Incorporating Fatty Acids Enhanced the Performance of Konjac Glucomannan/Chitosan/Zein Film
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Film Preparation
2.3. Rheological Properties of Various Film Solutions
2.4. FTIR Analysis of Various Films
2.5. XRD Analysis of Various Films
2.6. Thermal Stabilities Analysis of Various Films
2.7. Microstructure Analysis of Various Films
2.8. Mechanical Properties of Various Films
2.9. Water Content (WC), Solubility (WS), Vapor Permeability (WVP) and Contact Angle (WCA) of Various Films
2.10. Color Analysis of Various Films
2.11. Opacity Analysis of Various Films
2.12. Statistical Analysis
3. Results and Discussions
3.1. Rheological Properties of Various Film Solutions
3.2. FTIR Analysis of Various Films
3.3. XRD Analysis of Various Films
3.4. Thermal Stabilities of Various Films
3.5. Microstructure of Various Films
3.6. Mechanical Properties of Various Films
3.7. Water Content (WC), Solubility (WS), Vapor Permeability (WVP) and Contact Angle (WCA) of Various Films
3.8. Opacity and Color of Various Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
KGM | Konjac glucomannan |
CTS | Chitosan |
SA | Stearic acid |
LA | Lauric acid |
FA | Fatty acid |
KCZ | Konjac glucomannan/chitosan/Zein |
WC | Water content |
WS | Water solubility |
WVP | Water vapor permeability |
WCA | Water contact angle |
EB | Elongation at break |
TS | Tensile strength |
FTIR | Fourier transform infrared spectroscopy |
DSC | Differential scanning calorimetry |
TGA | Thermogravimetric analyzer |
XRD | X-ray diffractometer |
SEM | Scanning electron microscopy |
AFM | Atomic force microscope |
References
- Mirpourian, N.S.; Fathi, M.; Maleky, F. Production of starch edible films using chitin nanocrystals extracted from mushroom. Int. J. Food Sci. Technol. 2024, 59, 9402–9416. [Google Scholar] [CrossRef]
- Bahraminejad, S.; Mousavi, M.; Askari, G.; Gharaghani, M. Effect of octenylsuccination of alginate on structure, mechanical and barrier properties of alginate-zein composite film. Int. J. Biol. Macromol. 2023, 226, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, F.; Zhao, H.Y.; Wu, H.L.; Sun, C.X.; Li, Q. Furoic acid-mediated konjac glucomannan/flaxseed gum based green biodegradable antibacterial film for Shine-Muscat grape preservation. Int. J. Biol. Macromol. 2023, 253, 126883. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Song, Y.Y.; Sun, J.; Jiang, G. A novel functionalized food packaging film with microwave-modified konjac glucomannan/chitosan/citric acid incorporated with antioxidant of bamboo leaves. LWT 2022, 166, 113780. [Google Scholar] [CrossRef]
- Wu, Y.M.; Wu, H.N.; Hu, L.D. Recent advances of proteins, polysaccharides and lipids-based edible films/coatings for food packaging applications: A review. Food Biophys. 2024, 19, 29–45. [Google Scholar] [CrossRef]
- Zhou, S.Y.; Peng, H.N.; Zhao, A.Q.; Yang, X.B.; Lin, D.H. Konjac glucomannan-based highly antibacterial active films loaded with thyme essential oil through bacterial cellulose nanofibers/Ag nanoparticles stabilized Pickering emulsions. Int. J. Biol. Macromol. 2024, 269, 131875. [Google Scholar] [CrossRef]
- Amin, U.; Khan, M.U.; Majeed, Y.; Rebezov, M.; Khayrullin, M.; Bobkova, E.; Shariati, M.A.; Chung, I.M.; Thiruvengadam, M. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int. J. Biol. Macromol. 2021, 183, 2184–2198. [Google Scholar] [CrossRef]
- Chandarana, C.; Bonde, S.; Vashi, V.; Akhter, M.S.; Prajapati, B. Konjac Glucomannan-based edible films: Method, properties, and applications. J. Food Process Eng. 2024, 47, e70009. [Google Scholar] [CrossRef]
- Li, H.C.; Tan, W.T.; Hou, M.X.; Yang, S.; Liu, C.Y.; Han, M.Z.; Liang, J.J.; Gao, Z.P. Multi-strategy dynamic cross-linking to prepare EGCG-loaded multifunctional Pickering emulsion/α-cyclodextrin/konjac glucomannan composite films for ultra-durable preservation of perishable fruits. Carbohydr. Polym. 2024, 338, 122205. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, D.D.; Zeng, Y.; Cheng, J.J.; Wang, R.; Peng, B.; Chen, K.; Deng, P.P.; Jiang, F.T.; Zhao, X.J. Impact of anthocyanin extract sources on the physical properties and pH sensitivity of konjac glucomannan/zein composite film. Food Bioprocess Technol. 2024, 17, 3926–3943. [Google Scholar] [CrossRef]
- Wang, S.C.; Li, M.Y.; He, B.B.; Yong, Y.Y.; Zhu, J. Composite films of sodium alginate and konjac glucomannan incorporated with tea polyphenols for food preservation. Int. J. Biol. Macromol. 2023, 242, 124732. [Google Scholar] [CrossRef] [PubMed]
- Bu, N.T.; Huang, L.Y.; Cao, G.Y.; Lin, H.L.; Pang, J.; Wang, L.; Mu, R.J. Konjac glucomannan/Pullulan films incorporated with cellulose nanofibrils-stabilized tea tree essential oil Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2022, 650, 129553. [Google Scholar] [CrossRef]
- Tian, R.M.; Yuan, S.; Jiang, J.; Kuang, Y.; Wu, K.; Sun, S.; Chen, K.; Jiang, F.T. Improvement of mechanical, barrier properties, and water resistance of konjac glucomannan/curdlan film by zein addition and the coating for cherry tomato preservation. Int. J. Biol. Macromol. 2024, 276, 134132. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, Y.C.; Meng, F.B.; Wang, Q.; Wang, Z.W.; Liu, D.Y. Effect of honeysuckle leaf extract on the physicochemical properties of carboxymethyl konjac glucomannan/konjac glucomannan/gelatin composite edible film. Food Chem. X 2023, 18, 100675. [Google Scholar] [CrossRef]
- Zhang, W.; Rhim, J.W. Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocoll. 2022, 128, 107572. [Google Scholar] [CrossRef]
- Wu, H.W.; Wu, H.Y.; Qing, Y.L.; Wu, C.H.; Pang, J. KGM/chitosan bio-nanocomposite films reinforced with ZNPs: Colloidal, physical, mechanical and structural attributes. Food Packag. Shelf Life 2022, 33, 100870. [Google Scholar] [CrossRef]
- Lin, W.H.; Li, Q.; Zhu, T.R. New chitosan/konjac glucomannan blending membrane for application in pervaporation dehydration of caprolactam solution. J. Ind. Eng. Chem. 2012, 18, 934–940. [Google Scholar] [CrossRef]
- Xiao, C.B.; Gao, S.J.; Wang, H.; Zhang, L.N. Blend films from chitosan and konjac glucomannan solutions. J. Appl. Polym. Sci. 2000, 76, 509–515. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, S.Y.; Yang, C.J.; Zhang, L.L.; Li, Z.W.; Jiang, S.Q.; Bai, R.; Ye, X.; Ding, W. Chitosan/konjac glucomannan bilayer films: Physical, structural, and thermal properties. Int. J. Biol. Macromol. 2024, 257, 128660. [Google Scholar] [CrossRef]
- Sun, J.S.; Jiang, H.X.; Wu, H.B.; Tong, C.L.; Pang, J.; Wu, C.H. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocoll. 2020, 107, 105942. [Google Scholar] [CrossRef]
- Bishnoi, S.; Trifol, J.; Moriana, R.; Mendes, A.C. Adjustable polysaccharides proteins films made of aqueous wheat proteins and alginate solutions. Food Chem. 2022, 391, 133196. [Google Scholar] [CrossRef] [PubMed]
- Calva-Estrada, S.J.; Jiménez-Fernández, M.; Lugo-Cervantes, E. Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 2019, 11, 78–92. [Google Scholar] [CrossRef]
- Escamilla-García, M.; Calderón-Domínguez, G.; Chanona-Pérez, J.J.; Farrera-Rebollo, R.R.; Andraca-Adame, J.A.; Arzate-Vázquez, I.; Mendez-Mendez, J.V.; Moreno-Ruiz, L.A. Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int. J. Biol. Macromol. 2013, 61, 196–203. [Google Scholar] [CrossRef]
- Qiao, D.L.; Lu, J.Y.; Chen, Z.N.; Liu, X.Z.; Li, M.Y.; Zhang, B.J. Zein inclusion changes the rheological, hydrophobic and mechanical properties of agar/konjac glucomannan based system. Food Hydrocoll. 2023, 137, 108365. [Google Scholar] [CrossRef]
- Lan, X.; Zhang, X.Y.; Wang, L.; Wang, H.Y.; Hu, Z.; Ju, X.C.; Yuan, Y.K. A review of food preservation based on zein: The perspective from application types of coating and film. Food Chem. 2023, 424, 136403. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.X.; Huang, H.; Liu, A.; Liu, H.N.; Abid, N.; Ming, L.S. Chitosan/zein films incorporated with essential oil nanoparticles and nanoemulsions: Similarities and differences. Int. J. Biol. Macromol. 2022, 208, 983–994. [Google Scholar] [CrossRef]
- Athanasopoulou, E.; Bigi, F.; Maurizzi, E.; Karellou, E.I.E.; Pappas, C.S.; Quartieri, A.; Tsironi, T. Synthesis and characterization of polysaccharide-and protein-based edible films and application as packaging materials for fresh fish fillets. Sci. Rep. 2024, 14, 517. [Google Scholar] [CrossRef]
- Wang, K.; Wu, K.; Xiao, M.; Kuang, Y.; Corke, H.; Ni, X.W.; Jiang, F.T. Structural characterization and properties of konjac glucomannan and zein blend films. Int. J. Biol. Macromol. 2017, 105, 1096–1104. [Google Scholar] [CrossRef]
- Xu, X.Y.; Feng, X.; Gao, C.C.; Cheng, W.W.; Meng, L.H.; Wu, D.; Wang, Z.J.; Tang, X.Z. Performance enhancing of saturated fatty acids with various carbon chain lengths on the structures and properties of zein films in alkaline solvents. Food Hydrocoll. 2024, 155, 110214. [Google Scholar] [CrossRef]
- Wu, X.N.; Chen, H.R.; Wang, X.Y.; Huang, Z.Y.; Fang, Y.; Lin, Q.L.; Ding, Y.B. Effect of fatty acids with different chain lengths and degrees of unsaturation on film properties of potato starch-fatty acids films for chicken packaging. Food Biophys. 2023, 18, 457–469. [Google Scholar] [CrossRef]
- Liu, P.F.; Gao, W.; Zhang, X.L.; Wang, B.; Zou, F.X.; Yu, B.; Lu, L.; Fang, Y.S.; Wu, Z.Z.; Yuan, C.; et al. Effects of ultrasonication on the properties of maize starch/stearic acid/sodium carboxymethyl cellulose composite film. Ultrason. Sonochemistry 2021, 72, 105447. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wu, C.L.; Feng, X.M.; He, M.Y.; Zhu, X.Q.; Li, Y.; Teng, F. Effects of two fatty acids on soy protein isolate/sodium alginate edible films: Structures and properties. LWT 2022, 159, 113221. [Google Scholar] [CrossRef]
- Zhou, F.; Gu, Z.P.; Zeng, Z.; Tang, X.S.; Li, C.; Fang, Z.F.; Hu, B.; Chen, H.; Wang, C.X.; Chen, S.Y.; et al. Preparation, characterization and application of Konjac glucomannan/pullulan/microcrystalline cellulose/tea polyphenol active blend film. Food Biosci. 2022, 49, 101898. [Google Scholar] [CrossRef]
- Chang, X.; Hou, Y.H.; Liu, Q.; Hu, Z.Y.; Xie, Q.T.; Shan, Y.; Li, G.Y.; Ding, S.H. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocoll. 2021, 119, 106846. [Google Scholar] [CrossRef]
- Qiao, D.L.; Shi, W.J.; Luo, M.; Hu, W.T.; Huang, Y.C.; Jiang, F.T.; Xie, F.W.; Zhang, B.J. Increasing xanthan gum content could enhance the performance of agar/konjac glucomannan-based system. Food Hydrocoll. 2022, 132, 107845. [Google Scholar] [CrossRef]
- Lin, W.M.; Ni, Y.S.; Pang, J. Size effect-inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging. Int. J. Biol. Macromol. 2020, 149, 853–860. [Google Scholar] [CrossRef]
- Wu, C.H.; Li, Y.Z.; Du, Y.; Wang, L.; Tong, C.L.; Hu, Y.Q.; Pang, J.; Yan, Z.M. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocoll. 2019, 89, 682–690. [Google Scholar] [CrossRef]
- Xu, X.W.; Pang, J. Fabrication and characterization of composite biofilm of konjac glucomannan/sodium lignosulfonate/ε-polylysine with reinforced mechanical strength and antibacterial ability. Polymers 2021, 13, 3367. [Google Scholar] [CrossRef]
- Qiao, D.L.; Tu, W.Y.; Zhong, L.; Wang, Z.; Zhang, B.J.; Jiang, F.T. Microstructure and mechanical/hydrophilic features of agar-based films incorporated with konjac glucomannan. Polymers 2019, 11, 1952. [Google Scholar] [CrossRef]
- Lin, W.M.; Ni, Y.S.; Pang, J. Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydr. Polym. 2019, 222, 114986. [Google Scholar] [CrossRef]
- Zhang, L.M.; Li, K.N.; Yu, D.W.; Regenstein, J.M.; Dong, J.L.; Chen, W.W.; Xia, W.S. Chitosan/zein bilayer films with one-way water barrier characteristic: Physical, structural and thermal properties. Int. J. Biol. Macromol. 2022, 200, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.S.; Du, Y.; Ma, J.Q.; Li, Y.Z.; Wang, L.; Lu, Y.Z.; Zou, J.W.; Pang, J.; Wu, C.H. Transparent bionanocomposite films based on konjac glucomannan, chitosan, and TEMPO-oxidized chitin nanocrystals with enhanced mechanical and barrier properties. Int. J. Biol. Macromol. 2019, 138, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Kennedy, J.F.; Li, B.; Xie, B.J. Condensed state structure and biocompatibility of the konjac glucomannan/chitosan blend films. Carbohydr. Polym. 2006, 64, 532–538. [Google Scholar] [CrossRef]
- Zhang, L.M.; Liu, Z.L.; Wang, X.Y.; Dong, S.; Sun, Y.; Zhao, Z.T. The properties of chitosan/zein blend film and effect of film on quality of mushroom (Agaricus bisporus). Postharvest Biol. Technol. 2019, 155, 47–56. [Google Scholar] [CrossRef]
- Li, C.; Wu, K.; Su, Y.H.; Riffat, S.B.; Ni, X.W.; Jiang, F.T. Effect of drying temperature on structural and thermomechanical properties of konjac glucomannan-zein blend films. Int. J. Biol. Macromol. 2019, 138, 135–143. [Google Scholar] [CrossRef]
- De la Caba, K.; Peña, C.; Ciannamea, E.M.; Stefani, P.M.; Mondragon, I.; Ruseckaite, R.A. Characterization of soybean protein concentrate-stearic acid/palmitic acid blend edible films. J. Appl. Polym. Sci. 2012, 124, 1796–1807. [Google Scholar] [CrossRef]
- Zahedi, Y.; Ghanbarzadeh, B.; Sedaghat, N. Physical properties of edible emulsified films based on pistachio globulin protein and fatty acids. J. Food Eng. 2010, 100, 102–108. [Google Scholar] [CrossRef]
- Ma, S.J.; Zheng, Y.R.; Zhou, R.; Ma, M. Characterization of chitosan films incorporated with different substances of konjac glucomannan, cassava starch, maltodextrin and gelatin, and application in mongolian cheese packaging. Coatings 2021, 11, 84. [Google Scholar] [CrossRef]
- Neto, R.J.G.; Genevro, G.M.; de Almeida Paulo, L.; Lopes, P.S.; de Moraes, M.A.; Beppu, M.M. Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydr. Polym. 2019, 212, 59–66. [Google Scholar] [CrossRef]
- Li, C.; Xiang, F.; Wu, K.; Jiang, F.T.; Ni, X.W. Changes in microstructure and rheological properties of konjac glucomannan/zein blend film-forming solution during drying. Carbohydr. Polym. 2020, 250, 116840. [Google Scholar] [CrossRef]
- Gahruie, H.H.; Mostaghimi, M.; Ghiasi, F.; Tavakoli, S.; Naseri, M.; Hosseini, S.M.H. The effects of fatty acids chain length on the techno-functional properties of basil seed gum-based edible films. Int. J. Biol. Macromol. 2020, 160, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Sun, C.; Zhai, X.S.; Zhang, R.; Zhang, S.K.; Sun, C.C.; Wang, W.T.; Hou, H.X. Effect of lipids with different physical state on the physicochemical properties of starch/gelatin edible films prepared by extrusion blowing. Int. J. Biol. Macromol. 2021, 185, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Galus, S. Functional properties of soy protein isolate edible films as affected by rapeseed oil concentration. Food Hydrocoll. 2018, 85, 233–241. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Liu, F.G.; Liang, C.X.; Yuan, F.; Gao, Y.X. Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on ε-polylysine and chitosan. J. Sci. Food Agric. 2014, 94, 2986–2991. [Google Scholar] [CrossRef]
- Ma, Q.Y.; Hu, D.Y.; Wang, H.X.; Wang, L.J. Tara gum edible film incorporated with oleic acid. Food Hydrocoll. 2016, 56, 127–133. [Google Scholar] [CrossRef]
- Pereda, M.; Aranguren, M.I.; Marcovich, N.E. Caseinate films modified with tung oil. Food Hydrocoll. 2010, 24, 800–808. [Google Scholar] [CrossRef]
Films | Thickness (μm) | TS (MPa) | EB (%) |
---|---|---|---|
KGM | 55.50 ± 5.26 b | 29.05 ± 0.31 f | 5.99 ± 0.23 ce |
CTS | 71.50 ± 10.41 a | 17.00 ± 0.03 g | 3.64 ± 0.15 df |
Zein | 45.00 ± 4.76 cde | 3.44 ± 0.13 h | 2.61 ± 0.30 df |
KC | 46.75 ± 6.70 cde | 31.58 ± 0.27 d | 6.96 ± 0.37 ce |
KZ | 52.75 ± 3.40 bc | 29.92 ± 0.16 e | 7.16 ± 0.40 ce |
KCZ | 48.00 ± 5.42 bcd | 32.13 ± 0.02 cd | 6.34 ± 0.61 ce |
KCZ-LA1 | 49.50 ± 3.70 bcd | 32.76 ± 0.34 c | 8.71 ± 0.44 b |
KCZ-LA2 | 46.25 ± 6.85 cde | 34.49 ± 0.48 b | 5.91 ± 0.56 c |
KCZ-LA3 | 45.00 ± 4.76 cde | 37.94 ± 0.12 a | 2.82 ± 0.46 d |
KCZ-LA4 | 46.00 ± 5.89 cde | 34.46 ± 0.09 b | 7.17 ± 0.53 c |
KCZ-LA5 | 50.00 ± 1.63 bcd | 30.62 ± 0.35 e | 14.69 ± 0.39 a |
KCZ-SA2 | 48.25 ± 6.65 bcd | 33.10 ± 0.30 c | 16.15 ± 0.45 b |
KCZ-SA4 | 44.00 ± 6.06 de | 35.21 ± 0.45 b | 12.72 ± 0.28 c |
KCZ-SA6 | 38.25 ± 3.30 e | 37.59 ± 0.22 a | 9.34 ± 0.56 d |
KCZ-SA8 | 45.00 ± 7.02 cde | 34.66 ± 0.26 b | 10.08 ± 0.41 d |
KCZ-SA10 | 49.25 ± 9.78 bcd | 33.79 ± 0.17 c | 19.77 ± 0.37 a |
Films | WC (%) | WS (%) | WVP × 10−11 (g∙m−1·s−1·Pa−1) |
---|---|---|---|
KGM | 53.89 ± 0.09 b | 100 ± 0.00 a | 9.31 ± 0.05 b |
CTS | 68.30 ± 0.07 a | 46.35 ± 0.06 c | 9.97 ± 0.02 a |
Zein | 9.50 ± 0.15 k | 10.61 ± 0.08 k | 6.25 ± 0.01 hi |
KC | 53.20 ± 0.09 c | 47.63 ± 0.03 b | 9.25 ± 0.00 c |
KZ | 42.45 ± 0.03 d | 38.77 ± 0.05 d | 8.82 ± 0.03 d |
KCZ | 40.39 ± 0.03 e | 37.66 ± 0.04 e | 8.68 ± 0.05 e |
KCZ-LA1 | 36.73 ± 0.00 f | 34.31 ± 0.00 g | 7.60 ± 0.05 f |
KCZ-LA2 | 21.54 ± 0.02 i | 32.13 ± 0.13 i | 6.28 ± 0.01 h |
KCZ-LA3 | 16.11 ± 0.08 j | 30.79 ± 0.05 j | 4.58 ± 0.03 j |
KCZ-LA4 | 23.89 ± 0.06 h | 33.55 ± 0.07 h | 5.58 ± 0.02 i |
KCZ-LA5 | 35.78 ± 0.04 g | 36.15 ± 0.05 f | 6.86 ± 0.03 g |
KCZ-SA2 | 36.36 ± 0.00 f | 32.66 ± 0.12 g | 7.83 ± 0.02 f |
KCZ-SA4 | 35.34 ± 0.07 h | 31.33 ± 0.01 i | 7.02 ± 0.01 h |
KCZ-SA6 | 33.33 ± 0.00 j | 30.21 ± 0.09 j | 6.17 ± 0.01 i |
KCZ-SA8 | 34.44 ± 0.04 i | 32.31 ± 0.14 h | 7.32 ± 0.03 g |
KCZ-SA10 | 35.79 ± 0.15 g | 33.89 ± 0.05 f | 7.77 ± 0.02 f |
Samples | Opacity | L* | a* | b* | ΔE* |
---|---|---|---|---|---|
KGM | 3.43 ± 0.03 jk | 92.59 ± 0.04 a | 0.82 ± 0.04 b | −0.54 ± 0.03 k | 1.83 ± 0.04 k |
CTS | 4.65 ± 0.05 ij | 92.46 ± 0.02 b | 0.42 ± 0.07 cd | 1.24 ± 0.02 j | 2.73 ± 0.02 j |
Zein | 6.60 ± 0.08 hi | 90.50 ± 0.02 c | 0.79 ± 0.02 b | 5.75 ± 0.02 i | 6.58 ± 0.02 i |
KC | 5.15 ± 0.08 gh | 92.36 ± 0.06 b | 0.49 ± 0.04 cd | 0.91 ± 0.08 h | 2.42 ± 0.11 h |
KZ | 7.13 ± 0.03 fg | 90.11 ± 0.02 de | 0.97 ± 0.01 a | 6.07 ± 0.03 g | 6.93 ± 0.02 g |
KCZ | 7.53 ± 0.07 ef | 90.38 ± 0.03 cd | 0.22 ± 0.01 ef | 7.08 ± 0.04 f | 7.96 ± 0.03 f |
KCZ-LA1 | 7.68 ± 0.01 e | 90.37 ± 0.03 c | 0.17 ± 0.05 f | 8.39 ± 0.01 e | 9.27 ± 0.01 e |
KCZ-LA2 | 8.00 ± 0.05 d | 89.81 ± 0.05 e | 0.32 ± 0.07 de | 9.57 ± 0.05 d | 10.46 ± 0.05 d |
KCZ-LA3 | 9.06 ± 0.13 c | 89.16 ± 0.04 f | 0.32 ± 0.04 de | 10.78 ± 0.03 c | 11.80 ± 0.03 c |
KCZ-LA4 | 11.19 ± 0.08 b | 88.70 ± 0.08 g | 0.36 ± 0.00 cd | 11.49 ± 0.05 b | 12.54 ± 0.02 b |
KCZ-LA5 | 13.19 ± 0.05 a | 88.41 ± 0.03 h | 0.45 ± 0.03 cd | 12.60 ± 0.00 a | 13.64 ± 0.00 a |
KCZ-SA2 | 11.22 ± 0.08 e | 88.67 ± 0.05 f | 0.39 ± 0.01 d | 9.69 ± 0.04 e | 10.60 ± 0.04 e |
KCZ-SA4 | 12.65 ± 0.02 d | 89.29 ± 0.02 g | 0.48 ± 0.05 cd | 10.59 ± 0.01 d | 11.52 ± 0.01 d |
KCZ-SA6 | 13.68 ± 0.06 c | 89.16 ± 0.00 h | 0.57 ± 0.09 c | 11.49 ± 0.01 c | 12.43 ± 0.00 c |
KCZ-SA8 | 14.28 ± 0.08 b | 88.83 ± 0.03 i | 0.58 ± 0.04 c | 12.35 ± 0.04 b | 13.32 ± 0.04 b |
KCZ-SA10 | 15.24 ± 0.04 a | 88.38 ± 0.06 j | 0.52 ± 0.03 cd | 13.58 ± 0.02 a | 14.66 ± 0.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, Y.; Zhao, X.; Pang, J. Incorporating Fatty Acids Enhanced the Performance of Konjac Glucomannan/Chitosan/Zein Film. Foods 2025, 14, 1563. https://doi.org/10.3390/foods14091563
Wang X, Chen Y, Zhao X, Pang J. Incorporating Fatty Acids Enhanced the Performance of Konjac Glucomannan/Chitosan/Zein Film. Foods. 2025; 14(9):1563. https://doi.org/10.3390/foods14091563
Chicago/Turabian StyleWang, Xiumei, Yibin Chen, Xiaoxu Zhao, and Jie Pang. 2025. "Incorporating Fatty Acids Enhanced the Performance of Konjac Glucomannan/Chitosan/Zein Film" Foods 14, no. 9: 1563. https://doi.org/10.3390/foods14091563
APA StyleWang, X., Chen, Y., Zhao, X., & Pang, J. (2025). Incorporating Fatty Acids Enhanced the Performance of Konjac Glucomannan/Chitosan/Zein Film. Foods, 14(9), 1563. https://doi.org/10.3390/foods14091563