Flavors of the Earth: Bioprospecting and Potential of Agricultural Ingredients in Yogurt Production with a Focus on Sustainability, Quality, and Technological Innovation
Abstract
:1. Introduction
2. Methods
3. Food Production, Waste, and Sustainability: Bases for the Valorization of Ingredients Obtained from Agricultural Processing
4. Technological Advances and Market Projections in the Dairy Industry for New Products at the Interface of Bioprospecting and the Circular Economy
5. Trends and Effects of Enrichment with Vegetables Designated as Ingredients in the Development of Functional Yogurts
5.1. Applications in Yogurt: Qualitative Analysis of the Evidence
5.2. Effects on pH and Titratable Acidity
5.3. Microbiological Viability
5.4. Technological Properties
5.5. Phytochemical Enhancement
5.6. Sensory Impact
6. Limitations and Challenges of Bioprospecting in the Dairy Segment
7. Conclusions, Future Projections, and Highlights
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FAO | Food and Agriculture Organization |
pH | Hydrogen potential |
Min | Minutes |
g | Grams |
mL | Milliliters |
w | Weight |
L | Liter |
ROS | Oxygen species |
DPPH | 2,2-difenil-1-picrilhidrazil |
FRAP | Ferric reducing antioxidant power |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) |
ANVISA | National Health Surveillance Agency |
EFSA | European Food Safety Authority |
References
- Rațu, R.N.; Veleșcu, I.D.; Stoica, F.; Usturoi, A.; Arsenoaia, V.N.; Crivei, I.C.; Postolache, A.N.; Lipșa, F.D.; Filipov, F.; Florea, A.M.; et al. Application of Agri-Food By-Products in the Food Industry. Agriculture 2023, 13, 1559. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf (accessed on 24 April 2025).
- Sustainability Pathways. Available online: https://www.fao.org/nr/sustainability/food-loss-and-waste/en/ (accessed on 27 March 2025).
- The Circularity Gap Report 2023, Amsterdam: Circle Economy. Available online: https://cdn.prod.website-files.com/5e185aa4d27bcf348400ed82/63ecb3ad94e12d3e5599cf54_CGR%202023%20-%20Report.pdf (accessed on 27 March 2025).
- Comunian, T.A.; Silva, M.P.; Souza, C.J.F. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Cangussu, L.B.; Fronza, P.; Cavalcanti, W.M. Pós ricos em fibras de subprodutos de frutas tropicais: Uma revisão bibliográfica sobre seus compostos bioativos. RSD 2020, 9, e80996803. [Google Scholar] [CrossRef]
- Milovanovic, B.; Tomovic, V.; Djekic, I.; Miocinovic, J.; Solowiej, B.G.; Lorenzo, J.M.; Barba, F.J.; Tomasevic, I. Colour Assessment of Milk and Milk Products Using Computer Vision System and Colorimeter. Int. Dairy J. 2021, 120, 105084. [Google Scholar] [CrossRef]
- Adedokun, T.O.; Matemu, A.; Höglinger, O.; Mlyuka, E.; Adedeji, A. Evaluation of Functional Attributes and Storage Stability of Novel Juice Blends from Baobab, Pineapple, and Black-Plum Fruits. Heliyon 2022, 8, e09340. [Google Scholar] [CrossRef] [PubMed]
- Bebek Markovinović, A.; Brdar, D.; Putnik, P.; Bosiljkov, T.; Durgo, K.; Huđek Turković, A.; Brčić Karačonji, I.; Jurica, K.; Pavlić, B.; Granato, D.; et al. Strawberry Tree Fruits (Arbutus unedo L.): Bioactive Composition, Cellular Antioxidant Activity, and 3D Printing of Functional Foods. Food Chem. 2024, 433, 137287. [Google Scholar] [CrossRef]
- Costa, M.P.; Monteiro, M.L.G.; Frasao, B.S.; Silva, V.L.M.; Rodrigues, B.L.; Chiappini, C.C.J.; Conte-Junior, C.A. Consumer Perception, Health Information, and Instrumental Parameters of Cupuassu (Theobroma grandiflorum) Goat Milk Yogurts. J. Dairy Sci. 2017, 100, 157–168. [Google Scholar] [CrossRef]
- Ou, J. Incorporation of Polyphenols in Baked Products. Adv. Food Nutr. Res. 2021, 98, 207–252. [Google Scholar] [CrossRef]
- De Freitas, S.T.F.; Benvindo-Souza, M.; Teodoro, L.O.; Goulart, M.M.P.; Pinto, T.F.E.; Azevedo, M.O.; Valentim, A.M.; Pereira, P.S.; Santos, L.R.S.; Dyszy, F.H. Aspectos taxonômicos da bioprospecção no Brasil: Tendência científica. Oecologia Aust. 2020, 24, 770–780. [Google Scholar] [CrossRef]
- Cubides, C.; Gutiérrez-Cortés, C.; Suarez, H. Bioprospecting in Food Production: An Approximation of the Current State in Colombia. Rev. Fac. Nac. Agron. 2023, 76, 1–20. [Google Scholar] [CrossRef]
- Ahmad, I.; Hao, M.; Li, Y.; Zhang, J.; Ding, Y.; Lyu, F. Fortification of Yogurt with Bioactive Functional Foods and Ingredients and Associated Challenges—A Review. Trends Food Sci. Technol. 2022, 129, 558–580. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Osman, A.I.; Chen, W. Natural Nutraceuticals for Enhancing Yogurt Properties: A Review. Environ. Chem. Lett. 2023, 21, 1907–1931. [Google Scholar] [CrossRef]
- ONU—United Nations Organization. The Sustainable Development Goals in Brazil. United Nations Brazil. 2022. Available online: https://brasil.un.org/pt-br/sdgs (accessed on 24 April 2025).
- Ferrari, R. Writing Narrative Style Literature Reviews. Med. Writ. 2015, 24, 230–235. [Google Scholar] [CrossRef]
- Casarin, S.T.; Porto, A.R.; Gabatz, R.I.B.; Bonow, C.A.; Ribeiro, J.P.; Mota, M.S. Types of Literature Review: Considerations of the Editors of the Journal of Nursing and Health. JONAH 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Vescovo, D.; Manetti, C.; Ruggieri, R.; Spizzirri, U.G.; Aiello, F.; Martuscelli, M.; Restuccia, D. The Valorization of Potato Peels as a Functional Ingredient in the Food Industry: A Comprehensive Review. Foods 2025, 14, 1333. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Moher, D. The PRISMA statement for reporting systematic reviews and metanalyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- FAO. Pegada de Desperdício de Alimentos: Impactos sobre os Recursos Naturais: Relatório Resumido; FAO: Roma, Itália, 2013; ISBN 9789251077528. [Google Scholar]
- Spizzirri, U.G.; Espósito, L.; Caputo, P.; Martuscelli, M.; Gagliano, M.; Clodoveo, M.L.; De Luca, G.; Rossi, C.O.; Savastano, M.; Scarcelli, E.; et al. Farinha de Polpa de Alfarroba como Fonte Inovadora de Moléculas Bioativas para a Preparação de Geleias de Alto Valor Agregado. Heliyon 2024, 10, e38354. [Google Scholar] [CrossRef] [PubMed]
- PNUMA. Relatório do Índice de Desperdício de Alimentos de 2024. Think Eat Save: Acompanhando o Progresso para Reduzir pela Metade o Desperdício Global de Alimentos; Nações Unidas: New York, NY, USA, 2024; Available online: https://www.unep.org/pt-br/resources/publicacoes/relatorio-do-indice-de-desperdicio-de-alimentos-2024 (accessed on 24 April 2025)ISBN 9789280741391.
- de Souza, J.B.; de Oliveira Júnior, N.J.; Maduro, M.R.; de Lima, O.P. Impactos Da Indústria 4.0 Na Sustentabilidade No Brasil: Uma revisão bibliográfica. Rev. Gestão Secretariado. 2024, 15, e3937. [Google Scholar] [CrossRef]
- Morrone, S.; Dimauro, C.; Gambella, F.; Cappai, M.G. Industry 4.0 and Precision Livestock Farming (PLF): An up-to-Date Overview across Animal Productions. Sensors 2022, 22, 4319. [Google Scholar] [CrossRef]
- Alcácer, V.; Cruz-Machado, V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. JESTECH 2019, 22, 899–919. [Google Scholar] [CrossRef]
- Liu, X.; Le Bourvellec, C.; Yu, J.; Zhao, L.; Wang, K.; Tao, Y.; Renard, C.M.G.C.; Hu, Z. Trends and Challenges on Fruit and Vegetable Processing: Insights into Sustainable, Traceable, Precise, Healthy, Intelligent, Personalized and Local Innovative Food Products. Trends Food Sci. Technol. 2022, 125, 12–25. [Google Scholar] [CrossRef]
- Verma, V.K.; Kamble, S.S.; Ganapatia, L.; Belhadi, A.; Gupta, S. 3D Printing for Sustainable Food Supply Chains: Modelling the Implementation Barriers. Int. J. Logist. Res. Appl. 2023, 26, 1190–1216. [Google Scholar] [CrossRef]
- Hassoun, A.; Prieto, M.A.; Carpena, M.; Yamine, B.; Marvin, H.J.P.; Pallarés, N.; Barba, F.J.; Bangar, S.P.; Chaudhary, V.; Ibrahim, S.; et al. Exploring the Role of Green and Industry 4.0 Technologies in Achieving Sustainable Development Goals in Food Sectors. Food Res. Int. 2022, 162, 112068. [Google Scholar] [CrossRef] [PubMed]
- Valério, G.; Costa, I.; Cardines, P. Desenvolvimento de iogurte enriquecido com batata Yacon: Uma proposta de alimento funcional | Revista Terra & Cultura: Cadernos de Ensino e Pesquisa. Unifil.br. Available online: http://periodicos.unifil.br/index.php/Revistateste/article/view/2591 (accessed on 24 April 2025).
- Barbosa, A.F.; Lopes, F.J.; Silva, V.R.O.; Silva, M.H.L.; Minim, V.P.R.; Silva, R.C.S.N. Sensory Acceptance of Peach-Flavored Yogurt Supplemented with Different Aroma and Pulp Concentrations Assessed by the Preference Mapping Technique. Rev. ILCT 2013, 68, 52–58. [Google Scholar] [CrossRef]
- Lollo, P.C.B.; de Moura, C.S.; Morato, P.N.; Cruz, A.G.; Castro, W.d.F.; Betim, C.B.; Nisishima, L.; Faria, J.d.A.F.; Maróstica, M.; Fernandes, C.O.; et al. Probiotic Yogurt Offers Higher Immune-Protection than Probiotic Whey Beverage. Food Res. Int. 2013, 54, 118–124. [Google Scholar] [CrossRef]
- da Silva, V.S.; Orlandelli, R.C. DESENVOLVIMENTO de ALIMENTOS FUNCIONAIS NOS ÚLTIMOS ANOS: UMA REVISÃO. Rev. Uningá 2019, 56, 182–194. [Google Scholar] [CrossRef]
- Rosa, L.d.s.; da Cruz, A.G.; Teodoro, A.J. Produtos Lácteos Probióticos E Câncer—Uma Revisão Narrativa. Res. Soc. Dev. 2022, 11, e30211528221. [Google Scholar] [CrossRef]
- Plasek, B.; Lakner, Z.; Kasza, G.; Temesi, Á. Consumer Evaluation of the Role of Functional Food Products in Disease Prevention and the Characteristics of Target Groups. Nutrients 2019, 12, 69. [Google Scholar] [CrossRef]
- Souto, C.N.; De Vida, E.Q. Doenças Crônicas: Possíveis Relações / Quality of Life and Chronic Diseases: Possible Relationships. Braz. J. Hea. Rev. 2020, 3, 8169–8196. [Google Scholar] [CrossRef]
- Stover, P.J.; Garza, C.; Durga, J.; Field, M.S. Emerging Concepts in Nutrient Needs. J. Nutr. 2020, 150, 2593S2601S. [Google Scholar] [CrossRef]
- Alongi, M.; Anese, M. Re-Thinking Functional Food Development through a Holistic Approach. J. Funct. Foods 2021, 81, 104466. [Google Scholar] [CrossRef]
- Mercado, L.T.D. Available online: https://www.mordorintelligence.com/pt/industry-reports/dairy-products-market (accessed on 28 March 2025).
- Guimarães, J.T.; Balthazar, C.F.; Silva, R.; Rocha, R.S.; Graça, J.S.; Esmerino, E.A.; Silva, M.C.; Sant’Ana, A.S.; Carmela, M.; Freitas, M.Q.; et al. Impact of Probiotics and Prebiotics on Food Texture. Curr. Opin. Food Sci. 2019, 33, 38–44. [Google Scholar] [CrossRef]
- Embrapa Gado de Leite (CNPGL). ANUÁRIO Leite 2022: Pecuária leiteira de precisão. Juiz de Fora: CNPGL, p.114. Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1144110 (accessed on 24 April 2025).
- Nagaoka, S. Yogurt Production. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; pp. 45–54. [Google Scholar] [CrossRef]
- Castro, D.; Teodoro, A. Anticancer Properties of Bioactive Compounds of Berry Fruits—A Review. Br. J. Med. Med. Res. 2015, 6, 771–794. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, S.M.F. Bioavailability of Nutrients, 6th ed.; Manole: Barueri, Brazil, 2020; p. 960. [Google Scholar]
- Rashwan, A.K.; Karim, N.; Shishir, M.R.I.; Bao, T.; Lu, Y.; Chen, W. Jujube Fruit: A Potential Nutritious Fruit for the Development of Functional Food Products. J. Funct. Foods 2020, 75, 104205. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Cui, H.; Fang, J.; Cheng, K.; Mo, J.; Chen, W. Chemical Composition, Quality Attributes and Antioxidant Activity of Stirred-Type Yogurt Enriched with Melastoma Dodecandrum Lour Fruit Powder. Food Funct. 2022, 13, 1579–1592. [Google Scholar] [CrossRef]
- Buchilina, A.; Aryana, K. Physicochemical and Microbiological Characteristics of Camel Milk Yogurt as Influenced by Monk Fruit Sweetener. J. Dairy Sci. 2021, 104, 1484–1493. [Google Scholar] [CrossRef]
- Huang, K.; Liu, Y.; Zhang, Y.; Cao, H.; Luo, D.; Yi, C.; Guan, X. Formulation of Plant-Based Yoghurt from Soybean and Quinoa and Evaluation of Physicochemical, Rheological, Sensory and Functional Properties. Food Biosci. 2022, 49, 101831. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; Radwan, H.A.; Elmeligy, A.A.; Hafiz, A.A.; Albrakati, A.; Elmahallawy, E.K. Production of a Yogurt Drink Enriched with Golden Berry (Physalispubescens L.) Juice and Its Therapeutic Effect on Hepatitis in Rats. Fermentation 2022, 8, 112. [Google Scholar] [CrossRef]
- Arroyo, B.J.; Santos, A.P.; Almeida de Melo, E.; Campos, A.; Lins, L.; Boyano-Orozco, L.C. Bioactive Compounds and Their Potential Use as Ingredients for Food and Its Application in Food Packaging. In Bioactive Compounds: Health Benefits and Potential Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Šeregelj, V.; Pezo, L.; Šovljanski, O.; Lević, S.; Nedović, V.; Markov, S.; Tomić, A.; Čanadanović-Brunet, J.; Vulić, J.; Šaponjac, V.T.; et al. New Concept of Fortified Yogurt Formulation with Encapsulated Carrot Waste Extract. LWT 2020, 138, 110732. [Google Scholar] [CrossRef]
- Saini, A.; Panwar, D.; Panesar, P.S.; Bera, M.B. Encapsulation of Functional Ingredients in Lipidic Nanocarriers and Antimicrobial Applications: A Review. Environ. Chem. Lett. 2020, 19, 1107–1134. [Google Scholar] [CrossRef]
- Silva, F.A.; do Egypto, R.D.C.R.; Leite, E.; Voss, G.B.; Campelo, S.; dos Santos Lima, M.; Manuela, M.; Vasconcelos, S. Incorporation of Phenolic-Rich Ingredients from Integral Valorization of Isabel Grape Improves the Nutritional, Functional and Sensory Characteristics of Probiotic Goat Milk Yogurt. Food Chem. 2021, 369, 130957. [Google Scholar] [CrossRef]
- Wu, T.; Deng, C.; Luo, S.; Liu, C.; Hu, X. Effect of Rice Bran on Properties of Yogurt: Comparison between Addition of Bran before Fermentation and after Fermentation. Food Hydrocoll. 2023, 135, 108122. [Google Scholar] [CrossRef]
- Kerdudo, A.; Burger, P.; Merck, F.; Dingas, A.; Rolland, Y.; Michel, T.; Fernandez, X. Development of a Natural Ingredient—Natural Preservative: A Case Study. Comptes Rendus Chim. 2016, 19, 1077–1089. [Google Scholar] [CrossRef]
- Roobab, U.; Khan, A.W.; Lorenzo, J.M.; Arshad, R.N.; Chen, B.-R.; Zeng, X.-A.; Bekhit, A.E.-D.; Suleman, R.; Aadil, R.M. A Systematic Review of Clean-Label Alternatives to Synthetic Additives in Raw and Processed Meat with a Special Emphasis on High-Pressure Processing (2018–2021). Food Res. Int. 2021, 150, 110792. [Google Scholar] [CrossRef]
- Baglio, E. The Industry of Yoghurt: Formulations and Food Additives. In Chemistry and Technology of Yoghurt Fermentation; SpringerBriefs in Molecular Science; Springer: Cham, Switzerland, 2014; Volume 1, pp. 33–57. [Google Scholar] [CrossRef]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Effect of Refrigerated Storage on Probiotic Viability and the Production and Stability of Antimutagenic and Antioxidant Peptides in Yogurt Supplemented with Pineapple Peel. J. Dairy Sci. 2015, 98, 5905–5916. [Google Scholar] [CrossRef] [PubMed]
- Karnopp, A.R.; Oliveira, K.G.; de Andrade, E.F.; Postingher, B.M.; Granato, D. Optimization of an Organic Yogurt Based on Sensorial, Nutritional, and Functional Perspectives. Food Chem. 2017, 233, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Kieserling, K.; Vu, T.M.; Drusch, S.; Schalow, S. Impact of Pectin-Rich Orange Fibre on Gel Characteristics and Sensory Properties in Lactic Acid Fermented Yoghurt. Food Hydrocoll. 2019, 94, 152–163. [Google Scholar] [CrossRef]
- Demirkol, M.; Tarakci, Z. Effect of Grape (Vitis Labrusca L.) Pomace Dried by Different Methods on Physicochemical, Microbiological and Bioactive Properties of Yoghurt. LWT 2018, 97, 770–777. [Google Scholar] [CrossRef]
- Van Nieuwenhove, C.P.; Moyano, A.; Castro-Gómez, P.; Fontecha, J.; Sáez, G.; Zárate, G.; Pizarro, P.L. Comparative Study of Pomegranate and Jacaranda Seeds as Functional Components for the Conjugated Linolenic Acid Enrichment of Yogurt. LWT 2019, 111, 401–407. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding Apple Pomace as a Functional Ingredient in Stirred-Type Yogurt and Yogurt Drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders. Fermentation 2022, 8, 469. [Google Scholar] [CrossRef]
- Sheikh, S.; Siddique, F.; Ameer, K.; Ahmad, R.S.; Hameed, A.; Ebad, A.; Mohamed Ahmed, I.A.; Shibli, S. Effects of White Mulberry Powder Fortification on Antioxidant Activity, Physicochemical, Microbial and Sensorial Properties of Yogurt Produced from Buffalo Milk. Food Sci. Nutr. 2022, 11, 204–215. [Google Scholar] [CrossRef]
- da Cunha Júnior, P.C.; Pinto, C.A.C.; Saraiva, J.M.A.; Ferreira, E.H.d.R. Effects of Purple-Fleshed Sweet Potato Lyophilized Powder on the Physicochemical Properties, Lactic Acid Bacteria Viability, Microstructure, and Textural Properties of Stirred Yogurt. Foods 2025, 14, 257. [Google Scholar] [CrossRef] [PubMed]
- Çalişkanlar, S.; Saygili, D.; Karagözlü, N.; Karagözlü, C. Utilization of Pomegranate and Black Grape Seed By-Products in Yogurt Production: Effects on Phenolic Compounds and Antioxidant Activity. Food Sci. Nutr. 2023, 12, 1170–1179. [Google Scholar] [CrossRef]
- Nakov, G.; Trajkovska, B.; Atanasova-Pancevska, N.; Daniloski, D.; Ivanova, N.; Lučan Čolić, M.; Jukić, M.; Lukinac, J. The Influence of the Addition of Hemp Press Cake Flour on the Properties of Bovine and Ovine Yoghurts. Foods 2023, 12, 958. [Google Scholar] [CrossRef]
- Alqahtani, N.K.; Alnemr, T.M.; Alsalem, A.K.; Alotaibi, M.M.; Mohammed, M. Experimental Investigation and Modeling for the Influence of Adding Date Press Cake on Drinkable Yogurt Quality. Foods 2023, 12, 1219. [Google Scholar] [CrossRef]
- Karaca, O.B.; Güzeler, N.; Tangüler, H.; Yaşar, K.; Akın, M.B. Effects of Apricot Fibre on the Physicochemical Characteristics, the Sensory Properties and Bacterial Viability of Nonfat Probiotic Yoghurts. Foods 2019, 8, 33. [Google Scholar] [CrossRef]
- Blejan, A.M.; Nour, V.; Corbu, A.R.; Codină, G.G. Influence of Bilberry Pomace Powder Addition on the Physicochemical, Functional, Rheological, and Sensory Properties of Stirred Yogurt. Gels 2024, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chen, Z.; Li, G.; Yao, X.; Hu, Y.; Zhao, W. Physicochemical, Sensory, and Antioxidant Characteristics of Stirred-Type Yogurt Enriched with Lentinula Edodes Stipe Powder. Food Sci. Nutr. 2023, 11, 6231–6240. [Google Scholar] [CrossRef]
- Stoica, F.; Rațu, R.N.; Motrescu, I.; Cara, I.G.; Filip, M.; Țopa, D.; Jităreanu, G. Application of Pomace Powder of Black Carrot as a Natural Food Ingredient in Yoghurt. Foods 2024, 13, 1130. [Google Scholar] [CrossRef]
- El-Said, M.M.; Haggag, H.F.; El-Din, H.M.F.; Gad, A.S.; Farahat, A.M. Antioxidant Activities and Physical Properties of Stirred Yoghurt Fortified with Pomegranate Peel Extracts. Ann. Agric. Sci. 2014, 59, 207–212. [Google Scholar] [CrossRef]
- Muniandy, P.; Shori, A.B.; Baba, A.S. Influence of Green, White and Black Tea Addition on the Antioxidant Activity of Probiotic Yogurt during Refrigerated Storage. Food Packag. Shelf Life 2016, 8, 1–8. [Google Scholar] [CrossRef]
- dos Santos, J.; Vasconcelos, M.d.F.M.; Oliveira, G.L.S.d.; Silva, V.d.C.; Júnior, B.I.D.; Pagani, A.A.C. Avaliação Dos Compostos Bioativos E ação Antioxidante Do Iogurte De Beterraba Com limão/Avaliação dos Compostos Bioativos e Ação Antioxidante do Iogurte de Beterraba com Limão. Braz. J. Desenvolver. 2020, 6, 29301–29311. [Google Scholar] [CrossRef]
- Shori, A.B. Storage Quality and Antioxidant Properties of Yogurt Fortified with Polyphenol Extract from Nutmeg, Black Pepper, and White Pepper. Electron. J. Biotechnol. 2022, 57, 24–30. [Google Scholar] [CrossRef]
- Dogan, C.; Dogan, N. Alterações nas características de qualidade de iogurtes de frutas funcionais fortificados com extratos de casca de várias nozes durante o armazenamento a frio. J. Microb. Biotech. Food. Sci. 2022, 12, e5830. [Google Scholar] [CrossRef]
- Pascariu, O.-E.; Estevinho, L.M.; Seixas, N.L.; Dopcea, I.; Boiu-Sicuia, O.A.; Geicu-Cristea, M.; Israel-Roming, F. Antioxidant Properties and Microbiological Stability of Yogurt Enriched with Elderberry Extract. Foods 2025, 14, 1251. [Google Scholar] [CrossRef]
- Bueno, L.; Silva, T.M.S.; Perina, N.P.; Bogsan, C.; Oliveira, M.N. Addition of Strawberry, Raspberry and “Pitanga” Pulps Improves the Physical Properties of Symbiotic Yoghurts. Chem. Eng. Trans. 2014, 38, 499–504. [Google Scholar] [CrossRef]
- Reka, M.; Vijayanchali, S.S.; Jancy Rani, D.; Rajapriya, K.; Nithya, R. Nutrient Composition, Antioxidant Activity and Phytonutrient of Yogurt Incorporated With Watermelon Fruit Pulp and Its Extract. JOAASR 2022, 4, 29–38. [Google Scholar] [CrossRef]
- Ning, X.; Luo, Z.; Chen, Z.; Zhou, C.; Xie, C.; Du, W.; Wang, L. Fortification of Set Yogurt with Passion Fruit Juice: Effects on Fermentation Kinetics, Physicochemical Properties, and Functionality. J. Dairy Sci. 2021, 104, 4084–4093. [Google Scholar] [CrossRef]
- Basiony, M.; Saleh, A.; Hassabo, R.; AL-Fargah, A. The Effect of Using Pomegranate and Strawberry Juices with Red Beet Puree on the Physicochemical, Microbial and Sensory Properties of Yoghurt. J. Food Meas. Charact. 2023, 17, 5024–5033. [Google Scholar] [CrossRef]
- Pădureţ, S.; Ghinea, C.; Prisacaru, A.E.; Leahu, A. Physicochemical, Textural, and Antioxidant Attributes of Yogurts Supplemented with Black Chokeberry: Fruit, Juice, and Pomace. Foods 2024, 13, 3231. [Google Scholar] [CrossRef]
- Kowaleski, J.; Quast, L.B.; Steffens, J.; Lovato, F.; Rodrigues dos Santos, L.; Zambiazi da Silva, S.; Maschio de Souza, D.; Felicetti, M.A. Functional Yogurt with Strawberries and Chia Seeds. Food Biosci. 2020, 37, 100726. [Google Scholar] [CrossRef]
- Sbruzzi Fiebig, M.; Regina Mendes Andrade, D.; José de Oliveira Mindelo, L.; Santos de Gois, J.; Luna, A.S.; Afonso Provenzi, M.; Luiz Esteves Magalhães, W.; Miotto, M.; Vieira Helm, C.; Schwinden Prudencio, E. Pinhão Potential and Their Parts (Failures, Shells, and Almonds) in the Elaboration of Yogurts Containing Acai Pulp: Physicochemical, Nutritional, and Functional Properties, Antimicrobial Activity, and Multi-Elemental Profile. Food Res. Int. 2024, 192, 114813. [Google Scholar] [CrossRef] [PubMed]
- Rifky, M.; Jesfar, M.; Dissanayake, K.; Orif, U.; Samadiy, M. Production of Yoghurts with the Addition of Microencapsulated Cinnamon, Garlic and Cumin Oil with Corn Oil. E3S Web of Conf. 2024, 480, 03014. [Google Scholar] [CrossRef]
- Grimaldi, M.; Pitirollo, O.; Ornaghi, P.; Corradini, C.; Cavazza, A. Valorization of Agro-Industrial Byproducts: Extraction and Analytical Characterization of Valuable Compounds for Potential Edible Active Packaging Formulation. Food Packag. Shelf Life 2022, 33, 100900. [Google Scholar] [CrossRef]
- Areia, B.; Ribeiro, J.S.; Bruno, E.; Camelo, C.; Zanuto, M.E. Principias Métodos de Secagem Utilizados Na Obtenção de Polpa de Fruto Em Pó Solúveis: Uma Revisão. Braz. Appl. Sci. Rev. 2022, 6, 1588–1620. [Google Scholar] [CrossRef]
- Cardoso, C.E.F.; Lobo, F.A.T.F.; Teodoro, A.J. Influence of Foam Mat Drying on the Nutritional and Technological Potential of Fruits—A Review. Crit. Rev. Food Sci. Nutr. 2024, 64, 5896–5910. [Google Scholar] [CrossRef]
- de Almeida, J.I.O.; Costa, F.; Paulino, C.G.; de Almeida, M.J.O.; Damaceno, M.N.; dos Santos, S.M.L.; de Farias, V.L. Efeito da Pasteurização nos Compostos Bioativos e na Atividade Antioxidante do Ziziphus Joazeiro Mart Polpa de frutas. RSD 2020, 9, e135953245. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Taher, Z.M.; Rahmat, Z.; Chua, L.S. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Damodaran, S.; Parkin, K.L. Química de Alimentos de Fennema, 5th ed.; Artmed: Porto Alegre, Brazil; CRC Press: Boca Raton, FL, USA, 2018; 1120p. [Google Scholar]
- Resolution No. 5 of November 13, 2000. Standards of Identity and Quality (PIQ) of Fermented Milks, DOU, November 15, 2000. Ministry of Agriculture and Supply. Secretariat of Agricultural Defense. Department of Inspection of Animal Products. Brasilia, Official Gazette of the Union. 15 November 2000. Available online: https://www.dgav.pt/wp-content/uploads/2021/05/Res_5_2000_PIQ_Leites_Fermentados.pdf (accessed on 24 April 2025).
- Brückner-Gühmann, M.; Benthin, A.; Drusch, S. Enrichment of Yoghurt with Oat Protein Fractions: Structure Formation, Textural Properties and Sensory Evaluation. Food Hydrocoll. 2018, 86, 146–153. [Google Scholar] [CrossRef]
- Chen, B.; Zhao, X.; Cai, Y.; Jing, X.; Zhao, M.; Zhao, Q.; Van, P. Incorporation of Modified Okara-Derived Insoluble Soybean Fiber into Set-Type Yogurt: Structural Architecture, Rheological Properties and Moisture Stability. Food Hydrocoll. 2022, 137, 108413. [Google Scholar] [CrossRef]
- Santos, R.A.D.; de Lima Rodrigues, R.; de Lima, M.B.D.; Nascimento, E.B.D.; de Carvalho, A.M.B.; de Almeida Gadelha, C.A.; Gadelha, T.S. Influence of Aqueous Yam Extract and Goat Milk Casein Powder on the Characteristics of Goat Greek-Style Yogurt. Int. J. Gastron. Food Sci. 2021, 27, 100465. [Google Scholar] [CrossRef]
- Brazil. Ministry of Agriculture, Livestock and Supply. Normative Instruction No. 46. Provides for the Adoption of the Technical Regulation on the Identity and Quality of Fermented Milks. 2007. Available online: https://www.foodchainid.com/product/mapa-no-46-2007/ (accessed on 22 April 2025).
- Wijesekara, A.; Weerasingha, V.; Jayarathna, S.; Priyashantha, H. Quality Parameters of Natural Phenolics and Its Impact on Physicochemical, Microbiological, and Sensory Quality Attributes of Probiotic Stirred Yogurt during the Storage. Food Chem. X 2022, 14, 100332. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.; Turgeon, S.L. Studying Stirred Yogurt Microstructure and Its Correlation to Physical Properties: A Review. Food Hydrocoll. 2021, 121, 106970. [Google Scholar] [CrossRef]
- Wong, S.-S.; Wicklund, R.; Bridges, J.; Whaley, J.; Koh, Y.B. Starch Swelling Behavior and Texture Development in Stirred Yogurt. Food Hydrocoll. 2019, 98, 105274. [Google Scholar] [CrossRef]
- Cheng, H. Volatile Flavor Compounds in Yogurt: A Review. Crit. Rev. Food Sci. Nutr. 2010, 50, 938–950. [Google Scholar] [CrossRef]
- Maria, H.; Cardello, F.; Cazellatto, A.; Moskowitz, H. Unlocking Consumer Preferences: Sensory Descriptors Driving Greek Yogurt Acceptance and Innovation. Foods 2025, 14, 130. [Google Scholar] [CrossRef]
- Lee, H.S.; Song, M.W.; Kim, K.-T.; Hong, W.-S.; Paik, H.-D. Antioxidant Effect and Sensory Evaluation of Yogurt Supplemented with Hydroponic Ginseng Root Extract. Foods 2021, 10, 639. [Google Scholar] [CrossRef]
- Thakkar, S.; Anklam, E.; Xu, A.; Ulberth, F.; Li, J.; Li, B.; Hugas, M.; Sarma, N.; Crerar, S.; Swift, S.; et al. Regulatory Landscape of Dietary Supplements and Herbal Medicines from a Global Perspective. Regul. Toxicol. Pharmacol. 2020, 114, 104647. [Google Scholar] [CrossRef]
- Ministry of Health (Brazil). National Health Surveillance Agency. Foods with Functional and/or Health Claims, New Foods/Ingredients, Bioactive Substances and Probiotics; ANVISA: Brasília, Brazil, 2005. Available online: https://www.gov.br/anvisa/pt-br/centraisdeconteudo/publicacoes/alimentos/relatorios-de-atividades-ggali/5-2005-relatorio-de-atividades-ggali.pdf (accessed on 24 April 2025).
- Ministry of Health (Brazil); National Health Surveillance Agency. Resolution No. 18, of April 30, 1999. In Approves the Technical Regulation That Establishes the Basic Guidelines for Analysis and Verification of Functional and/or Health Properties Claimed on Food Labels; ANVISA: Brasília, Brazil, 1999. Available online: https://www.saude.rj.gov.br/comum/code/MostrarArquivo.php?C=MjI0OQ%2C%2C (accessed on 24 April 2025).
Main Effects Observed | |||||||
---|---|---|---|---|---|---|---|
Ref. | Ingredient | Added Fraction | Functional/Nutritional | Phytochemical | Technological | Viab. MO | Sensory |
Powders and flours | |||||||
[58] | Pineapple | Bark | ↑ Antimutagenic Act. ↑ Antioxidant capacity (DPPH and ABTS) | ↑ [ ] peptides | ↑ AT ↓ pH | ↑ | - |
[59] | Purple grape | Pulp and bagasse | ↑ Minerals, dietary fiber | ↑ [ ] total phenolic compounds | ↑ Viscosity | - | ↑ general |
[60] | Orange | Albedo | ↑ Dietary fiber | - | ↓ Syneresis ↑ Protein stability | - | ↓ general |
[61] | Purple grape | Bagasse | ↑ Dietary fiber; ↑ Antioxidant capacity | ↑ [ ] total phenolic compounds | ↓ Syneresis, ↑ Viscosity | - | ↑ general |
[62] | Pomegranate and rosewood | Seed | ↑ PUFA, conjugated fatty acids ↑ Antioxidant capacity | - | - | ↑ Probiotic viability | ↑ general |
[63] | Apple | Bagasse | - | - | ↑ Texture ↑ Stability, ↑ firmness | - | - |
[64] | Mango and banana | Bark | ↑ Macronutrients ↑ Antioxidant capacity | ↑ [ ] total phenolic compounds | - | ↑ Probiotics | - |
[65] | White mulberry | Pulp | ↑ Antioxidant capacity | ↑ [ ] total phenolic compounds | - | ↑ | ↑ general |
[66] | Sweet potato | Pulp | ↑ Antioxidant capacity | ↑ [ ] total anthocyanins | ↑ Viscosity, ↓ Syneresis | ↑ | IN |
[67] | Pomegranate and grape | Seed | ↓ Antioxidant capacity (DPPH and ABTS) | ↑ [ ] of total phenolic compounds | ↓ Viscosity, ↑ Syneresis | ↑ | ↑ general |
[68] | Hemp | Bagasse | ↑ Antioxidant capacity | ↑ [ ] total phenolic compounds | ↑ pH, ↓ Titratable acidity | - | ↑ |
[69] | Date | Pulp | - | - | ↑ Hardness ↑ Elasticity ↑ Cohesiveness, ↑ pH, ↓ Acidity ↑ CRA | - | - |
[70] | Damascus | Pulp | - | - | ↓ Firmness, ↓ pH, ↓ Acidity | ↓ | - |
[71] | Bilberry | Bagasse | ↑ Fiber | ↑ [ ] total phenolic compounds ↑ [ ] of total anthocyanins | ↑ Viscosity, ↓ Syneresis, ↑ CRA | - | ↑ general |
[72] | Lentinula edodes | Pulp | ↑ Antioxidant capacity | - | ↓ Viscosity, ↓ Syneresis | ↓ | - |
[73] | Black carrot | Bagasse | ↑ Antioxidant capacity | ↑ [ ] total phenolic compounds ↑ [ ] total flavonoids ↑ [ ] anthocyanins | ↓ Syneresis | - | ↑ general |
Extracts | |||||||
[74] | Pomegranate | Bark | ↑ Antioxidant capacity (DPPH and ABTS) | ↑ [ ] phenolic compounds and flavonoids | ↓ Viscosity ↑ Syneresis | - | ↑ general |
[75] | Camellia sinensis | Sheet | ↑ Antioxidant capacity (DPPH and FRAP) | ↑ [ ] total phenolic compounds | - | ↓ | - |
[76] | Red beet and lemon | Pulp | ↑ Antioxidant capacity | ↑ [ ] betalains, carotenoids | - | - | ↑ color |
[77] | Nutmeg, black pepper, and white pepper | Pulp | ↑ Antioxidant capacity | ↑ [ ] total phenolic compounds ↑ [ ] peptides | - | - | ↑ with black pepper |
[78] | Walnuts, pistachios, and almonds | Bark | ↑ Antioxidant capacity | - | ↓ Syneresis ↑ Stability | ↓ | ↓ for nuts and almonds |
[79] | Elderberry | Pulp | ↑ Antimicrobial activity ↑ Antioxidant capacity | ↑ [ ] total phenolic compounds, flavonoids | - | ↑ beneficial, ↓ pathogenic | ↑ general |
Juices and purees | |||||||
[80] | Strawberry, raspberry, and cherry | Pulp | - | ↑ [ ] ellagic acid | ↑ Rheological properties ↓ pH | ↓ | ↑ color |
[81] | Watermelon | Pulp | ↑ Proteins, fats, minerals, vitamin C | - | - | - | ↑ general |
[82] | Passion fruit | Pulp | ↑ Antioxidant capacity | ↑ [ ] total phenolic compounds | ↓ Cohesion | ↓ | ↑ general |
[83] | Pomegranate, strawberry, and red beetroot | Pulp | ↑ Vitamin C ↑ Antioxidant capacity | ↑ total phenolic compounds | ↑ Viscosity, ↓ Syneresis ↑ Acidity | ↑ | ↑ general |
[84] | Chokeberry | Pulp | ↑ Antioxidant capacity | ↑ [] total phenolic compounds | ↓ pH | - | - |
[85] | Strawberries and chia | Pulp and seeds | ↑ PUFAS ↑ Fiber | - | - | ↑ | |
Emulsions and encapsulates | |||||||
[86] | Pinhão | Nanosuspension | ↑ Total fibers ↑ Iron ↑ Calcium ↑ Antioxidant capacity (DPPH and ABTS) | ↑ [ ] total phenolic compounds | - | - | - |
[87] | Cinnamon, garlic, and cumin | Microencapsulated oil | - | - | ↑ Viscosity ↑ Lifespan | ↓ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, C.E.d.F.; Silva, S.T.; Trindade, M.E.F.; Campos, M.d.B.E.; Cruz, A.G.; Lobo, F.A.T.F.; Teodoro, A.J. Flavors of the Earth: Bioprospecting and Potential of Agricultural Ingredients in Yogurt Production with a Focus on Sustainability, Quality, and Technological Innovation. Foods 2025, 14, 1497. https://doi.org/10.3390/foods14091497
Cardoso CEdF, Silva ST, Trindade MEF, Campos MdBE, Cruz AG, Lobo FATF, Teodoro AJ. Flavors of the Earth: Bioprospecting and Potential of Agricultural Ingredients in Yogurt Production with a Focus on Sustainability, Quality, and Technological Innovation. Foods. 2025; 14(9):1497. https://doi.org/10.3390/foods14091497
Chicago/Turabian StyleCardoso, Carlos Eduardo de Faria, Sofia Terra Silva, Maria Eduarda Flores Trindade, Monique de Barros E. Campos, Adriano Gomes Cruz, Francine Albernaz T. Fonseca Lobo, and Anderson Junger Teodoro. 2025. "Flavors of the Earth: Bioprospecting and Potential of Agricultural Ingredients in Yogurt Production with a Focus on Sustainability, Quality, and Technological Innovation" Foods 14, no. 9: 1497. https://doi.org/10.3390/foods14091497
APA StyleCardoso, C. E. d. F., Silva, S. T., Trindade, M. E. F., Campos, M. d. B. E., Cruz, A. G., Lobo, F. A. T. F., & Teodoro, A. J. (2025). Flavors of the Earth: Bioprospecting and Potential of Agricultural Ingredients in Yogurt Production with a Focus on Sustainability, Quality, and Technological Innovation. Foods, 14(9), 1497. https://doi.org/10.3390/foods14091497