Detection of Aldehydes in Meat Products Based on Sulfonated Polystyrene Microspheres Modified with 2,4-Dinitrophenylhydrazine as Membrane-Protected Solid-Phase-Extraction Adsorbents
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instruments
2.3. The Preparation of PS Microspheres
2.4. The sPS Microspheres
2.5. The Preparation of DNPH Modified sPS Microspheres
2.6. The Preparation of the Membrane-Protected μ-SPE Device
2.7. Membrane Protected Solid Phase Extraction by μ-SPE Device
2.8. HPLC-MS/MS Conditions
2.9. Statistical and Analysis
3. Results and Discussion
3.1. The Characterization of sPS Microspheres
3.2. Optimizing the Extraction Conditions
3.2.1. The Effects of the μ-SPE Device
3.2.2. Extraction Conditions
3.2.3. Elution Conditions
3.3. Method Verification
3.4. Study of Adaptability
3.5. Comparison of Established Methods with the Reported Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lopez-Tellez, J.; Ibarra, I.S.; Santos, E.M.; Mondragon-Portocarrero, A.C.; Rodriguez, J.A. Aldehydes determination in edible oil samples employing 1-Naphthalenyl hydrazine as derivatizing agent followed by HPLC-FLD. Microchem. J. 2025, 213, 113658. [Google Scholar] [CrossRef]
- Wang, W.; Li, G.; Ji, Z.; Hu, N.; You, J. A novel method for trace aldehyde determination in foodstuffs based on fluorescence labeling by HPLC with fluorescence detection and mass spectrometric identification. Food Anal. Methods 2014, 7, 1546–1556. [Google Scholar] [CrossRef]
- Zamora, R.; Alcon, E.; Hidalgo, F.J. Addition of olivetol to crackers decreases malondialdehyde content and produces malondialdehyde-olivetol adducts. Food Chem. 2024, 432, 137046. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.; Gallego, M.; Silva, M. Analysis of endogenous aldehydes in human urine by static headspace gas chromatography–mass spectrometry. J. Chromatogr. A 2016, 1437, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Tessini, C.; Müller, N.; Mardones, C.; Meier, D.; Berg, A.; von Baer, D. Chromatographic approaches for determination of low-molecular mass aldehydes in bio-oil. J. Chromatogr. A 2012, 1219, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Boumya, W.; Hammani, H.; Laghrib, F.; Lahrich, S.; Farahi, A.; Achak, M.; Bakasse, M.; Mhammedi, M.A.E. Electrochemical Study of 2,4-Dinitrophenylhydrazine as Derivatization Reagent and Aldehydes at Carbon Glassy Electrode. Electroanalysis 2017, 29, 1700–1711. [Google Scholar] [CrossRef]
- Fang, S.; Liu, Y.; He, J.; Zhang, L.; Liyin, Z.; Wu, X.; Sun, H.; Lai, J. Determination of aldehydes in water samples by coupling magnetism-reinforced molecular imprinting monolith microextraction and non-aqueous capillary electrophoresis. J. Chromatogr. A 2020, 1632, 461602. [Google Scholar] [CrossRef]
- Khan, M.N.; Kazmi, S.Q.W. Ecofriendly Approach for the Determination of Selected Aldehydes by Fluorescence Quenching of L-Tryptophan. J. Fluoresc. 2023, 34, 2385–2390. [Google Scholar] [CrossRef]
- Lin, Q.; Sun, J.; Wang, Y.; Ye, M.; Cheng, H. Rapid determination of aldehydes in food by high-throughput reactive paper spray ionization mass spectrometry. J. Food Compos. Anal. 2022, 114, 104814. [Google Scholar] [CrossRef]
- Ramdzan, A.N.; Almeida, M.I.G.S.; McCullough, M.J.; Kolev, S.D. Development of a microfluidic paper-based analytical device for the determination of salivary aldehydes. Anal. Chim. Acta 2016, 919, 47–54. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Lin, X.; Su, W.; Zhu, P.; Yang, N.; Adams, E. Recent progress in the extraction of terpenoids from essential oils and separation of the enantiomers by GC–MS. J. Chromatogr. A 2024, 1730, 465118. [Google Scholar] [CrossRef]
- Zhao, G.-H.; Hu, Y.-Y.; Liu, Z.-Y.; Xie, H.-K.; Zhang, M.; Zheng, R.; Qin, L.; Yin, F.-W.; Zhou, D.-Y. Simultaneous quantification of 24 aldehydes and ketones in oysters (Crassostrea gigas) with different thermal processing procedures by HPLC-electrospray tandem mass spectrometry. Food Res. Int. 2021, 147, 110559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, D.; Wang, B.; Liang, Z.; Chen, Y.; Meng, B.; Shang, S. Determination of Aldehydes in Environmental Water by Solid-Phase Microextraction and Gas Chromatography—Ion Trap Mass Spectrometry. Instrum. Sci. Technol. 2015, 43, 344–356. [Google Scholar] [CrossRef]
- Kim, H.J.; Shin, H.S. Simple and automatic determination of aldehydes and acetone in water by headspace solid-phase microextraction and gas chromatography-mass spectrometry. J. Sep. Sci. 2011, 34, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Malekpour, A.; Ahmadi, N. Surfactant-Alumina-Coated Magnetic Nanoparticles as an Efficient Aldehydes Adsorbent Prior Their Determination by HPLC. Food Anal. Methods 2016, 10, 1817–1825. [Google Scholar] [CrossRef]
- Ji, J.; Liu, H.; Chen, J.; Zeng, J.; Huang, J.; Gao, L.; Wang, Y.; Chen, X. ZnO nanorod coating for solid phase microextraction and its applications for the analysis of aldehydes in instant noodle samples. J. Chromatogr. A 2012, 1246, 22–27. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Du, X.; Sun, X.; Chen, L.; Zeng, Q.; Xu, Y.; Zhang, X.; Zhao, Q.; Ding, L. Determination of formaldehyde in fruit juice based on magnetic strong cation-exchange resin modified with 2,4-dinitrophenylhydrazine. Food Chem. 2012, 131, 380–385. [Google Scholar] [CrossRef]
- Tsakelidou, E.; Virgiliou, C.; Valianou, L.; Gika, H.; Raikos, N.; Theodoridis, G. Sample Preparation Strategies for the Effective Quantitation of Hydrophilic Metabolites in Serum by Multi-Targeted HILIC-MS/MS. Metabolites 2017, 7, 13. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, X.; Guo, J.; Ao, L.; Shen, C.; Liu, M.; Lin, F.; Li, W.; Zhang, L.; Sun, B.; et al. A computationally driven screening-construction-mechanism strategy of magnetic molecularly imprinted polymers for aliphatic aldehydes detection. Food Chem. 2025, 496, 146974. [Google Scholar] [CrossRef]
- Basheer, C.; Pavagadhi, S.; Yu, H.; Balasubramanian, R.; Lee, H.K. Determination of aldehydes in rainwater using micro-solid-phase extraction and high-performance liquid chromatography. J. Chromatogr. A 2010, 1217, 6366–6372. [Google Scholar] [CrossRef]
- Fernández-Molina, J.M.; Silva, M. LC–MS Analytical Method for Biomonitoring of Aliphatic and Aromatic Low-Molecular-Mass Aldehydes in Human Urine. Chromatographia 2014, 78, 203–209. [Google Scholar] [CrossRef]
- Li, S.; Feng, S.; Van Schepdael, A.; Wang, X. Hollow fiber membrane-protected amino/hydroxyl bifunctional microporous organic network fiber for solid-phase microextraction of bisphenols A, F, S, and triclosan in breast milk and infant formula. Food Chem. 2022, 390, 133217. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Wang, H.; Ding, J. Novel Sulfonic Acid Polystyrene Microspheres for Alcoholysis of Furfuryl Alcohol to Ethyl Levulinate. Catal. Lett. 2022, 152, 3158–3167. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Wei, S.; Sun, Y.; Bi, Y.; Wang, M.; Zhao, Y. Development, validation and application of an SFC-ESI-QqQ-MS/MS method for simultaneous analysis of malondialdehyde and typical α,β-unsaturated aldehydes in edible oils and oil-containing foods. Food Chem. 2025, 496, 146795. [Google Scholar] [CrossRef] [PubMed]
- Gelir, A.; Aktaş, D.K.; Cianga, I.; Cianga, L.; Yağcı, Y.; Yılmaz, Y. Studying the sol–gel transition of styrene–divinyl benzene crosslinking co-polymerization via excimer forming dye molecules. Polymer 2006, 47, 5843–5851. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, C.; Liu, L.; Ding, J.; Li, Y. Catalytic effect of sulfonated poly (styrene-divinylbenzene) microspheres on the thermal curing behavior of benzoxazine. Thermochim. Acta 2018, 661, 106–115. [Google Scholar] [CrossRef]
- Shen, Z.; Ji, X.; Yao, S.; Zhang, H.; Xiong, L.; Li, H.; Chen, X.; Chen, X. Study on the adsorption behavior of chlorogenic acid from Eucommia ulmoides Oliver leaf extract by a self-synthesized resin. Ind. Crops Prod. 2023, 197, 116585. [Google Scholar] [CrossRef]
- Im, S.; Park, C.; Cho, W.; Kim, J.; Jeong, M.; Kim, J.H. Synthesis of Solution-Stable PEDOT-Coated Sulfonated Polystyrene Copolymer PEDOT:P(SS-co-St) Particles for All-Organic NIR-Shielding Films. Coatings 2019, 9, 151. [Google Scholar] [CrossRef]
- Yu, W.; Lewis, N.S.; Gray, H.B.; Dalleska, N.F. Isotopically Selective Quantification by UPLC-MS of Aqueous Ammonia at Submicromolar Concentrations Using Dansyl Chloride Derivatization. ACS Energy Lett. 2020, 5, 1532–1536. [Google Scholar] [CrossRef]
- Hsiao, H.-Y.; Chen, B.-H.; Kao, T.-H. Analysis of Heterocyclic Amines in Meat by the Quick, Easy, Cheap, Effective, Rugged, and Safe Method Coupled with LC-DAD-MS-MS. J. Agric. Food Chem. 2017, 65, 9360–9368. [Google Scholar] [CrossRef]






| Analytes | RT (min) | Precursor Ion (m/z) | Product Ion (m/z) | CE (eV) | DP (V) | CXP (V) |
|---|---|---|---|---|---|---|
| Propanal | 6.11 | 237 | 163 | 16 | 20 | 1 |
| Crotonaldehyde | 6.70 | 249 | 172 | 20 | 35 | 5 |
| Butanal | 7.24 | 251 | 152 | 22 | 25 | 1 |
| Pentanal | 8.34 | 265 | 152 | 26 | 35 | 25 |
| Trans-2-Hexanal | 9.03 | 277 | 163 | 20 | 25 | 1 |
| Trans, trans-2,4-Heptadienal | 9.30 | 289 | 163 | 16 | 15 | 7 |
| Hexanal | 9.48 | 279 | 152 | 28 | 35 | 5 |
| Heptanal | 10.48 | 293 | 152 | 28 | 25 | 1 |
| Octanal | 11.46 | 307 | 152 | 30 | 30 | 11 |
| Trans, trans-2,4-Decadienal | 12.23 | 331 | 181 | 32 | 5 | 31 |
| Nonanal | 12.44 | 321 | 163 | 20 | 25 | 9 |
| Aldehydes | Matrix Effect (%) | Linear Equation | R2 | Linear Ranges (ng mL−1) | LODs (ng g−1) | LOQs (ng g−1) |
|---|---|---|---|---|---|---|
| Crotonaldehyde | 9 | y = 1880.9x + 23,704.1 | 0.9966 | 1.0–1000.0 | 0.011 | 0.038 |
| Butanal | 7 | y = 2977.9x + 47,609.1 | 0.9953 | 4.0–1000.0 | 0.021 | 0.071 |
| Pentanal | 6 | y = 4868.1x + 166.4 | 0.9993 | 0.4–400.0 | 0.044 | 0.123 |
| Trans-2-Hexanal | 5 | y = 2725.0x + 5402.0 | 0.9982 | 1.0–200.0 | 0.163 | 0.788 |
| Trans,trans-2,4-Heptadienal | −9 | y = 763.4x + 5497.2 | 0.9952 | 1.0–400.0 | 0.621 | 2.069 |
| Hexanal | −5 | y = 4213.3x + 20,679.3 | 0.9966 | 0.4–400.0 | 0.032 | 0.086 |
| Heptanal | 2 | y = 3601.5x + 20,346.5 | 0.9946 | 0.2–400.0 | 0.010 | 0.034 |
| Octanal | −2 | y = 3071.0x + 18,135.0 | 0.9948 | 0.1–400.0 | 0.011 | 0.037 |
| Trans,trans-2,4-Decadienal | 16 | y = 1166.2x + 7446.6 | 0.9921 | 0.4–400.0 | 0.054 | 0.148 |
| Nonanal | 6 | y = 2874.6x + 3400.2 | 0.9990 | 0.2–200.0 | 0.025 | 0.082 |
| Aldehydes | Complex Sample | |||||
|---|---|---|---|---|---|---|
| Pork | Beef | Mutton | Chicken | Chicken Wings | Fish | |
| Crotonaldehyde | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
| Butanal | n.d. | 3.71 ± 0.57 | n.d. | n.d. | 16.24 ± 1.19 | n.d. |
| Pentanal | 71.12 ± 3.15 | 109.56 ± 1.03 | 26.77 ± 1.33 | 23.09 ± 0.40 | 164.64 ± 6.79 | 82.93 ± 2.68 |
| Trans-2-Hexanal | n.d. | 1.44 ± 0.30 | n.d. | n.d. | 1.70 ± 0.22 | n.d. |
| Trans,trans-2,4-Heptadienal | n.d. | 20.17 ± 1.93 | n.d. | n.d. | n.d. | n.d. |
| Hexanal | 41.53 ± 1.58 | 311.23 ± 4.58 | 16.76 ± 1.15 | 15.56 ± 1.17 | 81.23 ± 1.00 | 13.81 ± 0.93 |
| Heptanal | 4.49 ± 0.20 | 43.97 ± 2.20 | n.d. | n.d. | 7.26 ± 0.21 | 5.03 ± 0.59 |
| Octanal | 10.06 ± 0.58 | 48.95 ± 5.09 | 7.74 ± 0.98 | n.d. | 16.37 ± 4.92 | 4.17 ± 0.70 |
| Trans,trans-2,4-Decadienal | 25.33 ± 3.60 | 92.94 ± 9.57 | n.d. | n.d. | 109.83 ± 4.89 | 1.10 ± 0.19 |
| Nonanal | 78.19 ± 4.42 | 130.48 ± 8.07 | 128.17 ± 5.81 | 32.05 ± 2.81 | 79.25 ± 9.02 | 57.82 ± 7.72 |
| Sample Preparation Method | SPE Adsorbent | Laboratory Preparation | LODs (ng g−1) | Recovery Rates (%) | RSD (%) | References |
|---|---|---|---|---|---|---|
| HS-SPME-GC/MS | Commercial PDMS-DVB SPME fibers | No | 100–500 | 50–100 | ≤13 | [14] |
| µ-SPE-LC/ESI/MS | Commercial Telos™ ENV PS co-polymer | No | 90–300 | 95–99 | 6–9 | [21] |
| µ-SPE-HPLC/UV | Commercial silica-based C2, C8, C18, DVB-MAA, DVB-PEI, DVB-NEP | No | 70–150 | 84–106 | 7–12 | [7] |
| HS-SPME-GC/FID | ZnO nanorod coated fiber | Yes | 13–37 | 71–129 | 8–10 | [16] |
| MSPE-HPLC/UV | SDS-alumina coated magnetic nanoparticles | Yes | 4900–21,400 | 82–115 | ≤10 | [19] |
| µ-SPE-HPLC/MS/MS | sPS microspheres | Yes | 0.010–0.621 | 72–106 | 1–11 | Our method |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, S.; Zhang, S.; Fu, M.; Lu, S.; Zhao, Q. Detection of Aldehydes in Meat Products Based on Sulfonated Polystyrene Microspheres Modified with 2,4-Dinitrophenylhydrazine as Membrane-Protected Solid-Phase-Extraction Adsorbents. Foods 2026, 15, 101. https://doi.org/10.3390/foods15010101
Wang S, Zhang S, Fu M, Lu S, Zhao Q. Detection of Aldehydes in Meat Products Based on Sulfonated Polystyrene Microspheres Modified with 2,4-Dinitrophenylhydrazine as Membrane-Protected Solid-Phase-Extraction Adsorbents. Foods. 2026; 15(1):101. https://doi.org/10.3390/foods15010101
Chicago/Turabian StyleWang, Siyi, Shibing Zhang, Min Fu, Siying Lu, and Qi Zhao. 2026. "Detection of Aldehydes in Meat Products Based on Sulfonated Polystyrene Microspheres Modified with 2,4-Dinitrophenylhydrazine as Membrane-Protected Solid-Phase-Extraction Adsorbents" Foods 15, no. 1: 101. https://doi.org/10.3390/foods15010101
APA StyleWang, S., Zhang, S., Fu, M., Lu, S., & Zhao, Q. (2026). Detection of Aldehydes in Meat Products Based on Sulfonated Polystyrene Microspheres Modified with 2,4-Dinitrophenylhydrazine as Membrane-Protected Solid-Phase-Extraction Adsorbents. Foods, 15(1), 101. https://doi.org/10.3390/foods15010101

