added with Moringa oleífera flour: Physicochemical, texture properties and antioxidant capacity. LWT 2019, 100, 409–415. [Google Scholar] [CrossRef]
- López-Martínez, L.X.; Aguirre-Delgado, A.; Saenz-Hidalgo, H.K.; Buenrostro-Figueroa, J.J.; García, H.S.; Baeza-Jiménez, R. Bioactive ingredients of huitlacoche (Ustilago maydis), a potential food raw material. Food Chem. 2022, 4, 100076. [Google Scholar] [CrossRef]
- Andrade, R.M.S.d.; Silva, S.; Costa, C.M.d.S.F.; Veiga, M.; Costa, E.; Ferreira, M.S.L.; Gonçalves, E.C.B.d.A.; Pintado, M.E. Potential prebiotic effect of fruit and vegetable byproducts flour using in vitro gastrointestinal digestion. Food Res. Int. 2020, 137, 109354. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L.; Cano-Lamadrid, M.; Carbonell-Barrachina, Á.A.; Hernández, F.; Sendra, E. Impact of Gastrointestinal In Vitro Digestion and Deficit Irrigation on Antioxidant Activity and Phenolic Content Bioaccessibility of “Manzanilla” Table Olives. J. Food Qual. 2020, 2020, 6348194. [Google Scholar] [CrossRef]
- Official Mexican Standard NOM-187-SSA1/SCFI-2002; Productos y Servicios. Masa, Tortillas, Tostadas y Harinas Preparadas Para Su Elaboración y Establecimientos Donde se Procesan. Especificaciones Sanitarias. Información Comercial. Métodos de Prueba. CCNN: Atlanta, GA, USA, 2004.
- Official Mexican Standard NOM-111-SSA1-1994; Bienes y Servicios. Método para la Cuenta ee Mohos y Levaduras en Alimentos. CCNN: Atlanta, GA, USA, 1995.
- Treviño-Mejía, D.; Luna, D.A.; Marcela, G.; Mendoza, S. Fortification of Commercial Nixtamalized Maize (Zea mays L.) with Common Bean (Phaseolus vulgaris L.) Increased the Nutritional and Nutraceutical Content of Tortillas without Modifying Sensory Properties. J. Food Qual. 2016, 39, 569–579. [Google Scholar] [CrossRef]
- Salazar, D.; Rodas, M.; Arancibia, M. Production of tortillas from nixtamalized corn flour enriched with Andean crops flours: Faba-bean (Vicia faba) and white-bean (Phaseolus vulgaris). Emir. J. Food Agric. 2020, 32, 731–738. [Google Scholar] [CrossRef]
- Soriano, I.; María, O.; González, B.; Palacios Rojas, N.; Cruz, E.; Mir, E.; Hortelano, R.; Santa Rosa, R. Evaluación de la calidad de tortilla de maíz adicionada con harina de avena (Avena sativa L.) nixtamalizada* Quality assessment corn tortilla added with oatmeal (Avena sativa L.) nixtamalized. Rev. Mex. Cienc. Agríc. 2016, 7, 1715–1725. [Google Scholar]
- Argüello-García, E.; Jorge, M.-H.; Leobigildo, C.-T.; Odilón, S.-S.; Corona-Torres, T. Textural, chemical and sensorial properties of maize tortillas fortified with nontoxic Jatropha curcas L. flour. CyTA—J. Food 2017, 15, 301–306. [Google Scholar] [CrossRef]
- Amador-Rodríguez, K.Y.; Pérez-Cabrera, L.E.; Guevara-Lara, F.; Chávez-Vela, N.A.; Posadas-Del Río, F.A.; Silos-Espino, H.; Martínez-Bustos, F. Physicochemical, thermal, and rheological properties of nixtamalized blue-corn flours and masas added with huitlacoche (Ustilago maydis) paste. Food Chem. 2019, 278, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, Z.; Mo, B. Texture Profile Analysis of Sliced Cheese in relation to Chemical Composition and Storage Temperature. J. Chem. 2016, 2016, 8690380. [Google Scholar] [CrossRef]
- Wang, K.; Ge, Y.; Jia, Y.; Hou, J.; Lu, F.; Liu, Y. Effect of exogenous protein crosslinking on the physicochemical properties and in vitro digestibility of corn starch. Carbohydr. Polym. 2025, 357, 123428. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Ramos, D.; Figueroa-Cárdenas, J.d.D.; Mariscal-Moreno, R.M.; Escalante-Aburto, A.; Ponce-García, N.; Véles-Medina, J.J. Physical and chemical changes undergone by pericarp and endosperm during corn nixtamalization-A review. J. Cereal Sci. 2018, 81, 108–117. [Google Scholar] [CrossRef]
- Ruiz-Gutiérrez, M.G.; Quintero-Ramos, A.; Meléndez-Pizarro, C.O.; Talamás-Abbud, R.; Barnard, J.; Márquez-Meléndez, R.; Lardizábal-Gutiérrez, D. Nixtamalization in two steps with different calcium salts and the relationship with chemical, texture and thermal properties in masa and tortilla. J. Food Process Eng. 2012, 35, 772–783. [Google Scholar] [CrossRef]
- Sánchez-Madrigal, M.; Neder Suárez, D.; Quintero-Ramos, A.; Ruiz-Gutiérrez, M.; Meléndez-Pizarro, C.; Castillo, H.; Galicia, T.; Ramirez-Wong, B. Physicochemical properties of frozen tortillas from nixtamalized maize flours enriched with β-glucans. Food Sci. Technol. 2015, 35, 552–560. [Google Scholar] [CrossRef]
- Acosta-Estrada, B.A.; Serna-Saldívar, S.O.; Chuck-Hernández, C. Quality assessment of maize tortillas produced from landraces and high yield hybrids and varieties. Front. Nutr. 2023, 10, 1105619. [Google Scholar] [CrossRef]
- Alpos, M.; Leong, S.Y.; Oey, I. Combined Effects of Calcium Addition and Thermal Processing on the Texture and In Vitro Digestibility of Starch and Protein of Black Beans (Phaseolus vulgaris). Foods 2021, 10, 1368. [Google Scholar] [CrossRef]
- Guzmán, A.; Jaramillo-Flores, M.; Solorza-Feria, J.; Mendez-Montealvo, G.; Wang, Y.-J. Rheological and thermal properties of masa as related to changes in corn protein during nixtamalization. J. Cereal Sci. 2011, 53, 139–147. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Dwivedi, S.; Dixit-Bajpai, P.; Kumar, M. Effect of natural fortification with calcium and protein rich ingredients on texture, nutritional quality and sensory acceptance of cookies. Nutr. Food Sci. 2018, 48, 807–818. [Google Scholar] [CrossRef]
- Grijalva, O.; Banda, A.; Gil, A.; Arías, E.; Orona, E.; Enríquez, E.; Arámbula-Villa, G.; Herrera, S. Calidad nixtamalera y tortillera en maíces criollos de México. Rev. Fitotec. Mex. 2008, 31, 23–27. [Google Scholar] [CrossRef]
- Gámez-Valdez, L.C.; Gutiérrez-Dorado, R.; Gómez-Aldapa, C.A.; Perales-Sánchez, J.X.K.; Milán-Carrillo, J.; Cuevas-Rodríguez, E.O.; Mora-Rochín, S.; Reyes-Moreno, C. Effect of the extruded amaranth flour addition on the nutritional, nutraceutical and sensory quality of tortillas produced from extruded creole blue maize flour. Biotecnia 2021, 23, 103–112. [Google Scholar]
- Alvarez-Poblano, L.; Roman-Guerrero, A.; Vernon-Carter, E.; Alvarez-Ramirez, J. Exogenous addition of muicle (Justicia spicigera Schechtendal) extract to white maize tortillas affects the antioxidant activity, texture, color, and in vitro starch digestibility. LWT 2020, 133, 110120. [Google Scholar] [CrossRef]
- Hamidpour, M.; Hosseini, N.; Mozafari, V.; Heshmati, M. Removal of Cd(II) and Pb(II) from aqueous solutions by pistachio hull waste. Rev. Int. Contam. Ambient. 2018, 34, 307–316. [Google Scholar] [CrossRef]
- Fereidoon, S.; Han, P. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef]
- Chen, G.-L.; Chen, S.-G.; Chen, F.; Xie, Y.-Q.; Han, M.-D.; Luo, C.-X.; Zhao, Y.-Y.; Gao, Y.-Q. Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. J. Funct. Foods 2016, 20, 317–331. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Angulo-Escalante, M.A.; León-Félix, J.; Heredia, J.B. Effect of In Vitro Digestion on the Total Antioxidant Capacity and Phenolic Content of 3 Species of Oregano (Hedeoma patens, Lippia graveolens, Lippia palmeri). J. Food Sci. 2017, 82, 2832–2839. [Google Scholar] [CrossRef]
- Menchaca-Armenta, M.; José Frutos, M.; Ramírez-Wong, B.; Valero-Cases, E.; Muelas-Domingo, R.; Quintero-Ramos, A.; Isabel Torres-Chávez, P.; Carbonell-Barrachina, Á.A.; Irene Ledesma-Osuna, A.; Nydia Campas-Baypoli, O. Changes in phytochemical content, bioaccesibility and antioxidant capacity of corn tortillas during simulated in vitro gastrointestinal digestion. Food Chem. 2023, 405, 134223. [Google Scholar] [CrossRef]
- Pérez-Alva, A.; Baigts-Allende, D.K.; Ramírez-Rodrigues, M.A.; Ramírez-Rodrigues, M.M. Effect of brown seaweed (Macrocystis pyrifera) addition on nutritional and quality characteristics of yellow, blue, and red maize Tortillas. Foods 2022, 11, 2627. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct. 2017, 8, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Strelec, I.; Matić, P. The Influence of Dietary Fiber (β-Glucan) on the Beneficial Effects of Phenolic Compounds from Chokeberry After Simulated Digestion In Vitro. Molecules 2025, 30, 3356. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2531–2548. [Google Scholar] [CrossRef]
- Han, F.; Yang, P.; Wang, H.; Fernandes, I.; Mateus, N.; Liu, Y. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends Food Sci. Technol. 2019, 83, 211–224. [Google Scholar] [CrossRef]
- Lyu, X.; Agar, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Compounds Profiling and Their Antioxidant Capacity in the Peel, Pulp, and Seed of Australian Grown Avocado. Antioxidants 2023, 12, 185. [Google Scholar] [CrossRef]
- Mercado-Mercado, G.; de la Rosa, L.A.; Alvarez-Parrilla, E. Effect of pectin on the interactions among phenolic compounds determined by antioxidant capacity. J. Mol. Struct. 2020, 1199, 126967. [Google Scholar] [CrossRef]
- Gaxiola-Cuevas, N.; Mora-Rochín, S.; Cuevas-Rodriguez, E.O.; León-López, L.; Reyes-Moreno, C.; Montoya-Rodríguez, A.; Milán-Carrillo, J. Phenolic Acids Profiles and Cellular Antioxidant Activity in Tortillas Produced from Mexican Maize Landrace Processed by Nixtamalization and Lime Extrusion Cooking. Plant Foods Hum. Nutr. 2017, 72, 314–320. [Google Scholar] [CrossRef]
- Baeza-Jiménez, R.; López-Martínez, L.X. Changes in Phenolic Composition and Bioactivities of Ayocote Beans under Boiling (Phaseolus coccineus L.). Molecules 2024, 29, 3744. [Google Scholar] [CrossRef]
- Santiago-Saenz, Y.O.; Hernández-Fuentes, A.D.; Monroy-Torres, R.; Cariño-Cortés, R.; Jiménez-Alvarado, R. Physicochemical, nutritional and antioxidant characterization of three vegetables (Amaranthus hybridus L., Chenopodium berlandieri L., Portulaca oleracea L.) as potential sources of phytochemicals and bioactive compounds. J. Food Meas. Charact. 2018, 12, 2855–2864. [Google Scholar] [CrossRef]
- Villanazul-Verdugo, M.C.; Gomez-Aldapa, C.; Gutiérrez Dorado, R.; Reyna-Fuentes, G.; Perales Sanchez, X.; Félix-Sámano, A.L.; Reyes-Moreno, C. Tortillas Funcionales Elaboradas a Base de Maíz azul, Mezquite y Cálices de Jamaica: Tortillas Funcionales Extrudidas. Revista Bio Ciencias. 2025. Available online: https://revistabiociencias.uan.edu.mx/index.php/BIOCIENCIAS/article/view/1722/1795 (accessed on 20 May 2025).
- McDonough, C.M.; Alviola, J.N.; Waniska, R.D. Chapter 9—Preservatives: Extending Shelf Life and Shelf Stability. In Tortillas; Rooney, L.W., Serna-Saldivar, S.O., Eds.; AACC International Press: Saint Paul, MN, USA, 2015; pp. 195–200. [Google Scholar]
- Krebs de Souza, C.; Schmitz, F.; Bertoli, S.; Carvalho, L. Effect of refrigerated storage conditions on leafy vegetables. MOJ Food Process. Technol. 2019, 7, 75–77. [Google Scholar] [CrossRef]
- Salinas-Moreno, Y.; Castillo Linares, E.; Carrillo, G.; Buendía-González, M. Mezclas de maíz normal con maíz ceroso y su efecto en la calidad de la tortilla. Rev. Mex. De Cienc. Agrícolas 2011, 2, 689–702. [Google Scholar]
- Campas-Baypoli, O.N.; Rosas-Burgos, E.C.; Torres-Chávez, P.I.; Ramírez-Wong, B.; Serna-Saldívar, S.O. Physicochemical Changes of Starch in Maize Tortillas During Storage at Room and Refrigeration Temperatures. Starch—Stärke 2002, 54, 358–363. [Google Scholar] [CrossRef]
- Heredia, N.; Santiaguin-Padilla, A.; Granados-Nevárez, M.; Scheuren, S.; Islas-Rubio, A.; Mazorra-Manzano, M.; García-Sánchez, G.; Ramírez-Suárez, J. Supplementation of corn tortilla with freeze-dried jumbo squid muscle flour: Physicochemical properties and microbiological stability during storage. Biotecnia 2021, 23, 134–140. [Google Scholar]
| Formulation * | Quintonil/Ayocote Ratio | Treatment | Nixtamalized Maize Flour (g) | Quintonil Flour (g) | Ayocote Flour (g) |
|---|---|---|---|---|---|
| 0% | - | Control | 16 | - | - |
| 3% | 1:1 | T1F1 | 15.52 | 0.24 | 0.24 |
| 2:1 | T1F2 | 15.52 | 0.32 | 0.16 | |
| 1:2 | T1F3 | 15.52 | 0.16 | 0.32 | |
| 6% | 1:1 | T2F1 | 15 | 0.5 | 0.5 |
| 2:1 | T2F2 | 15 | 0.67 | 0.33 | |
| 1:2 | T2F3 | 15 | 0.33 | 0.67 | |
| 9% | 1:1 | T3F1 | 14.6 | 0.7 | 0.7 |
| 2:1 | T3F2 | 14.6 | 0.94 | 0.46 | |
| 1:2 | T3F3 | 14.6 | 0.46 | 0.94 |
| Treatments | Moisture ** | Protein * | Lipids * | Ash * | CHO’s * | Crude Fiber * | Caloric Intake ** |
|---|---|---|---|---|---|---|---|
| Control | 54.28 ± 0.69 bc | 8.03 ± 0.03 d | 1.46 ± 0.20 a | 1.25 ± 0.00 e | 89.26 ± 0.12 a | 4.81 ± 0.18 e | 177.49 ± 3.48 abcd |
| T1F1 | 50.47 ± 1.45 cd | 8.16 ± 0.04 d | 1.47 ± 0.16 a | 1.50 ± 0.00 de | 88.87 ± 0.14 ab | 6.35 ± 0.15 de | 190.00 ± 7.14 ab |
| T1F2 | 51.29 ± 0.74 bcd | 8.13 ± 0.20 d | 1.40 ± 0.22 ab | 1.52 ± 0.18 de | 88.95 ± 0.43 ab | 6.92 ± 1.04 bd | 185.54 ± 2.00 abcd |
| T1F3 | 49.50 ± 1.35 d | 8.17 ± 0.17 d | 1.33 ± 0.24 ab | 1.53 ± 0.01 de | 88.97 ± 0.32 ab | 6.27 ± 0.56 de | 193.70 ± 6.90 a |
| T2F1 | 55.48 ± 1.29 b | 8.65 ± 0.08 cd | 1.35 ± 0.24 ab | 1.69 ± 0.25 bc | 88.31 ± 0.07 cd | 8.12 ± 0.70 bc | 166.50 ± 6.83 d |
| T2F2 | 54.30 ± 1.21 bc | 8.22 ± 0.46 d | 1.30 ± 0.20 ab | 2.22 ± 0.01 ab | 88.26 ± 0.26 cde | 8.13 ± 0.29 bc | 171.09 ± 5.26 bcd |
| T2F3 | 50.72 ± 1.45 cd | 9.08 ± 0.30 d | 1.25 ± 0.11 ab | 1.78 ± 0.03 cd | 87.89 ± 0.27 bc | 6.77 ± 0.59 cd | 187.75 ± 6.65 abc |
| T3F1 | 54.41 ± 1.50 bc | 9.39 ± 0.33 bc | 1.24 ± 0.06 ab | 2.24 ± 0.06 ab | 87.13 ± 0.32 ef | 8.45 ± 0.06 b | 169.95 ± 7.36 cd |
| T3F2 | 61.42 ± 1.08 a | 8.65 ± 0.07 cd | 1.53 ± 0.08 a | 2.45 ± 0.19 a | 87.37 ± 0.03 def | 13.15 ± 1.56 a | 134.07 ± 6.53 e |
| T3F3 | 49.67 ± 0.94 d | 10.39 ± 0.67 a | 1.06 ± 0.04 b | 1.81 ± 0.13 cd | 86.74 ± 0.43 f | 8.33 ± 0.97 b | 193.69 ± 10.9 a |
| Treatment | L* | a* | b* | C* | h* |
|---|---|---|---|---|---|
| Control | 79.02 ± 0.98 a | −0.42 ± 0.11 a | 18.70 ± 0.40 b | 18.70 ± 0.40 a | 91.30 ± 0.34 c |
| T1F1 | 70.59 ± 2.50 b | −1.12 ± 0.04 b | 19.01 ± 0.11 b | 19.05 ± 0.11 a | 93.37 ± 0.12 b |
| T2F1 | 62.19 ± 1.25 c | −1.49 ± 0.24 c | 19.95 ± 0.08 a | 20.01 ± 0.66 b | 94.31 ± 0.66 b |
| T3F2 | 54.80 ± 1.92 c | −2.20 ± 0.22 c | 20.02 ± 0.34 a | 20.14 ± 0.33 b | 96.29 ± 0.66 a |
| T3F3 | 62.65 ± 1.60 d | −1.39 ± 0.20 d | 18.54 ± 0.20 b | 18.59 ± 0.18 a | 94.31 ± 0.66 b |
| Treatment | Hardness (N) | Adhesiveness (N·s) | Cohesiveness (N) | Elasticity (mm) |
|---|---|---|---|---|
| Control | 8.45 ± 0.35 a | −0.22 ± 0.09 bc | 0.11 ± 0.00 b | 0.21 ± 0.01 b |
| T1F1 | 7.06 ± 0.28 b | −0.15 ± 0.06 c | 0.13 ± 0.01 b | 0.23 ± 0.03 b |
| T2F1 | 5.87 ± 0.12 c | −0.19 ± 0.00 c | 0.12 ± 0.01 b | 0.25 ± 0.04 b |
| T3F2 | 5.23 ± 0.00 d | −1.70 ± 0.17 a | 0.13 ± 0.01 b | 0.49 ± 0.13 a |
| T3F3 | 5.67 ± 0.15 cd | −0.46 ± 0.05 b | 0.18 ± 0.01 a | 0.26 ± 0.02 b |
| Treatment | Tensile Strength (N) | Extensibility (%) | Rollability |
|---|---|---|---|
| Control | 1.25 ± 0.04 b | 7.58 ± 0.11 b | 1 |
| T1F1 | 1.00 ± 0.08 c | 10.43 ± 0.89 a | 1 |
| T2F1 | 0.92 ± 0.03 c | 9.79 ± 0.20 a | 1 |
| T3F2 | 1.03 ± 0.05 c | 10.86 ± 0.57 a | 1 |
| T3F3 | 2.13 ± 0.14 a | 10.19 ± 0.42 a | 1 |
| Digestion Phase | Treatment | TPC (mg GAE/mg ds) | DPPH (mg TE/mL) | ABTS (mg TE/mL) |
|---|---|---|---|---|
| Undigested | Control | 1.73 ± 0.45 a | 9.64 ± 0.31 a | 5.23 ± 0.31 a |
| T1F1 | 0.31 ± 0.05 ghij | 1.75 ± 0.05 gh | 0.87 ± 0.01 ij | |
| T2F1 | 0.52 ± 0.07 efgh | 2.94 ± 0.11 ef | 1.96 ± 0.39 ef | |
| T3F2 | 0.76 ± 0.08 de | 5.71 ± 0.21 c | 2.73 ± 0.19 d | |
| T3F3 | 0.96 ± 0.11 cd | 6.91 ± 0.21 b | 3.23 ± 0.15 c | |
| Oral | T1F1 | 0.02 ± 0.00 k | 0.57 ± 0.01 i | 0.43 ± 0.02 j |
| T2F1 | 0.14 ± 0.00 ij | 1.25 ± 0.01 hi | 0.74 ± 0.02 ij | |
| T3F2 | 0.34 ± 0.00 ghij | 3.09 ± 0.02 ef | 1.37 ± 0.23 gj | |
| T3F3 | 0.38 ± 0.00 fghi | 3.53 ± 0.02 de | 1.63 ± 0.07 fg | |
| Gastric | T1F1 | 0.38 ± 0.01 fghi | 1.25 ± 0.03 hi | 1.01 ± 0.09 hi |
| T2F1 | 0.55 ± 0.00 efgh | 2.56 ± 0.04 fg | 1.42 ± 0.01 gh | |
| T3F2 | 1.30 ± 0.03 bc | 6.64 ± 0.02 b | 3.61 ± 0.16 c | |
| T3F3 | 1.43 ± 0.01 ab | 6.21 ± 0.05 bc | 4.08 ± 0.04 b | |
| Intestinal | T1F1 | 0.21 ± 0.01 hij | 0.92 ± 0.04 i | 0.81 ± 0.02 ij |
| T2F1 | 0.22 ± 0.00 hij | 1.95 ± 0.05 gh | 1.04 ± 0.05 hi | |
| T3F2 | 0.66 ± 0.00 defg | 4.04 ± 0.06 d | 1.74 ± 0.16 efg | |
| T3F3 | 0.73 ± 0.00 def | 4.09 ± 0.05 d | 2.17 ± 0.06 e |
| Treatment | BI |
|---|---|
| T1F1 | 67.74 ± 7.84 dB |
| T2F1 | 42.31 ± 11.44 cB |
| T3F2 | 86.84 ± 9.13 bB |
| T3F3 | 76.04 ± 26.29 aB |
| Treatment | T0 | D3A | D7A | D3R | D7R |
|---|---|---|---|---|---|
| Moisture (%) | |||||
| Control | 54.28 ± 0.85 a | 54.55 ± 0.70 a | 54.22 ± 0.71 a | 54.82 ± 0.67 a | 54.56 ± 0.97 a |
| T1F1 | 50.47 ± 1.78 a | 50.47 ± 0.63 a | 53.81 ± 1.09 a | 49.47 ± 0.62 a | 49.00 ± 0.77 a |
| T2F1 | 55.48 ± 1.58 a | 55.16 ± 0.77 a | 55.31 ± 0.52 a | 49.08 ± 0.94 b | 48.78 ± 0.89 b |
| T3F2 | 61.42 ± 1.32 a | 61.14 ± 1.06 a | 61.03 ± 1.00 a | 53.39 ± 1.46 b | 52.41 ± 1.00 b |
| T3F3 | 49.67 ± 1.15 b | 50.03 ± 1.03 b | 49.90 ± 1.03 a | 53.22 ± 1.02 a | 52.92 ± 0.51 a |
| Rollability | |||||
| Control | 1 | 3 | 3 | 4 | 5 |
| T1F1 | 1 | 3 | 3 | 4 | 5 |
| T2F1 | 1 | 3 | 3 | 4 | 5 |
| T3F2 | 1 | 3 | 3 | 4 | 5 |
| T3F3 | 1 | 3 | 3 | 4 | 5 |
| Yeasts and Molds (UFC/g) | |||||
| Control | 0 | 0 | 0 | 0 | 0 |
| T1F1 | 0 | 21,000 | I | 0 | 0 |
| T2F1 | 0 | 0 | I | 0 | 0 |
| T3F2 | 0 | 18,000 | I | 0 | 0 |
| T3F3 | 0 | 11,330 | I | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rojo-Gutiérrez, E.; López-Martínez, L.X.; Sáenz-Hidalgo, H.K.; Tirado-Gallegos, J.M.; García-Galindo, H.S.; Baeza-Jiménez, R. Maize Tortillas Fortified with Ayocote and Quintonil Flours: Nutritional and Functional Properties. Foods 2026, 15, 21. https://doi.org/10.3390/foods15010021
Rojo-Gutiérrez E, López-Martínez LX, Sáenz-Hidalgo HK, Tirado-Gallegos JM, García-Galindo HS, Baeza-Jiménez R. Maize Tortillas Fortified with Ayocote and Quintonil Flours: Nutritional and Functional Properties. Foods. 2026; 15(1):21. https://doi.org/10.3390/foods15010021
Chicago/Turabian StyleRojo-Gutiérrez, Edwin, Leticia Xochitl López-Martínez, Hilda Karina Sáenz-Hidalgo, Juan Manuel Tirado-Gallegos, Hugo Sergio García-Galindo, and Ramiro Baeza-Jiménez. 2026. "Maize Tortillas Fortified with Ayocote and Quintonil Flours: Nutritional and Functional Properties" Foods 15, no. 1: 21. https://doi.org/10.3390/foods15010021
APA StyleRojo-Gutiérrez, E., López-Martínez, L. X., Sáenz-Hidalgo, H. K., Tirado-Gallegos, J. M., García-Galindo, H. S., & Baeza-Jiménez, R. (2026). Maize Tortillas Fortified with Ayocote and Quintonil Flours: Nutritional and Functional Properties. Foods, 15(1), 21. https://doi.org/10.3390/foods15010021

