Grape Pomace Fibres as a Sustainable Fining Agent to Ensure Red Wine Safety: A First Approach in a Continuous System
Abstract
:1. Introduction
2. Material and Methods
2.1. Fining Trial
2.2. Chromatic Parameter and Phenolic Compound Determination
2.3. OTA Determination
2.4. Histamine Determination
2.5. Pesticide Determination
2.6. Comprehensive Microarray Polymer Profiling (CoMPP) Analysis of the Fibres
2.7. Statistical Analysis
3. Results and Discussion
3.1. OTA Reduction
3.2. Histamine Reduction
3.3. Pesticide Reduction
3.4. Effects on the Chromatic Parameters and Phenolic Compounds of Wine
3.5. Effects of the Fibres Polysaccharide Composition on the Reduction of Undesirable Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- García-Lomillo, J.; González-SanJosé, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape pomace valorization: A systematic review and meta-analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef] [PubMed]
- International Organisation of Vine and Wine. State of the World Vine and Wine Sector in 2023. 2023. Available online: https://www.oiv.int/OIV_STATE_OF_THE_WORLD_VINE_AND_WINE_SECTOR_IN_2023 (accessed on 10 April 2025).
- Kokkinomagoulos, E.; Kandylis, P. Sustainable exploitation of by-products of vitivinicultural origin in winemaking. Multidiscip. Digit. Publ. Inst. Proc. 2020, 67, 5. [Google Scholar]
- Bindon, K.A.; Bacic, A.; Kennedy, J.A. Tissue-specific and developmental modifications of grape cell walls influence the adsorption of proanthocyanidins. J. Agric. Food Chem. 2012, 60, 9249–9260. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Smith, P.; Bindon, K.A. Application of insoluble fibers in the fining of wine phenolics. J. Agric. Food Chem. 2013, 61, 4424–4432. [Google Scholar] [CrossRef]
- Jiménez-Martínez, M.D.; Bautista-Ortín, A.B.; Gil-Muñoz, R.; Gómez-Plaza, E. Fining with purified grape pomace. Effect of dose, contact time and varietal origin on the final wine phenolic composition. Food Chem. 2019, 271, 570–576. [Google Scholar] [CrossRef]
- Osete-Alcaraz, L.; Gómez-Plaza, E.; Jørgensen, B.; Oliva, J.; Cámara, M.A.; Jurado, R.; Bautista-Ortín, A.B. The composition and structure of plant fibers affect their fining performance in wines. Food Chem. 2024, 460, 140657. [Google Scholar] [CrossRef]
- Cabras, P.; Conte, E. Pesticide residues in grapes and wine in Italy. Food Addit. Contam. 2001, 18, 880–885. [Google Scholar] [CrossRef]
- Fontana, A.R.; Rodríguez, I.; Ramil, M.; Altamirano, J.C.; Cela, R. Solid-phase extraction followed by liquid chromatography quadrupole time-of-flight tandem mass spectrometry for the selective determination of fungicides in wine samples. J. Chromatogr. A 2011, 1218, 2165–2175. [Google Scholar] [CrossRef]
- Herrero-Hernández, E.; Andrades, M.S.; Álvarez-Martín, A.; Pose-Juan, E.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. J. Hydrol. 2013, 486, 234–245. [Google Scholar] [CrossRef]
- Humbert, F.; Bonneff, É. La Peste Soit les Pesticides; Que Choisir: Paris, France, 2013; pp. 46–50. [Google Scholar]
- Hocking, A.D.; Su-lin, L.L.; Kazi, B.A.; Emmett, R.W.; Scott, E.S. Fungi and mycotoxins in vineyards and grape products. Int. J. Food Microbiol. 2007, 119, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Li, M.; Achal, V. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg. Contam. 2024, 11, 100410. [Google Scholar] [CrossRef]
- Tudi, M.; Li, H.; Li, H.; Wang, L.; Lyu, J.; Yang, L.; Tong, S.; Yu, Q.J.; Ruan, H.D.; Atabila, A.; et al. Exposure routes and health risks associated with pesticide application. Toxics 2022, 10, 335. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Shi, J.; Chen, X.; Liu, Y. Effect of sulfur dioxide and ethanol concentration on fungal profile and ochratoxin a production by Aspergillus carbonarius during wine making. Food Control 2015, 47, 656–663. [Google Scholar] [CrossRef]
- Cubaiu, L.; Abbas, H.; Dobson, A.D.; Budroni, M.; Migheli, Q. A Saccharomyces cerevisiae wine strain inhibits growth and decreases ochratoxin A biosynthesis by Aspergillus carbonarius and Aspergillus ochraceus. Toxins 2012, 4, 1468–1481. [Google Scholar] [CrossRef]
- Freire, L.; Braga, P.A.; Furtado, M.M.; Delafiori, J.; Dias-Audibert, F.L.; Pereira, G.E.; Reyes, F.G.; Catharino, R.R.; Sant’Ana, A.S. From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 2020, 113, 107167. [Google Scholar] [CrossRef]
- Pfohl-Leszkowicz, A.; Manderville, R.A. Ochratoxin A: An overview on toxicity and carcinogenicity in animals and humans. Mol. Nutr. Food Res. 2007, 51, 61–99. [Google Scholar] [CrossRef]
- Stoev, S.D. New evidences about the carcinogenic effects of ochratoxin A and possible prevention by target feed additives. Toxins 2022, 14, 380. [Google Scholar] [CrossRef]
- Tao, Y.; Xie, S.; Xu, F.; Liu, A.; Wang, Y.; Chen, D.; Pan, Y.; Huang, L.; Peng, D.; Wang, X.; et al. Ochratoxin A: Toxicity, oxidative stress and metabolism. Food Chem. Toxicol. 2018, 112, 320–331. [Google Scholar] [CrossRef]
- Kawashima, L.M.; Vieira, A.P.; Soares, L.M.V. Fumonisin B1 and ochratoxin A in beers made in Brazil. Food Sci. Technol. 2007, 27, 317–323. [Google Scholar] [CrossRef]
- Riba, A.; Mokrane, S.; Mathieu, F.; Lebrihi, A.; Sabaou, N. Mycoflora and ochratoxin A producing strains of Aspergillus in Algerian wheat. Int. J. Food Microbiol. 2008, 122, 85–92. [Google Scholar] [CrossRef]
- Grazioli, B.; Galli, R.; Fumi, M.D.; Silva, A. Influence of winemaking on ochratoxin A content in red wines. In Mycotoxins and Phycotoxins; Wageningen Academic: Wageningen, The Netherlands, 2006; pp. 271–277. [Google Scholar]
- Guo, Y.Y.; Yang, Y.P.; Peng, Q.; Han, Y. Biogenic amines in wine: A review. Int. J. Food Sci. Technol. 2015, 50, 1523–1532. [Google Scholar] [CrossRef]
- López, R.; Tenorio, C.; Gutiérrez, A.R.; Garde-Cerdán, T.; Garijo, P.; González-Arenzana, L.; López-Alfaro, I.; Santamaría, P. Elaboration of Tempranillo wines at two different pHs. Influence on biogenic amine contents. Food Control 2012, 25, 583–590. [Google Scholar] [CrossRef]
- Greifová, G.; Májeková, H.; Greif, G.; Body, P.; Greifová, M.; Dubničková, M. Analysis of antimicrobial and immunomodulatory substances produced by heterofermentative Lactobacillus reuteri. Folia Microbiol. 2017, 62, 515–524. [Google Scholar] [CrossRef]
- Košmerl, T.; Šućur, S.; Prosen, H. Biogenic amines in red wine: The impact of technological processing of grape and wine. Acta Agric. Slov. 2013, 101, 249–261. [Google Scholar] [CrossRef]
- Ladero, V.; Calles-Enríquez, M.; Fernández, M.; Alvarez, M.A. Toxicological effects of dietary biogenic amines. Curr. Nutr. Food Sci. 2010, 6, 145–156. [Google Scholar] [CrossRef]
- Comas-Basté, O.; Sánchez-Pérez, S.; Veciana-Nogués, M.T.; Latorre-Moratalla, M.; Vidal-Carou, M.D.C. Histamine intolerance: The current state of the art. Biomolecules 2020, 10, 1181. [Google Scholar] [CrossRef]
- Lehtonen, P. Determination of amines and amino acids in wine—A review. Am. J. Enol. Vitic. 1996, 47, 127–133. [Google Scholar] [CrossRef]
- Smit, A.Y.; Du Toit, W.J.; Du Toit, M. Biogenic amines in wine: Understanding the headache. S. Afr. J. Enol. Vitic. 2008, 29, 109–127. [Google Scholar] [CrossRef]
- Ho, P.; Silva, M.D.C.M.; Hogg, T.A. Changes in colour and phenolic composition during the early stages of maturation of port in wood, stainless steel and glass. J. Sci. Food Agric. 2001, 81, 1269–1280. [Google Scholar] [CrossRef]
- Smith, P.A. Precipitation of tannin with methyl cellulose allows tannin quantification in grape and wine samples. Tech. Rev. AWRI 2005, 158, 3–7. [Google Scholar]
- Glories, Y. La couleur des vins rouges. lre partie: Les ‘equilibres des anthocyanes et des tanins. OENO One 1984, 18, 195–217. [Google Scholar] [CrossRef]
- Oliva, J.; Martínez, G.; Cermeño, S.; Motas, M.; Barba, A.; Cámara, M.A. Influence of matrix on the bioavailability of nine fungicides in wine grape and red wine. Eur. Food Res. Technol. 2018, 244, 1083–1090. [Google Scholar] [CrossRef]
- Moller, I.; Marcus, S.E.; Haeger, A.; Verhertbruggen, Y.; Verhoef, R.; Schols, H.; Ulvskov, P.; Mikkelsen, J.D.; Knox, J.P.; Willats, W. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles. Glycoconj. J. 2008, 25, 37–48. [Google Scholar] [CrossRef]
- Gao, Y.; Fangel, J.U.; Willats, W.G.; Vivier, M.A.; Moore, J.P. Effect of commercial enzymes on berry Cell Wall deconstruction in the context of Intravineyard ripeness variation under winemaking conditions. J. Agric. Food Chem. 2016, 64, 3862–3872. [Google Scholar] [CrossRef]
- Gómez-Plaza, E.; Osete-Alcaraz, L.; Pérez-Méndoza, A.L.; Cámara-Botía, M.A.; Jurado-Fuentes, R.; Bautista-Ortín, A.B. Wine Phenolic Content Influences the Effectivity of Plant Fibers for Reducing Undesirable Compounds in Wine [Poster]; In Vino Analytica Scientia (IVAS): Davis, CA, USA, 2024; Available online: https://ivas2024.wixsite.com/ivas2024 (accessed on 10 April 2025).
- Jiménez-Martínez, M.D.; Gil-Muñoz, R.; Gómez-Plaza, E.; Bautista-Ortín, A.B. Performance of purified grape pomace as a fining agent to reduce the levels of some contaminants from wine. Food Addit. Contam. Part A 2018, 35, 1061–1070. [Google Scholar] [CrossRef]
- Anli, R.E.; Vural, N.; Bayram, M. Removal of ochratoxin A (OTA) from naturally contaminated wines during the vinification process. J. Inst. Brew. 2011, 117, 456–461. [Google Scholar] [CrossRef]
- Fernandes, A.; Ratola, N.; Cerdeira, A.; Alves, A.; Venâncio, A. Changes in ochratoxin A concentration during winemaking. Am. J. Enol. Vitic. 2007, 58, 92–96. [Google Scholar] [CrossRef]
- Sun, X.; Niu, Y.; Ma, T.; Xu, P.; Huang, W.; Zhan, J. Determination, content analysis and removal efficiency of fining agents on ochratoxin A in Chinese wines. Food Control 2017, 73, 382–392. [Google Scholar] [CrossRef]
- Amghouz, Z.; Ancín-Azpilicueta, C.; Burusco, K.K.; García, J.R.; Khainakov, S.A.; Luquin, A.; Nieto, R.; Garrido, J.J. Biogenic amines in wine: Individual and competitive adsorption on a modified zirconium phosphate. Microporous Mesoporous Mater. 2014, 197, 130–139. [Google Scholar] [CrossRef]
- Doulia, D.S.; Anagnos, E.K.; Liapis, K.S.; Klimentzos, D.A. Effect of clarification process on the removal of pesticide residues in white wine. Food Control 2017, 72, 134–144. [Google Scholar] [CrossRef]
- Philipp, C.; Eder, P.; Hartmann, M.; Patzl-Fischerleitner, E.; Eder, R. Plant fibers in comparison with other fining agents for the reduction of pesticide residues and the effect on the volatile profile of Austrian white and red wines. Appl. Sci. 2021, 11, 5365. [Google Scholar] [CrossRef]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues–Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Jones-Moore, H.R.; Jelley, R.E.; Marangon, M.; Fedrizzi, B. The polysaccharides of winemaking: From grape to wine. Trends Food Sci. Technol. 2021, 111, 731–740. [Google Scholar] [CrossRef]
Pesticide | Chemical Group | Type | Solubility (mg/L) | Log Kow | Koc | Concentration (mg/Kg) |
---|---|---|---|---|---|---|
Imidacloprid | Neonicotinoid | Insecticide | 610 | 0.57 | 225 | 0.7 |
Iprovalicarb | Valinamidecarbamate | Fungicide | 17.8 | 3.19 | 106 | 2.0 |
Fenhexamide | Anilide fungicide | Fungicide | 20 | 3.51 | 446–1226 | 5.0 |
Boscalid | Pyridinecarboxamide | Fungicide | 4.6 | 2.96 | 507–1110 | 5.0 |
Tetraconazole | Triazole | Fungicide | 156 | 3.56 | 531–1922 | 0.5 |
Mepanipyrim | Aminopyrimidines | Fungicide | 3.1 | 3.28 | 875 | 2.0 |
Metrafenone | Benzophenone | Fungicide | 0.49 | 4.30 | 7061 | 5.0 |
OTA (µg/L) | |
---|---|
Control | 3.8 ± 0.1 d |
WGP1F1 | 0.0 ± 0.0 |
WGP1F2 | 1.9 ± 0.0 |
WGP1F3 | 2.7 ± 0.3 |
WGP1F4 | 2.3 ± 0.3 |
WGP1 mean value | 1.7 ± 0.2 c |
RGPF1 | 0.9 ± 0.3 |
RGPF2 | 1.0 ± 0.2 |
RGPF3 | 1.5 ± 0.2 |
RGPF4 | 1.8 ± 0.1 |
RGP mean value | 1.3 ± 0.2 b |
CoFF1 | 0.0 ± 0.0 |
CoFF2 | 0.0 ± 0.0 |
CoFF3 | 0.6 ± 0.0 |
CoFF4 | 1.0 ± 0.1 |
CoF mean value | 0.4 ± 0.0 a |
WGP2F1 | 1.5 ± 0.1 |
WGP2F2 | 2.0 ± 0.1 |
WGP2F3 | 2.0 ± 0.1 |
WGP2F4 | 2.0 ± 0.1 |
WGP2 mean value | 1.9 ± 0.1 c |
Histamine (mg/L) | |
---|---|
Control | 15.0 ± 1.2 c |
WGP1F1 | 13.1 ± 0.9 |
WGP1F2 | 12.3 ± 1.1 |
WGP1F3 | 12.4 ± 0.1 |
WGP1F4 | 12.7 ± 2.0 |
WGP1 mean value | 12.6 ± 1.0 ab |
RGPF1 | 14.2 ± 0.4 |
RGPF2 | 12.8 ± 2.1 |
RGPF3 | 11.5 ± 2.4 |
RGPF4 | 14.2 ± 0.4 |
RGP mean value | 13.2 ± 1.3 b |
CoFF1 | 9.0 ± 0.7 |
CoFF2 | 11.0 ± 0.6 |
CoFF3 | 14.3 ± 1.9 |
CoFF4 | 13.7 ± 1.4 |
CoF mean value | 12.0 ± 1.1 ab |
WGP2F1 | 9.4 ± 1.1 |
WGP2F2 | 11.7 ± 0.7 |
WGP2F3 | 11.0 ± 1.0 |
WGP2F4 | 11.9 ± 0.3 |
WGP2 mean value | 11.0 ± 0.8 a |
%Retention | Boscalid | Fenhexamide | Imidacloprid | Iprovalicarb | Mepanipyrim | Metrafenone | Tetraconazole |
---|---|---|---|---|---|---|---|
WGP1F1 | 83.0 ± 3.9 | 73.7 ± 4.3 | 29.1 ± 13.1 | 36.2 ± 13.3 | 91.4 ± 1.7 | 95.9 ± 0.7 | 90.7 ± 1.7 |
WGP1F2 | 38.5 ± 5.7 | 13.2 ± 12.5 | 4.3 ± 6.1 | 7.4 ± 10.5 | 82.4 ± 2.3 | 94.4 ± 0.7 | 78.1 ± 2.7 |
WGP1F3 | 28.8 ± 17.3 | 18.7 ± 12.5 | 15.1 ± 16.7 | 18.4 ± 19.5 | 66.4 ± 6.9 | 93.6 ± 1.3 | 56.3 ± 9.6 |
WGP1F4 | 31.9 ± 20.6 | 27.3 ± 20.2 | 21.5 ± 26.2 | 27.1 ± 21.8 | 54.0 ± 13.6 | 91.6 ± 2.6 | 46.9 ± 15.8 |
WGP1 mean value | 45.5 ± 11.9 bc | 33.2 ± 13.9 a | 17.5 ± 15.5 a | 22.3 ± 16.3 a | 73.6 ± 6.1 b | 93.9 ± 1.3 c | 68.0 ± 7.4 b |
RGPF1 | 26.5 ± 3.7 | 25.6 ± 3.4 | 2.0 ± 2.9 | 1.6 ± 2.2 | 38.2 ± 5.7 | 65.0 ± 2.9 | 43.3 ± 4.7 |
RGPF2 | 19.0 ± 24.1 | 13.9 ± 19.6 | 10.1 ± 14.3 | 8.6 ± 12.2 | 35.4 ± 20.1 | 54.8 ± 13.8 | 39.9 ± 18.7 |
RGPF3 | 3.7 ± 5.2 | 5.3 ± 3.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 29.1 ± 2.6 | 56.2 ± 2.1 | 31.1 ± 3.6 |
RGPF4 | 9.1 ± 12.8 | 10.0 ± 14.2 | 6.4 ± 9.0 | 4.8 ± 6.8 | 16.9 ± 23.8 | 55.7 ± 12.8 | 18.2 ± 23.7 |
RGP mean value | 14.5 ± 11.4 a | 13.7 ± 10.1 a | 4.6 ± 6.5 a | 3.7 ± 5.3 a | 29.8 ± 13.2 a | 57.9 ± 7.9 a | 33.1 ± 12.7 a |
CoFF1 | 76.1 ± 5.0 | 60.8 ± 5.1 | 56.2 ± 7.3 | 31.4 ± 11.7 | 76.7 ± 3.6 | 82.5 ± 2.7 | 78.3 ± 3.5 |
CoFF2 | 70.6 ± 0.1 | 36.7 ± 4.9 | 18.6 ± 5.0 | 1.5 ± 2.2 | 72.7 ± 2.0 | 80.0 ± 2.2 | 73.7 ± 1.8 |
CoFF3 | 70.3 ± 8.4 | 19.2 ± 19.7 | 9.9 ± 14.0 | 9.8 ± 13.9 | 71.5 ± 7.7 | 79.9 ± 4.9 | 71.2 ± 7.7 |
CoFF4 | 46.4 ± 4.8 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 53.2 ± 5.2 | 66.3 ± 3.9 | 49.8 ± 6.1 |
CoF mean value | 65.9 ± 4.6 c | 29.2 ± 7.4 a | 21.2 ± 6.6 a | 10.7 ± 6.9 a | 68.5 ± 4.6 b | 77.2 ± 3.4 b | 68.3 ± 4.8 b |
WGP2F1 | 40.9 ± 4.0 | 27.6 ± 9.0 | 25.1 ± 5.5. | 7.9 ± 8.3 | 44.2 ± 4.8 | 66.3 ± 2.6 | 48.1 ± 4.2 |
WGP2F2 | 29.7 ± 19.3 | 14.1 ± 19.9 | 13.3 ± 18.8 | 12.9 ± 18.3 | 39.8 ± 16.4 | 62.1 ± 9.0 | 40.8 ± 16.2 |
WGP2F3 | 18.6 ± 5.2 | 6.3 ± 2.6 | 3.5 ± 5.0 | 3.3 ± 4.6 | 28.3 ± 4.3 | 60.9 ± 3.1 | 28.4 ± 4.1 |
WGP2F4 | 13.8 ± 8.2 | 6.4 ± 9.0 | 4.3 ± 6.1 | 4.6 ± 6.5 | 22.8 ± 7.7 | 58.2 ± 3.5 | 21.5 ± 6.7 |
WGP2 mean value | 25.7 ± 9.2 ab | 13.6 ± 10.2 a | 11.6 ± 8.9 a | 7.2 ± 9.4 a | 33.8 ± 8.3 a | 61.9 ± 4.5 a | 34.7 ± 7.8 a |
CI | TP | TA (mg/L) | PA (mg/L) | TT (mg/L) | |
---|---|---|---|---|---|
Control | 12.3 ± 0.1 cd | 85.7 ± 0.1 d | 220.3 ± 3.1 c | 35.8 ± 0.2 c | 2359.6 ± 14.2 c |
WGP1F1 | 11.7 ± 0.0 | 80.8 ± 0.4 | 207.0 ± 5.7 | 34.0 ± 0.2 | 1829.5 ± 5.2 |
WGP1F2 | 12.3 ± 0.1 | 85.3 ± 0.6 | 217.5 ± 0.7 | 35.3 ± 0.5 | 1789.3 ± 4.8 |
WGP1F3 | 12.3 ± 0.0 | 84.4 ± 0.3 | 213.5 ± 7.8 | 35.5 ± 0.4 | 1873.4 ± 3.4 |
WGP1F4 | 12.3 ± 0.1 | 84.1 ± 0.1 | 221.5 ± 2.1 | 35.5 ± 0.4 | 1767.7 ± 36.9 |
WGP1 mean value | 12.1 ± 0.0 b | 83.6 ± 0.4 b | 214.9 ± 4.1 b | 35.1 ± 0.4 b | 1815 ± 12.6 b |
RGPF1 | 11.7 ± 0.0 | 80.3 ± 0.7 | 201.0 ± 1.4 | 33.9 ± 0.7 | 1744.8 ± 33.8 |
RGPF2 | 12.3 ± 0.1 | 83.8 ± 1.0 | 220.0 ± 0.0 | 35.2 ± 0.5 | 1803.3 ± 10.0 |
RGPF3 | 12.4 ± 0.1 | 86.0 ± 1.6 | 218.0 ± 2.8 | 35.6 ± 0.5 | 1893.5 ± 17.2 |
RGPF4 | 12.4 ± 0.1 | 85.5 ± 0.3 | 217.0 ± 1.4 | 35.7 ± 0.4 | 1960.4 ± 99.4 |
RGP mean value | 12.2 ± 0.1 bc | 84.2 ± 0.9 b | 214.0 ± 1.4 b | 35.1 ± 0.5 b | 1850.5 ± 40.1 b |
CoFF1 | 10.7 ± 0.1 | 76.3 ± 0.6 | 185.0 ± 2.8 | 30.1 ± 0.3 | 1520.7 ± 101.7 |
CoFF2 | 12.3 ± 0.1 | 84.2 ± 0.5 | 210.0 ± 2.8 | 35.3 ± 0.1 | 1848.7 ± 27.7 |
CoFF3 | 12.6 ± 0.1 | 84.8 ± 0.4 | 217.5 ± 2.1 | 36.3 ± 0.5 | 1790.3 ± 51.0 |
CoFF4 | 12.6 ± 0.0 | 86.1 ± 0.5 | 216.5 ± 4.9 | 36.5 ± 0.6 | 1851.3 ± 10.0 |
CoF mean value | 12.0 ± 0.1 a | 82.8 ± 0.5 a | 207.3 ± 3.2 a | 34.5 ± 0.4 a | 1752.7 ± 47.6 a |
WGP2F1 | 11.7 ± 0.0 | 80.7 ± 0.8 | 201.0 ± 4.2 | 33.0 ± 0.2 | 1914.3 ± 46.7 |
WGP2F2 | 12.5 ± 0.1 | 85.2 ± 1.3 | 214.5 ± 4.9 | 35.9 ± 0.3 | 1857.1 ± 17.5 |
WGP2F3 | 12.6 ± 0.0 | 86.4 ± 0.1 | 211.5 ± 4.9 | 35.9 ± 0.0 | 1810.9 ± 54.4 |
WGP2F4 | 12.7 ± 0.1 | 86.5 ± 1.3 | 221.0 ± 2.8 | 36.0 ± 0.0 | 1802.1 ± 9.2 |
WGP2 mean value | 12.4 ± 0.0 d | 84.7 ± 0.9 c | 212.0 ± 4.2 b | 35.2 ± 0.1 b | 1846.1 ± 32.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osete-Alcaraz, L.; Gómez-Plaza, E.; Oliva-Ortiz, J.; Cámara, M.Á.; Jørgensen, B.; Jurado-Fuentes, R.; Bautista-Ortín, A.B. Grape Pomace Fibres as a Sustainable Fining Agent to Ensure Red Wine Safety: A First Approach in a Continuous System. Foods 2025, 14, 1565. https://doi.org/10.3390/foods14091565
Osete-Alcaraz L, Gómez-Plaza E, Oliva-Ortiz J, Cámara MÁ, Jørgensen B, Jurado-Fuentes R, Bautista-Ortín AB. Grape Pomace Fibres as a Sustainable Fining Agent to Ensure Red Wine Safety: A First Approach in a Continuous System. Foods. 2025; 14(9):1565. https://doi.org/10.3390/foods14091565
Chicago/Turabian StyleOsete-Alcaraz, Lucía, Encarna Gómez-Plaza, José Oliva-Ortiz, Miguel Ángel Cámara, Bodil Jørgensen, Ricardo Jurado-Fuentes, and Ana Belén Bautista-Ortín. 2025. "Grape Pomace Fibres as a Sustainable Fining Agent to Ensure Red Wine Safety: A First Approach in a Continuous System" Foods 14, no. 9: 1565. https://doi.org/10.3390/foods14091565
APA StyleOsete-Alcaraz, L., Gómez-Plaza, E., Oliva-Ortiz, J., Cámara, M. Á., Jørgensen, B., Jurado-Fuentes, R., & Bautista-Ortín, A. B. (2025). Grape Pomace Fibres as a Sustainable Fining Agent to Ensure Red Wine Safety: A First Approach in a Continuous System. Foods, 14(9), 1565. https://doi.org/10.3390/foods14091565